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Abstract – In this paper we propose an approach to optimal design 
of application-specific wireless sensor networks based on the 
optimization properties of genetic algorithms. Specific 
requirements for a precision agriculture application of sensor 
networks are taken into account by the genetic algorithm system, 
together with connectivity and energy conservation limitations. We 
develop an appropriate fitness function to incorporate many 
aspects of network performance. The design characteristics 
optimized by the genetic algorithm system include the status of 
sensor nodes (whether they are active or inactive), network 
clustering with the choice of appropriate clusterheads and finally 
the choice between two signal ranges for the normal sensor nodes. 
Optimal sensor network designs constructed by the genetic 
algorithm system satisfy all application-specific requirements, 
fulfill the existent connectivity constraints and incorporate energy 
conservation characteristics. 
 
Keywords – Sensor network design, genetic algorithms, energy 
conservation, precision agriculture 
 

I. INTRODUCTION 
 

Wireless sensor networks (WSNs) have been used in a 
wide range of applications. They usually consist of a large 
number of low-cost, low-power, multifunctional sensor nodes 
that are small in size and communicate in short distances [1]. 
Their structure and characteristics depend on their electronic, 
mechanical and communication limitations but also on the 
requirements of the specific application. The position of 
sensor nodes is usually not pre-determined, although the 
application can provide some guidelines and insights that can 
lead to the construction of an optimal design that satisfies 
application requirements and meets wireless network 
limitations. 

One of the most important network limitations is energy 
conservation. Wireless sensors operate on limited power 
sources, therefore, their main focus is on power conservation 
through appropriate optimization of communication and 
operation management. Several analyses of energy efficiency 
of sensor networks have been realized [2]–[5] and several 
algorithms that lead to optimal topologies for power 
conservation have been proposed [6]–[11]. However, most of 
the proposed approaches do not take into account the 
principles, characteristics and requirements of the specific 
application that sensor networks are used for. When these 

factors are considered, then the problem of optimal design 
and management of WSNs becomes much more complex. 
This explains the use of several heuristic algorithms in 
application-specific WSN designs, capable of finding feasible 
or good solutions in complex search spaces where 
conventional analytical techniques are difficult to apply. 

Genetic Algorithms (GAs) [12] are one of the most 
powerful such heuristics. Their successful application in a 
sensor network design in [13] led to the development of 
several other GA-based application-specific approaches in 
WSN design [14]–[17]. However, in most of these 
approaches, either very limited network characteristics were 
considered, or several requirements of the application cases 
were not incorporated in the performance measure of the 
algorithm. Here, a more integrated GA approach is proposed, 
both in the direction of degrees of freedom of network 
characteristics and of application-specific requirements 
represented in the performance metric of the GA. More 
specifically, network design is investigated in terms of active 
sensors placement, clustering and signal range of sensors, 
while performance estimation includes, together with 
connectivity and energy-related characteristics, some 
application-specific properties like uniformity and spatial 
density of sensing points. 

 
II. NETWORK DESIGN 

 
Precision agriculture refers to the approach of agricultural 

control and management based on direct chemical, biological 
and environmental sensing. Sensor networks play the major 
role in that approach. In order to maximize the quantity, 
diversity and accuracy of information extracted from a 
precision agriculture WSN deployment, a variety of reliable, 
high-performance, and cost-effective sensor technologies are 
needed. An important issue that arises in precision agriculture 
is the type of parameters to be sensed, which, except for 
regular environmental parameters like temperature, humidity 
and solar radiation, may include soil moisture, dissolved 
inorganics such as nitrogen and phosphorous species, as well 
as herbicides and pesticides. There are several sensing 
approaches that contribute to data collection, with WSNs 
belonging to the embedded, networked systems category. 

Here, we consider an application that concerns open field 
cultivation at an area of 30 by 30 length units, where a length 



unit is an abstract parameter so that the developed system for 
optimal design is general enough. The length unit is defined 
as the distance between the positions of two neighboring 
sensor nodes in the horizontal or vertical dimension. The goal 
is to find the optimal operation mode of each sensor so that 
application-specific requirements are met and energy 
consumption of the network is minimized. Therefore, a 
further issue in a WSN for precision agriculture is the 
existence of some uniformity and spatial density conditions 
regarding sensors deployment, as these are determined by the 
requirements of the specific cultivation and the parameters 
that are being measured. These requirements are the highest 
possible uniformity of sensing points and a desired spatial 
density of 20 such points per 100 square units of cultivated 
area.  

The main features of the proposed WSN are the following: 
A square grid of 30 by 30 length units is constructed and 
sensors are placed in all 900 junctions of the grid, so that the 
entire area of interest is covered. Sensors are identical and 
may be either active or inactive. They are capable of 
transmitting in one of three supported signal ranges. In the 
case that a sensor is active, it may operate as a clusterhead 
transmitting in the appropriate signal range so as to be able to 
communicate with the remote base station, or as a simple 
sensor transmitting in either high or low signal range, in the 
latter case consuming less power, as explained later, in 
section III-B. High signal range (HSR) sensors cover a 
circular area with radius equal to 10 length units, while low 
signal range (LSR) sensors cover a circular area with radius 
equal to 5 length units. Sensors are assumed to have power 
control features so as to adjust manually or automatically 
their transmit power whenever is needed, through the base 
station. Thus, simple sensors are divided into clusters and in 
each cluster a sensor is chosen to act as a clusterhead. Simple 
sensors communicate directly with the closest clusterhead, 
whereas clusterheads communicate with a remote base 
station. Single hop transmission is used in both cases. It is 
assumed that communication between clusterheads and the 
base station can always be achieved when required and that 
the base station can communicate with every sensor in the 
field, meaning that every sensor is capable of becoming a 
clusterhead. 

 
III. IMPLEMENTATION OF GA 

 
GAs try to imitate natural evolution by assigning a fitness 

value to each candidate solution of the problem and applying 
the principle of survival of the fittest. Their basic components 
are the representation of candidate solutions to the problem in 
a “genetic” form, the creation of an initial, usually random 
population of solutions, the establishment of a fitness 
function that rates each solution in the population, the 
application of genetic mechanisms to produce new 
individuals from existing ones and finally the tuning of the 

algorithm parameters like population size and probabilities of 
performing some genetic operation. 

The implementation of GAs in the application of optimal 
design and operation of WSNs incorporates two basic steps 
so that the algorithm is formulated for the specific 
application: the design representation, i.e. the encoding 
mechanism of the problem’s phenotypes into genotypes that 
GAs manipulate and evolve and the formulation of the fitness 
function that gives to each individual (i.e. possible network 
design) a performance metric.  

A. GA Representation of the WSN 

The variables that are included in the WSN representation 
are those that give all the required information so that the 
performance of a specific network design can be evaluated. 
These variables are the placement of the active sensors of the 
network, the operation mode of each active sensor, that is, 
whether it is a clusterhead or a simple sensor, and in the case 
of a simple sensor, the range of its signal (high or low). 

A general grid of sensors has r rows and c columns. For a 
sensor placed at each of the r·c grid positions, there are four 
possibilities represented by a two-bit encoding scheme: being 
an inactive sensor (00), being a simple active sensor, 
operating in a low signal range (10), being a simple active 
sensor operating in a high signal range (01) and being an 
active clusterhead sensor (11). The grid junctions are 
encoded row by row in the bit string, as shown in Fig. 1. 
Each position needs two bits for the encoding, thus, the 
length of each string is 2·r·c. In the specific design problem 
analyzed here, the values of r and c are both equal to 30, thus 
the length of the GA strings are equal to 1800. 

 
B. Fitness Function 

 
The fitness function is a weighted function that measures 

the quality or performance of a solution, in this case a 
specific sensor network design. This function is maximized 
by the GA system in the process of evolutionary 
optimization. A fitness function must include and correctly 
represent all or at least the most important factors that affect 
the performance of the system. The major issue in the 
development of a fitness function is the decision on which 
factors are the most important ones. In the design of a WSN, 
there are some factors that concern communication issues of 
the network, as well as others that concern the characteristics 
of the specific application of the sensor network, that is, the 
environmental measurements in the precision agriculture 
application examined here. In the network characteristics, 
those factors include the connectivity of the sensors, the 
operational cost of the system depending on the types of the 
sensors and the communication cost of the system, depending 
on the distances between sensors that communicate with their 
corresponding clusterhead. 



1) Application Specific Parameters: The main goal of a WSN 
used in precision agriculture is to take uniform measurements 
over the entire area of interest, so that a uniform picture of 
the conditions of the area is realized. The metric of 
measurements uniformity that we used was the mean relative 
deviation (MRD). The entire area of interest was divided into 
several overlapping sub-areas. Sub-areas are defined by four 
factors: two that define their size (length and width) and two 
that define their overlapping ratio (ratios in the two 
directions). All these factors are expressed in terms of the 
unit length of each direction. The larger the overlapping ratio 
is, the higher precision is achieved in the evaluation of 
uniformity, but also, the slower the algorithm becomes. In 
order to define MRD, the spatial density (ρ) of measurements 
was used. More specifically, ρSi, the spatial density of 
measurements in sub-area Si, was defined as the number of 
measurements over the area of the i-th sub-area, i=1,2,…,N, 
where N is the number of overlapping sub-areas into which 
the entire area was divided. In addition, ρS, the spatial density 
of the entire area of interest, was defined as the total number 
of measurements of the network over the total area of 
interest. Thus, MRD was defined as the relative measure of 
the deviation of the spatial density of measurements in each 
sub-area from the total spatial density of measurements in the 
entire area: 

c

r
 1    2     3  . . .                                                               2c  . . .                             2rc
 1   1    0   0    0    1   1    0    0   0    0   0    0   0

active sensor - clusterhead                 11
active sensor - high signal range        10
active sensor - low signal range         01
inactive sensor                                    00

. . .

bit number:

 
 

Fig. 1.  Binary representation (on the right) of a randomly generated sample of a sensor network (on the left). Representation of the first row is shown.  
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The other application-specific parameter of the fitness 

function was a Spatial Density Error (SDE) factor that was 
used to penalize network designs that did not meet the 
minimum required spatial density of measurement points that 
would suffice adequate monitoring of the measured variables 
(e.g., air or soil temperature, air or soil relative humidity, 
solar radiation, etc.) in the area of interest. The desired spatial 
density ρd, as mentioned before, was set equal to 0.2 
measurement points per square unit and the SDE factor was 
evaluated by: 
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2) Connectivity Parameters: A crucial issue in WSNs is the 
assurance that network connectivity exists and all necessary 
constraints are satisfied. Here, these necessary characteristics 
of the sensor network were taken into account be including 
two separate parameters in the fitness function: 

a) A Sensors per Clusterhead Error (SCE) parameter to 
ensure that each clusterhead did not have more than a 
maximum predefined number of simple sensors in its cluster, 
which was assumed to be equal to 15 for the application 
considered here. If nfull is the number of clusterheads (or 
clusters) that have more than 15 active sensors in their 
clusters and ni is the number of sensors in the i-th of those 
clusters, then: 
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b) A Sensors Out of Range Error (SORE) parameter to 

ensure that each sensor can communicate with its 
clusterhead. This of course depends on the signal range 
capability of the sensor. If nout is the number of active 
sensors that cannot communicate with their clusterhead and n 
is the total number of active sensors in the network, then: 

 

n
noutSORE =  (4) 

 
3) Energy Related Parameters: Energy consumption in a 
wireless sensor network, as explained earlier, is a crucial 
factor that affects the performance, reliability and life 
duration of the network. In the optimization process during 
the evolutionary design of the sensor network, three different 
energy related parameters were taken into account: 



a) Operational energy consumption. It refers to the energy 
that a sensor consumes during some specific time of 
operation and it basically depends on the operation mode of 
the sensor, that is, whether it operates as a clusterhead, a 
HSR or a LSR sensor, or whether it is inactive. The 
corresponding relevance factors for the energy consumption 
of the three active operating modes of the sensors are taken 
proportional to 20:2:1 respectively and zero for inactive. The 
Operational Energy (OE) consumption parameter was then 
given by: 

 

n
nls

n
nhs

n
nchOE +⋅+⋅= 220  (5) 

 
where, nch, nhs and nls are the number of clusterheads, HSR 
and LSR sensors in the network, respectively. 

b) Communication energy. It refers to the energy 
consumption due to communication between simple sensors 
and clusterheads. It mainly depends on the distances between 
the sensors and their clusterhead, in each cluster, as defined 
in [10]. It is depicted by the Communication Energy (CE) 
parameter: 
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where, c is the number of clusters in the network, ni is the 
number of sensors in the i-th cluster, dji is the Euclidean 
distance from sensor j to its clusterhead (of cluster i) and μ 
and k are constants, characteristic of the topology and 
application site of the WSN. For the specific precision 
agriculture application for open field monitoring, the values 
of μ=1 and k=3 were chosen. 

c) Battery life. An important issue in WSNs is self-
preservation of the network itself, that is, the maximization of 
life of network’s elements, i.e. the sensors. Each sensor 
consumes energy from some battery source in order to 
perform its vital operations, like sensing, communication, 
data aggregation if the sensor is a clusterhead, etc. Battery 
capacity of each sensor of the network was taken into account 
in the design optimization process by the introduction of a 
Battery Capacity Penalty (BCP) term. Since the operation 
mode of each sensor is known, its Battery Capacity (BC) can 
be evaluated at each time. Thus, when the design 
optimization algorithm is applied at a specific time t 
(operation cycle) the battery capacity penalty term is given 
by: 
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while BCi is updated according to the operation mode of each 
sensor (clusterhead, high-range or low-range) during the 

previous time step (operation cycle) of the network’s 
operation. 

In the above: 
- [ ]tBCP  is the battery capacity penalty of the WSN at 

measuring cycle t. It is used to penalize the use of sensors 
with low battery capacities, giving at the same time larger 
penalty values to operating modes that consume more energy 
(especially clusterhead mode). 

- ngrid is the total number of available sensor nodes. 
-  is a penalty factor of sensor i that takes different 

values according to the operation mode of sensor i. 

][t
iPF

-  is the battery capacity of sensor i at measuring 
cycle t, taking values between 0 and 1, with 1 corresponding 
to full battery capacity and 0 to no capacity at all. 

][t
iBC

Thus, the final form of the fitness function f used by the 
genetic algorithm was: 
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where f is the fitness value of a specific WSN design. The 
weighting factors 7,...,2,1: =iiα  were used in the fitness 
function to determine the relevant importance of the 
corresponding parameters. The values of these factors were 
chosen based on experience about the importance of each 
parameter after experimentation. First, weighting factors that 
resulted on the same importance of each parameter were 
estimated and after some experimentation, the final values 
that best represented the intuition about relevant importance 
of each parameter were set. It should be noted that we did not 
include the BCP parameter in the results presented in this 
work. The algorithm was applied to the optimal design of 
sensors with full battery capacities. Its dynamic application 
for adaptive optimal design is presented in future work [18], 
where the reduction rate of battery capacities is also 
explained in more detail.  

C. Optimal Design Algorithm 

Having completed the steps of designing a representation 
scheme and forming the fitness function, the final genetic 
algorithm for optimal design of the WSN could be 
developed. The algorithm consisted of the following steps: 
1) An initial population of randomly generated designs was 

formulated. The size of the population was a parameter 
of exploration, as explained in the next section. 

2) Using (1) to (7), the characteristics of each individual 
were evaluated. 

3) A fitness value was assigned to each individual, using 
(8) with specific weighting factors, based on experience. 
The best fitness value and the corresponding individual, 
as well as the average fitness of the entire population 
were stored 



4) The individuals that would form the parents of the next 
generation were selected with probability proportional to 
their fitness value. 

5) Crossover was performed between couples of the parent 
individuals, with specific probability. In addition, 
mutation in the form of changing the value of some bit 
was applied to the new population, with specific 
probability. 

6) The population was replaced by the new population and 
steps 2–5 were repeated until a predetermined maximum 
number of generations was reached. 

The individual with the maximum fitness value 
represented the optimal WSN design estimated by the 
algorithm.  

IV. RESULTS 

There are some problem specific parameters of GAs that 
have to be tuned initially, like population size, the 
probabilities of crossover and mutation and the type of 
crossover. The explorations led to the use of the following 
parameters for the final GA: a population of 300 individuals, 
one-point crossover with probability pc = 0.8 and probability 
of mutation pm = 0.005. In addition, because GAs are 
stochastic algorithms sensitive to the quality of the initial 
population, in all explorations and then further application of 
the algorithm, several runs were tested with different random 
initial populations. 

A. Evolution of Network Parameters 

The three initial populations that gave the best results after 
3000 iterations of the GA were recorded (abbreviated as 
“GA1”, “GA2” and “GA3”, started from the fittest design). 
The evolution progress of the two best GA runs is shown in 
Fig. 2, where both the fitness progress of the best individual 
found by the algorithm as well as the average fitness of the 
entire population at each generation are plotted. The general 
optimization in the entire GA population can be seen from 
the general increase of the average population fitness in both 
graphs, despite the numerous fluctuations caused by the 
search process through the genetic operators of crossover and 
mutation. 

The optimization performed by the GA evolution process 
can also be seen by the progress of the values of some of the 
parameters of the sensor network designs found during the 
evolution. These parameters are shown in Fig. 3, for the best 
GA run. More specifically, in these graphs, plot (a) shows the 
evolution of MRD which represents uniformity of 
measurement points (the lower the value of MRD, the better 
the value of the achieved uniformity), plot (b) shows the 
evolution of the operational energy consumption (OE), plot 
(c) shows the evolution of the communication energy 
consumption (CE), while plot (d) shows the number of 
clusterheads (lower line), high signal range (middle line) and 
low signal range sensors (upper line) in the sensor networks 
as they evolved during optimization. The optimization 
process can easily be observed by the evolution of WSN 
characteristics as shown in these graphs. 

Fig. 3.  Evolution of WSN parameters during 3000 generations. (a) MRD 
values for estimation of uniformity of measurement point; (b) Operational 

energy consumption factor; (c) Communication energy consumption 
factor; (d) Number of active sensors for the three operation modes. 

 
                           (a)                                                       (b) 

Fig. 2.  Evolution progress of the best individual (best fitness value) and 
the entire population (average fitness value) of the GA during two runs. 

B. Design Comparisons 

Table I summarizes all the sensor network characteristics 
for the three GA-generated designs as well as some random 
generated designs, for comparison. Random network designs 
were generated (“Rand1” to “Rand4”) with several different 
numbers of active sensors and percentages of clusterheads, 
HSR and LSR sensors, as shown in the corresponding rows 
of the table. Values in bold represent the best values for each 
parameter, while networks that did not satisfy the 
communication constraints (i.e., networks with sensors out of 
range or clusters with more than 15 sensors) were not 
considered in that comparison of values. It can be seen, not 
only from the fitness values but also from the parameters 
values, that network designs “GA1” and “GA2” have the 
overall best performance, with very good values of 
uniformity of sensing point, low energy consumption both for 
operation and communication issues and rational ratios of 
clusterhead nodes over total active nodes (17-19%). Designs 
“Rand1” and “Rand2” do not satisfy the communication 
constraints, as they both have some sensors that cannot 



communicate with some clusterhead and also have some 
clusters with more than 15 sensors, which is the maximum 
number of sensors a clusterhead can handle. Design “Rand3” 
has a high value of MRD (0.1815) and does not achieve a 
satisfactory uniformity of measurement points and it also has 
high values of both operational and communication energy 
consumption. Design “Rand4” achieves better value of 
uniformity than “Rand3” (MRD = 0.1541), which is still 
much worse than that of the GA-generated designs and it also 
has very high operational energy consumption. 

V. CONCLUSIONS 

In this paper, we presented a genetic algorithm system for 
the optimal design of WSNs for a precision agriculture 
application. Identical sensors were considered on a grid 
placement and the GA system decided on which sensors 
should be active, which ones should operate as clusterheads 
and whether the rest normal nodes should have high or low 
signal range. During optimization, parameters of network 
connectivity, energy conservation as well as application 
requirements were taken into account so that an integrated 
optimal WSN was designed. Evolution of several 
characteristics of the network was shown during the GA 
optimization process and it can be concluded that it is 
preferable to operate a relatively high number of sensors and 
achieve lower energy consumption for communication 
purposes than having less active sensors with consequently 
larger energy consumption for communication purposes. In 
addition, GA-generated designs compared favorably to 
random deployments and designs of sensors. Uniformity of 
sensing points of optimal designs was satisfactory, while 
connectivity constraints were met and operational and 
communication energy consumption was minimized. 
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