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Abstract
Much progress has been made on optimizing plant water supply based on several methods of irrigation scheduling,
in  both  open-field  and  greenhouse  cultivations,  such  as  real-time measurements  of  solar  radiation  and  soil  or
substrate moisture. However, only a limited number of such methods use plant-based physiological indicators to
detect  plant  water  stress and adapt irrigation scheduling accordingly. In  addition, even fewer indicators  can be
estimated  by  non-contact,  remote  sensors  (RS)  that  do  not  affect  plant  development.  Hyperspectral  imaging
technology  could  be  an  accurate  remote  way  to  detect  moisture  content  of  plants,  taking  into  account  crop
characteristics. In this work, a methodology of hyperspectral imaging calibration and acquisition is presented. The
method uses  the  reflectance  characteristics  in  hyperspectral  bands  from 400 to  1000 nm and incorporates  the
appropriate radiometric and geometric corrections. The basic statistical parameters of mean and standard deviation
values are used to estimate spatial and spectral correlation of each band on the extracted areas/pixels of interest.
Several statistical techniques are used for the selection of optimal features that will lead to the development of
appropriate plant water stress indices that could be used for incipient water stress detection in optimal irrigation
scheduling systems.
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Introduction
Greenhouse irrigation management, especially on hydroponic systems, needs a series of short-

time water applications (10-25 doses/day). Even though several methods are used to detect plant
water  deficit,  only  a  few methods  use  plant-based physiological  indicators.  Katsoulas  et  al.
(2006) stressed the need for the creation of a suitable method to control irrigation frequency and
proposed a technique based on crop transpiration. However, that method implies the knowledge
of a crop coefficient that varies for different planting periods.

Crop reflectance  (Knipling,  1970),  fluorescence (Norikane and Kurata,  2001) and thermal
radiation transmittance (Jones and Schofield, 2008) are affected by water stress. Several studies
have attempted to detect and quantify water stress -through relevant indices- using reflectance
inside the visible and the near infrared regions (Penũelas et al., 1993; Schlemmer et al., 2005;
Sellers, 1985). The use of a hyperspectral camera to identify plant reflectance variations related
to leaf water deficit  levels is  a non-destructive and fast  measurement  method.  Hyperspectral
imaging technology could be used to study leaf reflectance changes caused by different water
stress  levels  in  more  than  one  leaf,  enhancing  the  reliability  and  sensitivity  of  plant  water
detection (Graeff and Claupein, 2007; Sarlikioti et al., 2010; Zhou et al., 2011). Although remote
sensing has been successfully used for years in open fields and relevant reflectance calculation
models have been developed (Jacquemoud  et al., 2009), it has not been extensively tested for
greenhouse  crops. It  has  to  be  noted  that  open field  methods  cannot  directly  be  applied  in
greenhouses due to difficulties arising mainly from shadows casted by the greenhouse frame and
equipment. The problems related to the greenhouse structure shadows or to disturbing factors
(such as old leaves and soil background) could be overcome by combining data from two or
more spectral bands to form vegetation indices (Jackson and Huete, 1991). According to Zakaluk
and Sri Ranjan (2008), the most common forms of reflectance indices are the following: (1)
reflectance  ratios  corresponding to  the  ratio  of  two spectral  bands,  which are  referred to  as



simple  ratio  (SR)  vegetation indices  and (2)  normalized  difference  (ND) vegetation  indices,
which are defined as ratios of the difference in reflectance between two spectral bands to the sum
of the reflectance at the same bands.

Accordingly, aim of this  work was to  study the possibility  to  detect  plant  water stress in
greenhouses using a hyperspectral imaging methodology and study the effect of system settings
on reflectance measurements and plant water stress indices.

Materials and Methods
The  hyperspectral  camera  Imspec  V10  (Spectral  Imaging  Ltd,  Finland)  was  used,  which

operates in the VNIR ranges of 400-1000 nm. It was used as a push broom line scan camera and
provided full spectral information for each pixel. The hyperspectral camera was attached to a
rotary scanning system, in which, scanning speed and angle were controlled. A spectral DAQ
software was used to set the operational parameters of the camera, to start data acquisition and to
monitor  on-going  tasks.  The  camera’s  specifications  and  settings  were:  spectrograph:  V10,
spectral  range: 400-1000 nm, spectral resolution (30 mm): 2.08 nm, spectral resolution peak:
435.8 nm (2.86 FWHM/nm), 696.5 nm (3.34 FWHM/nm), 912.3 nm (3.33 FWHM/nm), slit
width: 8 mm, pixels in full frame: 1312 x 1024, exp. time range: 0.1-500 ms.

The camera system was placed on a cart, so that images of the vertical canopy axis could be
obtained. The hyperspectral imaging system was calibrated in a light control growth chamber.
Light  intensity  was  controlled  with  high  pressure  sodium lamps,  600W each.  The  chamber
included 24 lamps in total (6 lamps per light-intensity level) with a maximum light intensity of
240  W m-2.  For  extra  illumination  of  the  target  area  (70 x 100  cm),  four  quartz-halogen
illuminators (500 W each) were used to provide calibration wavelength from 400 to 900 nm. The
optic system was placed at 1 m from the target (white panel or plant). A spectrally flat black
surface was placed as a background, to ensure a constant field of view without any shadows.

The  calibration  of  the  hyperspectral  imaging  system  requires  geometric  and  radiometric
calibration  (Lawrence  et  al.,  2003).  Geometric  calibration  eliminates  optical  errors,  such  as
curvature disortion of the spectral lines. The system was already geometrically calibrated by the
supply company. Radiometric calibration includes the elimination of a variety of noise sources,
such as photon noise, thermal noise, read out noise and quantisation noise. The proper number of
lens  aperture  (f/)  and exposure time  (ms)  ranges  of  the  camera  for  the  specific  light  signal
conditions were evaluated, in order to achieve the most suitable readout values. The MATLAB
software package (by MathWorks®)  was used for image analysis. The acquired images  were
improved based on the above factors, by using the radiometric equation:
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where: r is the actual plant reflectance, R is the measurement of plant colour reflection, Wλ is the
colour reflection of the white reference in the specific lighting conditions during measurements
acquisition and Dλ is the black reference (Polder et al., 2003).

Results
Images acquired with a hyperspectral camera contain noise from a variety of sources that are

determined by the camera. Exposure time and size of lens aperture are some of the camera’s
parameters that can be used to eliminate signal-to-noise errors and improve the image sharpness.
Figure 1 shows the dark current  estimation  based on the digital  number (i.e.,  captured  light
intensity)  response  to  different  exposure  time  settings.  As  expected,  dark  current  noise  is
proportional to exposure time values.

It was observed that the sensitivity of the CCD silicon detector is wavelength dependent (Fig.
2). Thus, the light signal showed low sensitivity in the blue part of the spectrum (high digital
number  values)  and  high sensitivity  in  the  red  and  near  infrared  parts  (low digital  number
values). The lowest values of noise were observed when the lens aperture was at 1.4 and the
maximum values were observed at 11. Another interesting point is the dependency of the noise



on the sensor temperature. Figure 3 shows the relation between sensor temperature and black
level noise expressed by digital numbers. From this graph, it is evident that black level noise
increases when the sensor temperature increases, following a 2nd degree polynomial trend line.

Fig. 1. Dark current noise estimation based on digital number response to different exposure times.  

Fig. 2. Dark current noise development based on digital
numbers response to different number of lens aperture.

Fig.  3.  Dark current  development  based  on digital
number response to different sensor temperature.

Before  the  acquisition  of  the  hyperspectral  images  for  the  detection  of  water  stress  in
greenhouse plants, the readout digital numbers of illumination in white reference for different
exposure times were recorded. It was observed that the light signal of halogen lamps had a peak
between 700 and 800 nm and tends to decrease at the left and right sides of the spectrum, as a
result of the low values of light signal in the blue and infrared spectrum. The sodium lamps
improved the light signal in the green and red spectrum, but the light signal in the blue spectrum
remained low (Figure 4).

After all these procedures, the camera was used to measure plant reflectance and exact leave
color measurements. In addition, the speed of the scanner had to be determined in order to avoid
the distortion of image size and spatial resolution. The experiments showed that the images were
clearer when the exposure time was 130 ms and the speed of the scanner was at 0.16 degrees
with a frame rate of 500 Hz and a frame resolution of 800. The typical spectral signature of a
healthy  tomato  plant  is  shown  in  Figure  5,  for  two  different  exposure  times.  The  spectral
signature  of  tomato  showed  differences  between  the  two  exposure  times  tested,  due  to  the
amount of captured light intensity through the slit. These variations will be further minimized in
the analysis process, using various spectral indices. The combination of more than one spectral
region reduces additive and multiplicative errors associated with light conditions. Some of the
most  effective  spectral  indices  for  plant  water  stress  assessment  are  NDVI  ((R680-R800)/
(R680+R800)),  rNDVI ((R750-R705)/(R750+R705)),  mrNDVI  ((R750-R705)/(R750+R705-2*R445))  and  PRI
((R531-R570/R531+R570)). NDVI and rNDVI indices use steeply sloped regions of red edge and near
infrared spectrum, which are more sensitive to smaller changes in vegetation physiology and are
more  suitable  for  hyperspectral  sensors.  NDVI  and  rNDVI  showed  the  same  index  values
between the different exposure time curves. The value of NDVI was 0.86 when the exposure
time of the camera was at 140 ms, and 0.87 when the exposure time was at 130 ms. The values
of  rNDVI  were  0.58  and  0.60,  when  the  camera’s exposure  time  was  at  140  and 130  ms,
respectively. mrNDVI also gave stable index values between the two curves, at 0.68 and 0.66,



respectively.  On  the  other  hand,  PRI  seems  to  be  more  sensitive  to  light  intensity  and  to
environmental  conditions,  with decreasing values from 0.07 to 0.04 when the exposure time
changed from 140 ms to 130 ms.

Fig.  4.  Illumination reflectance  for  four different  light
levels (6 sodium lamps/level) at the same time, with 4
halogen lamps (Exposure time and lens aperture at 130
ms and f/2.1, respectively).

Fig.  5.  Tomato  reflectance  based  on  the  radiometric
callibration method.

Conclusions
In  this  work,  a  hyperspectral  imaging  system  was  developed,  to  perform  acquisition  of

hyperspectral  imaging data  and to  estimate  the optimal  characteristic  wavelength in  order to
create a predictable model of greenhouse plant water status. Different sources of hyperspectral
camera’s  noise  were  investigated  and  the  reflectance  spectrum  of  greenhouse  tomato  was
measured. Exposure time and lens aperture values were the camera’s parameters that influenced
the levels of dark current noise, which depended on light intensity. In addition, the dark noise
current was increased by the increase of sensor temperature, following a 2nd degree polynomial.
It was validated that NDVI, rNDVI and mrNDVI indices are more sensitive to smaller changes
in vegetation physiology and are more suitable for hyperspectral sensors. Finally, it was shown
that PRI is more sensitive to light intensity and environmental conditions.
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