
Biological engineering applications of feedforward neural networks

designed and parameterized by genetic algorithms

Konstantinos P. Ferentinos*

Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA

Received 3 November 2003; revised 3 March 2005; accepted 3 March 2005

Abstract

Two neural network (NN) applications in the field of biological engineering are developed, designed and parameterized by an evolutionary

method based on the evolutionary process of genetic algorithms. The developed systems are a fault detection NN model and a predictive

modeling NN system. An indirect or ‘weak specification’ representation was used for the encoding of NN topologies and training parameters

into genes of the genetic algorithm (GA). Some a priori knowledge of the demands in network topology for specific application cases is

required by this approach, so that the infinite search space of the problem is limited to some reasonable degree. Both one-hidden-layer and

two-hidden-layer network architectures were explored by the GA. Except for the network architecture, each gene of the GA also encoded the

type of activation functions in both hidden and output nodes of the NN and the type of minimization algorithm that was used by the

backpropagation algorithm for the training of the NN. Both models achieved satisfactory performance, while the GA system proved to be a

powerful tool that can successfully replace the problematic trial-and-error approach that is usually used for these tasks.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Genetic algorithms; Neural networks; Biological engineering; Automatic neural network design; Training parameterization
1. Introduction

This work deals with neural network applications in the

field of biological engineering and more specifically in

modern hydroponic plant production systems. Neural net-

works (NNs) have been used to model a variety of biological

and environmental processes (e.g. Altendorf, Elliott,

Stevens, & Stone, 1999; Bhat, Minderman, McAvoy, &

Wang, 1990; Hong, Tan, & McCall, 2000; Lacroix, Salehi,

Yang, & Wade, 1997; Seginer, Boulard, & Bailey, 1994;

Sridhar, Seagrave, & Bartlett, 1996), but not in the specific

area of plant cultivation. Hydroponics is the growing of

plants in a water and fertilizer solution that contains the

necessary nutrients for optimal plant growth. In other words,

hydroponics is a soilless cultivation of plants. There are

several types of hydroponic systems, the most popular being
0893-6080/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.neunet.2005.03.010

* Current address: Informatics Laboratory, Agricultural University of

Athens, 75 Iera Odos Street, Athens 118 55, Greece. Tel.: C30 210 764

8288; fax: C30 210 529 4199.

E-mail address: kpf3@cornell.edu
Nutrient Film Technique (NFT), deep trough hydroponics

and hydroponics on substrates like cocosoil or pumice.

Knowledge of the highly nonlinear dynamics of interacting

biological systems within hydroponically grown plants is

limited. Moreover, hydroponic systems can be monitored

with a level of detail that permits one to collect extensive

sets of data about the system. Thus, the NN approach shows

promise as a means to avoid the need to model internal plant

processes and still achieve a prediction capability suitable

for control.

The application of NNs in modeling nonlinear processes

has a central drawback: the lack of a precise method to

choose the most appropriate network topology, type of

activation functions and parameters of the training algor-

ithm. These tasks, in the case of engineering applications,

are usually based on a trial-and-error procedure performed

by the developer of the model. In that way, optimality or

even near-optimality is not guaranteed, as the explored

space is just a small portion of the whole search space and

the type of search is rather random. To overcome the

problems associated with human network design and

training parameterization, an automated method, based on

the evolutionary properties of genetic algorithms (GAs), is
Neural Networks 18 (2005) 934–950
www.elsevier.com/locate/neunet

http://www.elsevier.com/locate/neunet

K.P. Ferentinos / Neural Networks 18 (2005) 934–950 935
developed. GAs evolve several network designs with

different activation functions and several minimization

algorithms so that the best possible combination is finally

chosen.

In the vast majority of real-world engineering appli-

cations of neural networks, the common technique of trial-

and-error performed by a human designer is used. However,

during the last 15 years, an effort of making this process of

designing a NN more sophisticated and less human-

dependent is underway. Because of the ‘combinatorial

optimization’ aspect of the designing problem, evolutionary

computation methods and particularly GAs (Goldberg,

1989a; Holland, 1975) and evolutionary programming

(Fogel, 1994, 1995) are used as the optimal-designing

tool. These algorithms perform a global exploration of the

search space and use several heuristics to avoid getting

trapped in local optima. On the other hand, several other

techniques of manipulating NN architectures, like the

pruning methods (Reed, 1993) and the constructive methods

(Frean, 1990; Gallant, 1993; Parekh, Yang, & Honavar,

2000) are susceptible to becoming trapped at structural local

optima and they only investigate restricted topological

subsets rather than the complete class of network archi-

tectures (Angeline, Saunders, & Pollack, 1994). This is also

the case for the weight sharing methods (Nowlan & Hinton,

1992) for network size reduction.

The initiation of the research in the area of evolving NN

topologies appears to have been made with the introduction

of two different approaches to the subject. In the first

approach, the indirect or ‘weak-specification’ representation

of the implementation was proposed (Harp, Samad, & Guha,

1989). For the first time, the problems of human-based

exploration of a large space as large as the domain of

possible network architectures were addressed. GAs, with

their relative immunity to high dimensionality, local minima

and noise, were considered to be the best tool for automation

of the design task. The version of the genetic algorithm used

by Harp et al. was the common one, with elitism. The weak

specification representation that was chosen, used relatively

abstract genetic ‘blueprints’ that were then translated into

network phenotypes. The representation of the weak

specification category uses specific correspondences of

specific binary strings to specific network architectures that

are pre-defined by the user. The approach of Harp et al. used

bit strings of variable length, which complicated drastically

the genetic algorithm representation, making the encoding

more difficult and time consuming. However, this represen-

tation has many degrees of freedom, making the range

of possible network architectures that can be constructed

very wide.

The second approach to the subject of evolving NN

topologies is the direct or ‘strong-specification’ represen-

tation of the genetic algorithm implementation (Miller,

Todd, & Hegde, 1989). This representation encodes

explicitly every network connection from node to node in

a way that someone, by just looking at a bit string, can
encode the corresponding network topology. A bit of 1

corresponds to a connection while a bit of 0 corresponds to

lack of connection. This type of representation requires very

large binary strings and can be problematic with all the

restrictions that feedforward NNs comprise (i.e. no cycles,

no connections between nodes of non-successive layers or

between nodes of the same layer, etc.), as it is explained in

more detail below. The main representation used by Miller

et al. was that of translating a network architecture initially

into a two dimensional matrix of zeros and ones, where a

value of one at an element ij of the matrix represented a

connection from node i to node j, while a zero represented

no connection. With special techniques, certain constraints

could be included in this representation. Then, each row of

the matrix was put in line so that the final string of the

genetic algorithm was formed. This approach has the main

disadvantage that it requires very long strings to represent

large networks and, in addition, the strings are of variable

length. From the results extracted from some application

cases, the authors suggested that weaker specification

schemes should be explored.

Thus, it is evident that the direct encoding scheme is

suitable for precise and deterministic handling of only small

neural networks. Also, an important property of the indirect

encoding scheme is that it is biologically more plausible

than the direct encoding one because genetic information in

real chromosomes cannot specify the whole nervous system

directly and independently (Yao, 1993).

In the work presented here, the indirect or ‘weak

representation’ scheme is used. Except for the network

architecture, the types of activation functions of the hidden

and output nodes, as well as the type of the minimization

approach of the backpropagation algorithm, are also

included in the GA encoding. In this way, not only are

more aspects of NN application evolved, but also the major

problems of deception (Goldberg, 1989c) and multimod-

ality (Yao, 1993) are avoided. The search space of NN

architectures is deceptive and multimodal, deceptive

because similar network architectures may have dramati-

cally different performances, multimodal because NNs with

quite different architectures may have very similar capa-

bilities. Genetic algorithms, which operate with building

blocks (Goldberg, 1989b) according to the schema theorem

(Reeves, 1995), seem to be problematic in environments

with these characteristics, mostly because of the crossover

operator (Angeline et al., 1994). However, the search spaces

of NN activation functions and the possible types of training

algorithms do not have the characteristics of deception and

multimodality, thus the combined GA encoding of these

matters with the network architecture that was used here,

overcomes those problems. In addition, the indirect

representation of specific architectures of the feedforward

NN, overcomes the permutation problem (Hancock, 1992),

i.e. the fact that similar networks may have the hidden units

defined in different orders so that they have very dissimilar

K.P. Ferentinos / Neural Networks 18 (2005) 934–950936
genetic strings, preventing successful recombination of

building blocks.

This paper is organized as follows. Section 2 describes

the materials and systems used in the presented applications.

Section 3 gives a review of several approaches in the

literature for neural network design, similar to the one

developed here. Section 4 describes in detail the specific GA

encoding scheme that was used in the proposed model and

gives an overview of the algorithm of the model. Section 5

presents some comparisons of the developed model with

the trial-and-error procedure, in the real-world bioengineer-

ing applications described in Section 2 and finally,

Section 6 states the basic characteristics of the system

and the conclusions based on the results of the previous

section.
2. Materials and methods of application systems

Two feedforward neural network applications in the field

of biological engineering were developed: a fault detection

NN system of a deep-trough hydroponic system (Ferentinos

& Albright, 2003) and a predictive NN model of a similar

hydroponic system (Ferentinos & Albright, 2002). Hydro-

ponic systems, as mentioned above, are soilless cultivation

systems where the plants are grown on appropriate

substrates or directly on nutrient solution. They are usually

monitored electronically and their main variables, like pH

and electrical conductivity (EC) of the nutrient solution, are

accurately controlled. In addition, these structures are

situated inside greenhouses, where the environmental

parameters, like temperature, relative humidity and lighting,

are also monitored and controlled. The large amount of

operation data that are collected in hydroponics is suitable

for development of several models of the measured

variables or other types of models like fault detection

models, intelligent control, etc. Deep-trough hydroponics

are systems in which the plants are placed on tanks that

contain the nutrient solution required by the plants. The

composition of the nutrient solution is automatically

controlled. Here, two quite similar deep-trough hydroponic

systems were used. In both cases, lettuce was the cultivated

plant. The technical characteristics of the arrangements

were identical. The only difference was that the hydroponic

system used in the fault detection NN model was of

continuous production, that is, every 2 days a number of

large plants were harvested and the same number of small

plants were transplanted in the system. In other words, the

system always had a constant range of plant ages. On the

other hand, the hydroponic system of the predictive NN

model was simpler: all plants were transplanted in the tanks

at the same time, and were all harvested at the end of their

growing period. Thus, the biochemical dynamics of the two

cases were similar, but not identical.
2.1. Experimental arrangement

The experiments were conducted in a section of the

Kenneth Post Laboratory (KPL) Greenhouses at Cornell

University, in Ithaca, NY. The greenhouse section had a

floor area of about 85 m2 and was fully equipped with a

staged ventilation system, an evaporative cooling system,

a lighting system and a movable shading system. The

controlled environmental variables were the daily integral

of light (photosynthetically active radiation—PAR) and the

air temperature. Light intensity, air temperature, relative

humidity and CO2 concentration were continuously mon-

itored. During the experiments, temperature setpoints were

24 8C during day and 19 8C during night and were achieved

within G0.5 8C. The daily PAR integral setpoint was

17 mol mK2 and was achieved by using supplemental

lighting from 21 high-pressure sodium, 400 W, lamps

during winter and the shading screen during summer. The

relative humidity was maintained between 30 and 70%.

The cultivation system was a deep trough hydroponic

system that consisted of three small growing tanks filled

with nutrient solution. Each one had an area of 0.75 m2

(1.25 m!0.60 m) and root zone control was completely

independent of the others. In this way, the systems could be

monitored and controlled in parallel and, thus, more data

sets could be constructed. The monitoring and control

system consisted of a personal computer (PC) running

LabVIEW software (available from National Instruments),

a data acquisition board connected to the computer and

several meters, sensors and actuators connected to the

board. The monitored parameters were the pH, the electrical

conductivity (EC), the temperature, the dissolved oxygen

(DO), the weights of two of the three ponds (for measuring

evapotranspiration) and the control signals of pH and DO.

For each pond there was a metering pump used to control

the pH of the nutrient solution by adding acid or base, and

solenoid valves that controlled the DO by adding oxygen.

The program monitored and controlled the system every

10 s and logged its data every 5 min. The control

methodology was based on the pseudo-derivative feedback

(PDF) control algorithm (Phelan, 1977). The pH setpoint

was 5.8 and the DO was maintained between 6.5 and

7 mg lK1. The EC was not controlled automatically but its

values were kept between the recommended setpoints of

115–125 mS mK1 by adjusting manually every 2 days by

adding reverse-osmosis water to replace evapotranspiration

and solution stocks to maintain the EC.

2.2. Fault detection system

The purpose of the first NN application presented in this

paper was the early detection of specific malfunctions

(faults) in a modern hydroponic system for plant cultivation.

The NN model should read the measured conditions of the

system and in real time detect and diagnose possible faults

in the operation. The procedure of training the NN model

K.P. Ferentinos / Neural Networks 18 (2005) 934–950 937
requires, first, an accurate definition of ‘normal operation’,

defined in our case as unstressed plants in a system which is

in control. It is also required to define the ‘faulty operation’

and categorize this kind of operation into different types of

faulty operations, one for each different kind of fault.

In order to obtain data sets for each kind of fault, one has to

impose those faults and take the corresponding measure-

ments of the microenvironment variables. When the

environmental and nutrient solution variables are within

their limits and the plants appear healthy, the growth rate is

optimised and operation of the system is considered

‘normal’. The ‘faulty operation’ consisted of three different

kinds of faults: (i) Actuator/mechanical faults. These are

failures in some actuator or some mechanical part of the

hydroponic system. The actuator fault considered was

the malfunction of the pH control pump (Fault Type 1)

and the mechanical fault was the malfunction of the nutrient

solution circulation pump (Fault Type 2). (ii) Sensor faults.

These are failures in the sensors of the system. The ones

considered were pH sensor failure (Fault Type 3) and EC

sensor failure (Fault Type 4). Thus, four different faults

were considered. For all these faulty operations, real data

existed because sensor and actuator failures were encoun-

tered during daily operation of the system. In addition,

several faults were especially imposed in order to train the

NN model and investigate its inherent fault detection

capabilities.

The training data set consisted of a matrix with columns

that represented the average measurements of 10-min

periods and were of the form
½pHðtÞpHðt K1ÞpHðt K2ÞECðtÞECðt K1ÞECðt K2ÞDOðtÞ

.DOðt K1ÞDOðt K2ÞTsðtÞTairðtÞLðtÞRHðtÞUpHðtÞUDOðtÞ�
T

where t is a specific time, tK1 is the previous time step (i.e.

10 min before), tK2 is two steps before, pH is the solution

acidity, EC is the electrical conductivity, DO is the

dissolved oxygen, Ts is the temperature of the nutrient

solution, Tair is the temperature of the air inside the

greenhouse, RH is the relative humidity inside the green-

house, UpH is the control signal for the pH and UDO is the

control signal for the DO, and T is the transpose operator.

Thus the NN model had 15 inputs and was formed to have

five outputs: one for normal operation, two for the

actuator/mechanical faults and two for the sensor faults.

The values of the outputs used for training the NN were

binary. An output of unity for a specific output denoted the

existence of the corresponding fault type (or of normal

operation when referring to the first output). The values of

the other outputs were zero. The outputs during testing of

the model were, of course, continuous, with values from 0 to

1. In this way, a decision process was formed to determine

above which value an output should be meaningful in terms

of the existence of a fault.
2.3. Predictive modeling system

The second NN model presented in this paper consists of

a system that predicts one-step-ahead values of the pH and

the electrical conductivity of a modern hydroponic system

for plant production. In all the experiments that were

performed for the collection of training and testing data, pH,

EC, and nutrient solution temperature were logged, as well

as air temperature, relative humidity, and light intensity of

the greenhouse environment. All these measurements,

which constituted inputs to the NN model, were collected

every 10 s and values averaged over 20 min were logged. In

addition, the pH control signals of the system were used as

input to the NN. Finally, one more input was included, the

plant age estimator, to represent the age of the plants. The

dynamics of the system change with time because of plant

growth, so the model should take into consideration the age

of the plants. This leads to an adaptive NN, with the plant

age estimator being the adaptation parameter. The plant age

was measured in 12-h intervals, and the growing period of

the lettuce was 25 days, so plant age estimator values ranged

from 1 to 50.

The training data set of the NN consisted of a matrix with

columns that represented the average measurements of

20 min periods and were of the form

½pHðtÞECðtÞTsðtÞTðtÞRHðtÞLðtÞupHAðtÞupHBðtÞPAEðtÞ�T

where t is a specific time period, pH is the solution acidity,

EC is the solution electrical conductivity (mS cmK1), Ts is

the solution temperature (8C), T is the air temperature inside

the greenhouse, RH is the relative humidity inside the

greenhouse, L is the light intensity at the level of the plants,

upHA is the amount of added acid for controlling the pH,

upHB is the amount of added base and PAE is the plant age

estimator. These were the nine inputs of the NN, while the

outputs where the values of the pH and EC of the next 20-

min time step.
3. Literature review

This work develops a genetic algorithm system for the

optimal design and training parameterization of the NN

models presented above. After the initiation of the subject of

evolving neural network architectures by the two works

presented in the introduction, several applications as well as

improvements and advancements have been reported in the

literature (for an excellent review, see Yao (1999)).

The successful application of NNs in modeling engin-

eering problems is highly influenced by three major factors:

network architecture, type of activation functions and type

of training algorithm (Fine, 1999). Even within specific

types of NNs (e.g. feedforward or recurrent networks),

different architectures can give quite different perform-

ances. Similarly, different types or combinations of types of

K.P. Ferentinos / Neural Networks 18 (2005) 934–950938
activation functions can differentiate the performance of

apparently similar networks. In addition, especially in the

case of engineering applications, even different minimiz-

ation approaches of some specific training algorithm, like,

for example, the backpropagation training algorithm

(Rumelhart, Hinton, & Williams, 1986) that is most widely

used, can result in perceptibly different performances.

In most of the relevant works in the literature, the

minimization algorithm of the backpropagation learning

process is not considered in the encoding of the genetic

algorithm system. With the exception of some limited

number of works (Iyoda & von Zuden, 1999; Liu & Yao,

1996; White & Ligomenides, 1993), the types of activation

functions of the neural network are not considered either. In

addition, some possible a priori knowledge of the system

characteristics and possible general intuitions about the

expected topology of the neural network, were not taken

into account. Such an a priori knowledge can drastically

limit the huge search space of the problem of neural network

design, and more dimensions of the problem, like the

minimization algorithm or the types of activation functions,

can also be encoded into the genetic algorithm without

making the encoding extremely complex and difficult to be

optimized.

Kitano (1990) used genetic algorithms to develop an

automated NN designing system that solves in some degree

the problems of large string lengths and the inability to

represent other than the network topology parameters,

problems that were encountered in the previous works. His

representation scheme, which can be categorized in the

weak specification schemes but with a quite different

approach than that of Harp et al. (1989), used a graph

grammatical encoding that encoded graph generation

grammar to the GA strings. Bebis, Georgiopoulos, and

Kasparis (1997) proposed the coupling of GAs with weight

elimination (Weigend, Rumelhart, & Huberman, 1991) to

search the architecture by pruning oversized networks. Filho

and de Carvalho (1997) used genetic algorithms with an

indirect representation scheme to automate the designing of

NNs. Their approach had a genetic algorithm string

consisting of two parts: the parameter part and the layer

part. In the first part, the learning rate and the momentum

term were encoded, while in the second part, the size of each

layer was encoded. A main difference from the works

presented before is that a real-value version of the genetic

algorithms was used and not a binary one. The main

drawback of this approach is that, very often, invalid

(unfeasible) architectures were constructed by the genetic

operations of crossover and mutation. The application that

was used for testing the automated design system showed

that its performance was satisfactory compared to other

methods.

Recently, Jiang, Zhao, and Ren (2003) developed a GA

system that designs the optimal combination of feedforward

and RBF NNs (namely, structural modular NNs). The

general philosophy is similar to the one used here; however,
no evolution of different activation functions and types of

the backpropagation training algorithm was included.

Sigmoid and Gaussian activation functions were used for

the feedforward and the RBF networks, respectively. Only

the Levenberg–Marquardt algorithm was tested in back-

propagation training. A similar approach but exclusively for

multilayer perceptrons with one hidden layer was used by

Castillo, Merelo, Prieto, Rivas, and Romero (2000).

All previously presented methods tried to evolve only the

architecture of the NN model. However, a substantial effort

has been carried out in the simultaneous evolution of both

architectures and weights of the NN, that is, using the

evolutionary computation method for training as well as

designing the network.

Yao and Liu (1997, 1998) used evolutionary program-

ming to evolve both architectures and connection weights of

neural networks. During that evolution, they gave specific

emphasis on the behavioral link between parents and

offspring, using various techniques such as partial training

after each architectural mutation and node splitting, while

the parsimony of the evolved networks was encouraged by

favoring node deletion to node addition. Their technique is

quite demanding in computational power, but it succeeds in

both their goals of behavioral continuity during evolution

and network parsimony. Garcia-Pedrajas, Hervas-Martinez,

and Munoz-Perez (2003) recently developed an evolution-

ary model that evolved not only the weights and

architectures of neural networks, but also the appropriate

combination and cooperation of several (sub)networks in

order to obtain better results than having a single neural

network. Their methodology, even though quite time-

consuming, gave good results when compared to other

methods.

Another genetic algorithm system was used by Collins

and Jefferson (1991) to evolve both architecture and weights

that also allowed recurrent connections in the neural

network, while Schmitz and Aldrich (1999) considered

dynamic addition of groups of nodes based on combinatorial

evolution in oriented ellipsoidal basis functions networks.

Finally, a different type of GA called the structured GA was

used by Dasgupta and McGregor (1992) to successfully

design and train NNs for specific applications, like the XOR

function and the 4!4 encoder/decoder problem.

Iyoda and von Zuben (1999) presented a quite different

but rather limited application of GAs in the design of NNs.

The developed GA system was used to find the best types of

activation functions of the nodes of the network. Several

activation functions like logistic, linear, Gaussian, trigono-

metric ones, etc. were encoded. The system was tested in

both exactly modeled and approximately modeled func-

tions. The performance in both cases was satisfactory.

Liu and Yao (1996) used evolutionary programming to

evolve NNs with both sigmoidal and Gaussian activation

functions. Simultaneously, the methodology allowed the

addition or deletion of nodes of the network. Something

similar, but with specific percentages between sigmoidal

K.P. Ferentinos / Neural Networks 18 (2005) 934–950 939
and Gaussian activation functions, was done by White and

Ligomenides (1993). Finally, Hwang, Choi, and Park

(1997), in addition to network topology and activation

functions, also included evolution of connection weights in

the process, for projection neural networks.

The literature review shows the lack of an integrated

system that takes into account, in addition to network

topology and activation functions, the type of minimization

methodology of the training algorithm, which, especially in

real-world engineering applications, constitutes a major

factor in the final performance of the NN model.
4. Genetic algorithm system

The main aspect in an evolutionary system like the one

developed here, is the way of encoding the several possible

phenotypes of the NN into specific genotypes. A phenotype,

in our case, consists of the NN topology, its activation

functions in the hidden and output nodes and in addition, the

minimization algorithm that is used by the backpropagation

algorithm during training. A genotype is a sequence of bits

(0 or 1) with a specific constant length. Each genotype

corresponds to a unique phenotype. The representation

treats the problem as a combinatorial one.
4.1. Bit-string representation

The weak specification scheme that was developed and

used here incorporates three tasks of the NN design and

training parameterization:
(i)
 the selection of the minimization algorithm used by the

backpropagation training algorithm
(ii)
 the architecture of the NN
(iii)
 the types of the activation functions of the hidden

nodes and of the output nodes.
4.1.1. Representation of the minimization algorithm used

by the backpropagation algorithm

The backpropagation training algorithm (Rumelhart

et al., 1986) was used for the adaptation of the connection

weights of the networks (i.e. training) during the evolution

process. There are four different multidimensional mini-

mization algorithms considered by the GA: steepest descent,

quasi-Newton, Levenberg–Marquardt and conjugate gradi-

ent algorithms. There is no general rule regarding which

algorithm is suitable for which application. It is known that

feedforward NN training is an NP-complete problem (Blum

& Rivest, 1992; Judd, 1990) and there is little reason to

expect that a uniformly best algorithm for training can exist

(Fine, 1999). The selection of the best training algorithm is a

task based exclusively on trial-and-error and user experi-

ence and insight about any specific application.
All NN parameters (weights and biases) are denoted by a

vector
�
w2W 3Rp, where p is the total number of

parameters of the network. In the backpropagation algor-

ithm, the vector of the network parameters
�
w is updated in

each iteration by the equation

�
w

kC1
Z

�
w

k
KakMk

�
g

k

where ak is the learning rate,
�
g

k
is the gradient of the error

function and Mk is an approximation of the inverse of the

Hessian matrix. This matrix is positive definite in order to

ensure the descent. All these quantities are for the kth

iteration. The negative product KMk$
�
g

k
gives the search

direction,
�
d

k
. Each multidimensional minimization algor-

ithm (steepest descent, conjugate gradient, quasi-Newton

and Levenberg–Marquardt algorithm) calculates the search

direction
�
d

k
in a different way. The first three are general

optimization methods that simply try to minimize a

quadratic error function. Of course most error surfaces are

not quadratic but they will be so in sufficiently small

neighborhoods of local minima. The fourth algorithm needs

the Jacobian matrix to be calculated and is specifically

adapted to minimize an error function that arises from a

quadratic criterion of the form we are assuming.

In the steepest descent algorithm MkZI, where I is the

identity matrix, so the search for a minimum takes the

opposite direction of the gradient (K
�
g

k
), i.e. the direction of

the steepest descent of the error function’s ‘surface’. The

conjugate gradient algorithm is similar to the steepest

descent, but the search directions are noninterfering in the

sense that successive minimizations along these directions

do not undo the progress made by previous minimizations.

This is achieved if the gradient
�
g

k
at each iteratively selected

parameter value
�
w

k
is orthogonal to all previous search

directions
�
d

kK1
,
�
d

kK2
;.;

�
d

1
. Thus, it is necessary to have:

ðci%k K1Þ$
�
gT

k �
d

i
Z 0:

In quasi-Newton algorithm the positive definite approxi-

mation of the inverse of the Hessian Mk satisfies

�
p

k
Z Mk$

�
q

k

where
�
p

k
Z

�
w

kC1
K

�
w

k
and

�
q

k
Z

�
g

kC1
K

�
g

k
. In the algorithm

used in this work, the approximation was made using the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) method

(Fletcher, 1987; Suykens, Vandewalle, & De Moor, 1996).

In the Levenberg–Marquardt algorithm, the inverse of the

Hessian (Mk) is approximated by the quantity

½3$I CJ$JT�K1

where J is the Jacobian matrix [Jij] with Jij Z ðvej=vwiÞ and 3

is a positive value left to experimentation (the larger its

value is, the closer the algorithm gets to simple steepest

descent).

 1 2 3 4 5 6 7 8 9 10

minimization algorithm

network architecture

hidden/output nodes
activation functions

Fig. 1. Binary representation of NN topology and training parameterization.

K.P. Ferentinos / Neural Networks 18 (2005) 934–950940
A crucial point in all versions of the backpropagation

algorithm is the choice of the learning rate a, which must be

such that minimizes the error of the next step (iteration).

In the large majority of works in the literature, a fixed value

learning rate is used during the training of the NN. In order

to minimize the manually-explored parameters during NN

training, an on-line adjustable learning rate was used in this

work. In the steepest descent algorithm, the Hessian was

used to solve for the ‘best’ learning rate at each iteration.

Because of the high computational demands of calculating

the Hessian, for the other three algorithms the ‘best’

learning rate was calculated with an approximate line search

using a cubic interpolation.

These four algorithms can be represented with two

binary entries, as follows:
Tab

Cor

Bit

000

000

000

000

000

000

000

000

001

001

001

001

001

001

001

001

010

010

010

010

010

010

1-H

sec
00: steepest descent
01: quasi-Newton
le 1

respondences between binary string representations and NN architectures

sequence Architecture Bit sequence Architectur

000 1-HL–2 010110 1-HL–24

001 1-HL–3 010111 1-HL–25

010 1-HL–4 011000 1-HL–26

011 1-HL–5 011001 1-HL–27

100 1-HL–6 011010 1-HL–28

101 1-HL–7 011011 1-HL–29

110 1-HL–8 011100 1-HL–30

111 1-HL–9 011101 2-HL–3/3

000 1-HL–10 011110 2-HL–3/4

001 1-HL–11 011111 2-HL–3/5

010 1-HL–12 100000 2-HL–3/6

011 1-HL–13 100001 2-HL–3/7

100 1-HL–14 100010 2-HL–3/8

101 1-HL–15 100011 2-HL–4/3

110 1-HL–16 100100 2-HL–4/4

111 1-HL–17 100101 2-HL–4/5

000 1-HL–18 100110 2-HL–4/6

001 1-HL–19 100111 2-HL–4/7

010 1-HL–20 101000 2-HL–4/8

011 1-HL–21 101001 2-HL–5/3

100 1-HL–22 101010 2-HL–5/4

101 1-HL–23 101011 2-HL–5/5

L-x: one-hidden-layer NN with x hidden nodes; 2-HL-x/y: two-hidden-layer N

ond hidden layer.
e

N

10: Levenberg–Marquardt
11: conjugate gradient

and they form the first two bits of the binary string

representation (Fig. 1).

4.1.2. Representation of the network architecture

The next six binary entries of the string (Fig. 1) represent

64 possible network architectures of one-hidden-layer

(1-HL) and two-hidden-layer (2-HL) networks. The choice

of the range of possible architectures is case-specific. This is

why some a priori knowledge about the model system is

required. This knowledge helps limit the finite search space

of network architectures. In both applications that were used

for testing and validation of the system (see Section 4.2), the

same range of architectures were used (the correspondences

are shown in Table 1), because the systems to be modeled

were based on the same biological process (plant cultivation

in hydroponic systems). In general, in NN applications

where a wider search space of possible architectures is

initially required, more bit strings can be added to this

category of strings, or the search space can be grouped into

64 categories and the entire GA system can be reapplied in

64 possible architectures that are close to the category that

gave the best results in the first place. This can be repeated

as many times as necessary, according to the initial size of

the search space. However, the size of 64 possible

architectures is rather enough in most applications for

which some a priori knowledge about the modeled system

exists.
Bit sequence Architecture

101100 2-HL–5/6

101101 2-HL–5/7

101110 2-HL–5/8

101111 2-HL–6/3

110000 2-HL–6/4

110001 2-HL–6/5

110010 2-HL–6/6

110011 2-HL–6/7

110100 2-HL–6/8

110101 2-HL–7/3

110110 2-HL–7/4

110111 2-HL–7/5

111000 2-HL–7/6

111001 2-HL–7/7

111010 2-HL–7/8

111011 2-HL–8/4

111100 2-HL–8/5

111101 2-HL–8/6

111110 2-HL–8/7

111111 2-HL–8/8

with x hidden nodes in the first hidden layer and y hidden nodes in the

Table 2

Binary encoding of activation function combinations for hidden and output

nodes of the NN

Bit sequence Hidden nodes’ activation

function

Output nodes’ activation

function

00 Logistic Logistic

01 Logistic Linear summation

10 tanh tanh

11 tanh Linear summation

K.P. Ferentinos / Neural Networks 18 (2005) 934–950 941
4.1.3. Representation of the activation functions

Two activation functions were considered for the hidden

nodes of the NN: the logistic function and the hyperbolic

tangent function. In addition, the output nodes were allowed

to have either the same activation function as the hidden

nodes, or a linear summation function. Thus, four different

combinations were included in the genetic representation

and were encoded with two final binary entries in the bit

string, as shown in Table 2.

Thus, each binary string (genotype) of an individual of

the GA that represents a specific phenotype of NN

architecture and training parameterization, has a total of

10 bits, as shown in Fig. 1.
Fig. 2. Schematic representation of the algorithm of the genetic alg
4.2. The algorithm

The algorithm of the developed system for NN design

and training parameterization consists of three main parts:

the ‘user level’ part, the ‘genetic algorithm optimization’

part and the ‘training’ part. The first part deals with the

input/output processes, while the other two parts, which

contain several sub-sections, interact with each other and

with the first part to complete the desired procedure.

The algorithm is shown schematically in Fig. 2. Each box in

Fig. 2 represents a separate function and the names of these

functions are shown at the top of each box. The interactions

between functions are shown with the appropriate arrows.

An explanation of the algorithm and the symbols involved

follows.

Initially, the user gives some parameters of the

algorithm, which are: the training set of the neural network

(T), a set of parameters for the backpropagation training

algorithms (param), the number of generations of the GA

(G), the size of population of the GA (M) and, finally, the

probabilities of crossover (Pc) and mutation (Pm) of the GA.

An initial population of several random binary strings,

each of which represents a specific network topology and

set of training parameters, is generated (Xinitial). All this
orithm system for NN design and training parameterization.

K.P. Ferentinos / Neural Networks 18 (2005) 934–950942
information is passed to the ‘GA’ function, which is the

main part of the genetic algorithm. The population of binary

strings is passed to the ‘decoding’ function. There, each

string of binary values is decoded into explicit information

about the three parts that are shown in Fig. 1, that is, the

minimization algorithm (algo), the network architecture

(archit) and the activation functions of the network (activf).

This explicit information goes to the ‘train’ function. There,

each network topology with the specific activation functions

is trained with the appropriate training algorithm. The mean

squared error of each individual string (MSE) after training

is calculated and sent to the ‘fitness’ function where the

fitness of each sting is calculated (fitnessVect). The fitness

is simply the value that the GA tries to maximize. Here, the

fitness of each individual string is the negative of the MSE

but, in order to keep its values always positive, the final

fitness is given by the formula

fitness Z 106 K

Pn
iZ1 jjyi K tijj

2

n

where yi are the NN output values for the n available

training samples and ti are the corresponding real system

outputs. According to this fitness, the selection process of

the GA (function ‘select’) selects the new group of strings,

which constitute the parents of the next generation of the

GA (Xparents). Each string is assigned a probability of

reproduction (Fogel, 1995) and is selected according to this

probability. The probability is usually proportional to the

fitness of each string. These strings are then subject to the

evolutionary operations of crossover and mutation, after

which the final population is formed (Xnew). This process

repeats until the maximum number of generations (G) is

reached. After that, the best string, that is the string that gave

the maximum fitness (or, the minimum MSE), is returned to

the user, together with its corresponding minimum MSE

(bestMSE) and some other information useful for statistical

analysis.

During training, the two most common techniques of

controlling the complexity of large neural networks,

validation and regularization, were used (Fine, 1999).

By including these techniques in the training part of the

algorithm, the GA system itself did not aim in designing

the simplest possible network but rather, the most accurate

one. The simplicity of the network was considered by

including validation and regularization within the training

processes. More specifically, the two methods can be

described as follows:
–
 Validation. A part of the training set was used as

validation set, in order to keep track of the validation

error. Random samples from the training set were used to

form the validation set of each application, while the size

of the validation set was equal to 10% of the

corresponding training set. The validation error

decreases at the beginning of training, but at some

point it starts to increase even though the training error
still decreases. The best parameters of the network were

those of a minimum validation error, so the learning was

stopped at that point. In this way, overfitting of the data

was avoided.
–
 Regularization. A penalty term was added to the error.

The term used here was l$kwk2, where
�
w is the network

parameters’ vector, so the complexity of the network was

penalized. The most appropriate value of l was

determined experimentally during the training process.

Several values of l were tested for each algorithm (from

10K4 to 10K1, in orders of 10), steering between variance

and bias, until the best results occurred.

Finally, during training applications, both inputs and

outputs (target values) were standardised to have mean zero

and standard deviation one. The initial conditions, that is,

the initial weights and biases of the NN, were uniformly

generated (randomly) in the range (K1=
ffiffiffi
d

p
, 1=

ffiffiffi
d

p
) (Duda,

Hart, & Stork, 2001), where d is the number of network

inputs, and several experiments with different initial weights

and biases were performed in order to take the best possible

results.
5. Results

This section presents the results of the application of the

previously described GA system on the design and training

parameterization of the two NN models for fault detection

and predictive modelling of hydroponic systems. The

performance and generalization capabilities of the GA-

generated models are investigated and compared with those

of models developed with the common technique of trial-

and-error.

5.1. Fault detection system application results

The training set for the fault detection neural network

(FDNN) model, with data collected as described in

Section 2, was fed into the GA system. The GA

methodology is a stochastic optimization technique. There-

fore, the entire optimization process must be repeated

several times, starting from different random initial

populations each time. The basic parameters of GAs that

must be explored are the population size M, the probability

of crossover Pc, the probability of mutation Pm and the

number of generations G. A number of experiments had to

be carried out to determine the best possible parameters.

The type of crossover used was the most common one, the

one-point crossover (Goldberg, 1989a). The first exper-

imentation dealt with the determination of the best values of

Pc and Pm. These runs of the system were made with a

population size of 20 strings and for 30 generations. The

best performance was achieved with a value for Pc of 0.9

and for Pm of 0.05. After the best solution was found by the

optimal (concerning its parameters) GA system, that

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Generation

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Generation

B
es

t M
S

E

(a)

(b)

0.50

0.55

0.60

0.65

0.70

0.75

A
ve

ra
ge

 M
S

E

Fig. 3. (a) Best mean squared error (MSE) found during the best genetic

algorithm run for the fault detection system; (b) average mean squared

errors of the entire population during the best genetic algorithm run.

K.P. Ferentinos / Neural Networks 18 (2005) 934–950 943
solution, i.e. best network architecture, training algorithm

and activation functions combination, was further trained.

Finally, the value of the FDNN model was evaluated on the

performance achieved in new, testing data sets, with

samples that contained specific faults or normal data.

Fig. 3a shows the best MSEs found after each generation

during the best run of the GA system. In this run, the best

solution was found after 27 generations. In Fig. 3b, the

corresponding average MSEs of the entire population after

each generation are shown. One can see that the average

performance of the population generally improves. The best

solution found was the string [0 0 0 1 1 0 1 0 1 1], which is

interpreted as a 1-HL NN with 28 nodes in the hidden layer,

hyperbolic tangent activation functions in hidden nodes and

linear summation functions in output nodes, trained with the

steepest descent backpropagation algorithm. This solution

gave a value for the MSE of 0.2193. The second and third best

solutions, with slightly worse performances, were 1-HL

networks with 22 and 18 nodes, respectively. They were
Table 3

Percentages of testing sets of each fault that were correctly classified after specifi

Fault type Correct classification of fault (%)

Test period (h)

0.17 0.33 0.5 1

Actuator fault, type 1 0 0 0 0

Mechanical fault, type 2 50 100

pH sensor fault, type 3 0 0 0 0

EC sensor fault, type 4 0 50 100

EC, electrical conductivity.
each trained with the steepest descent algorithm and each had

hyperbolic tangent activation functions in hidden nodes

and linear summation functions in output nodes. The values

for their MSEs were 0.2220 and 0.2297, respectively. From

these results it seems that generally the steepest descent

algorithm was the most appropriate algorithm for the specific

application and, in addition, hyperbolic tangent activation

functions in hidden nodes and linear summation in output

nodes had better performance than the other combinations of

activation functions. Also, one hidden layer architectures

seemed to outperform in general the two hidden-layer ones.

Thus, the final neural network designed by the GA

system consisted of 15 inputs, one hidden layer with 28

nodes and 5 outputs. It contained hyperbolic tangent

activation functions in hidden nodes and linear summations

in output nodes and was trained with the steepest descent

algorithm. Further training was performed in this NN, with

several random initial values of weights and thresholds and

a variety of algorithm parameters. The MSE of the final NN

was 0.1148 after 1000 iterations.

The testing process on the FDNN consisted of presenting

new data sets to the network, namely the testing sets, each of

which contained some specific fault imposed at the moment

that the set started, and exploring its performance.

In addition, testing sets that contained only normal data

were included in the testing process, to investigate the

ability of the network to avoid false alarms. The testing tests

were distributed throughout the entire period of data

collection. Twelve data sets were constructed. The first

three contained fault type 1 (pH control pump failure), the

next six contained fault types 2 (circulation pump failure), 3

(pH sensor failure) and 4 (EC sensor failure), respectively,

in pairs, and the last three data sets represented normal

operation and differed from each other by periods of 1

month. The decision support approach that was used to

decide whether a fault has been indicated or not, in order to

initially evaluate the performance of the NN model, was the

following: output values above 0.6 indicate a fault, values

below 0.4 indicate normal operation and values in the

interval [0.4, 0.6] indicate the previously known condition

of the output.

Table 3 shows the percentages of the testing sets of each

fault type that were classified correctly (that is, the

corresponding fault was detected) according to the time of

detection after each fault was imposed. For example, within
c time periods from the initiations of the faults

1.5 3.5 6 8 13

0 0 33 66 100

50 100

Table 4

Classification percentages of data samples of normal and faulty operations

Tested data set of

type

Classification (%)

Normal Fault 1 Fault 2 Fault 3 Fault 4 Unknown fault

Normal
99.2

0.2 0.4 0.2 0 0

Fault 1 25.5
70.1

0.2 0 4.2 0

Fault 2 1.9 0
92.4

0 3.8 1.9

Fault 3 0 0 1.5
92.1

3.9 2.5

Fault 4 1.8 0 1.7 2.4
92.9

1.2

Fault 1: actuator; fault 2: mechanical; fault 3: pH sensor; fault 4: electrical conductivity sensor.

K.P. Ferentinos / Neural Networks 18 (2005) 934–950944
1.5 h, 100% of the testing sets containing faults 2 and 4 were

correctly classified (i.e. their faults were detected), 50% of

the testing sets containing fault 3 were correctly classified

and none of the testing sets containing fault 1 was correctly

classified. Fault types 2 and 4 were the most rapidly detected

ones. Fault type 2 (circulation pump failure) was detected in

average after 10–20 min and fault type 4 (EC sensor failure)

was detected after 20–30 min. The detection of fault type 3

(pH sensor failure) took much longer; this fault was detected

in 1.5–3.5 h. Finally, fault type 1 (pH control pump failure)

was the slowest detected fault, as it was detected on average

more than 9 h after the fault occurred. However, it should be

noted here that this specific fault is situation-dependent

because the pH control pump does not operate continuously.

Thus, if in specific situations the pump does not operate, the

fault cannot be detected. When the pump should have

started to operate, the fault was usually detected within

30 min.

Table 4 shows the classification probabilities of all

normal and faulty data samples into the ‘normal operation’,

the four fault types, or the ‘unknown fault’ case. The grey

boxes represent values of the correct classification prob-

abilities. The percentages in the last column represent the

probabilities of ‘unknown fault’ classification. All other

entries represent values of misclassification probabilities (or

false alarm probabilities in the ‘normal operation’ column).

Fig. 4 shows some examples of the NN model outputs

during four testing data sets, one for each type of fault, The

time step is 10 min. It should be noted here that each fault in

these sets starts at the beginning of the tests. This means that

the first interval shown in each plot represents the outputs of

the network for measurements taken 10 min after the

initiation of the fault. In Fig. 4a, the outputs of the network

during the existence of fault type 1 (pH control pump

failure) are shown. In this specific data set, the fault was

detected in about 8 h after its occurrence, when the values of

the first output of the NN (normal operation) fall to near zero

and the values of the second output (fault type 1) increase

drastically. The faulty indication of ‘fault type 2’, failure in

the circulation pump, shown as a peak in the third NN output

around interval 35, cannot be interpreted as an actual false

alarm because at the following time step, that output value
has returned to normal values. Fig. 4b shows the NN outputs

during the exploration of a testing set that contains data

during the existence of ‘fault type 2’, which is the

circulation pump failure. The fault was detected 20 min

after its occurrence (NN output 3). The values of ‘normal’

and ‘fault type 4’ outputs were quite high during the entire

data set, but with the exception of ‘fault type 4’ output

towards the end of the set, they were kept below the upper

threshold of 0.6. In Fig. 4c, the NN outputs during a testing

set that contains data during the existence of ‘fault type 3’

(pH sensor failure) are shown. The fault was detected after

approximately 1.5 h. However, from the moment that

the fault was imposed, the output that corresponds to the

fault (output no. 4), was continuously giving values around

0.5, while the output of ‘normal’ operation was almost zero.

This indicated that something wrong was happening from

the beginning. As before (Fig. 4a), some isolated instances

of some outputs cannot be interpreted as indications of the

corresponding faults. However, there seems to be a periodic

reduction (but not below 0.5) of the values of ‘fault type 3’

output. This can be explained by the nature of the imposed

pH sensor fault, which was a periodic sine-wave noise

added to the sensor readings. In that way, at periods when

the noise was close to zero, the faulty indication returned to

normal values. However, normal operation was not

indicated for those periods, thus the system ‘knew’ that

there was something wrong, even though the pH values

were normal. In addition, this effect is not crucial, as the

fault had already been detected and diagnosed. Fig. 4d

shows the NN outputs during a testing set that contains data

during the existence of ‘fault type 4’, which is the EC sensor

failure. The fault was detected after 20 min. Before that, an

instantaneous indication of ‘fault type 3’ was given, but the

value of that output returned to normal in the next time step.

The periodic fluctuations of the ‘fault type 4’ output and, at

the same time, the indication of normal operation (output

no. 1) happened, like in the case of the pH sensor fault,

because of the periodic nature of the imposed fault, which

consisted of adding a sine-wave noise to the sensor readings.

At periods when the noise was close to zero, the NN outputs

indicated normal operation. This effect was stronger in this

type of fault than it was in the pH sensor fault because EC

0 20 40 60 80 100 120 140 160
0

0.5

1

0 20 40 60 80 100 120 140 160
0

0.5

1

0 20 40 60 80 100 120 140 160
0

0.5

1

0 20 40 60 80 100 120 140 160
0

0.5

1

0 20 40 60 80 100 120 140 160
0

0.5

1

Time, 10-minute intervals

0 5 10 15 20 25
0

0.5

1

N
N

 o
ut

 p
ut

 1
N

N
 o

ut
 p

ut
 2

N
N

 o
ut

 p
ut

 3
N

N
 o

ut
 p

ut
 4

N
N

 o
ut

 p
ut

 5
N

N
 o

ut
 p

ut
 1

N
N

 o
ut

 p
ut

 2
N

N
 o

ut
 p

ut
 3

N
N

 o
ut

 p
ut

 4
N

N
 o

ut
 p

ut
 5

N
N

 o
ut

 p
ut

 1
N

N
 o

ut
 p

ut
 2

N
N

 o
ut

 p
ut

 3
N

N
 o

ut
 p

ut
 4

N
N

 o
ut

 p
ut

 5
N

N
 o

ut
 p

ut
 1

N
N

 o
ut

 p
ut

 2
N

N
 o

ut
 p

ut
 3

N
N

 o
ut

 p
ut

 4
N

N
 o

ut
 p

ut
 5

0 5 10 15 20 25
0

0.5

1

0 5 10 15 20 25
0

0.5

1

0 5 10 15 20 25
0

0.5

1

0 5 10 15 20 25
0

0.5

1

Time, 10-minute intervals

Time, 10-minute intervals Time, 10-minute intervals

0 20 40 60 80 100 120 140 160
0

0.5

1

0 20 40 60 80 100 120 140 160
0

0.5

1

0 20 40 60 80 100 120 140 160
0

0.5

1

0 20 40 60 80 100 120 140 160
0

0.5

1

0 20 40 60 80 100 120 140 160
0

0.5

1

0 50 100 150 200 250
0

0.5

1

0 50 100 150 200 250
0

0.5

1

0 50 100 150 200 250
0

0.5

1

0 50 100 150 200 250
0

0.5

1

0 50 100 150 200 250
0

0.5

1

(a) (b)

(c) (d)

Fig. 4. NN outputs during a: (a) ‘Fault type 1’ data set, (b) ‘Fault type 2’ data set, (c) ‘Fault type 3’ data set, (d) ‘Fault type 4’ data set. Output 1 is for normal operation, outputs 2–5 are for fault type 1–4,

respectively.

K
.P

.
F

eren
tin

o
s

/
N

eu
ra

l
N

etw
o

rks
1

8
(2

0
0

5
)

9
3

4
–

9
5

0
9

4
5

0 20 40 60 80 100 120 140
0

0.5

1

N
N

 o
ut

 p
ut

 1
N

N
 o

ut
 p

ut
 2

N
N

 o
ut

 p
ut

 3
N

N
 o

ut
 p

ut
 4

N
N

 o
ut

 p
ut

 5

0 20 40 60 80 100 120 140
0

0.5

1

0 20 40 60 80 100 120 140
0

0.5

1

0 20 40 60 80 100 120 140
0

0.5

1

0 20 40 60 80 100 120 140
0

0.5

1

Time, 10-minute intervals

Fig. 5. NN outputs during a data set of normal operation. Output 1 is for normal operation, outputs 2–5 are for fault type 1–4, respectively.

Table 5

Characteristics of best networks found with the GA system and the trial-

and-error procedure for the fault detection application

Trial-and-

error

GA system

(first

choice)

GA system

(second

choice)

GA system

(third

choice)

Architecture 1-HL 1-HL 1-HL 1-HL

Nodes 30 28 22 18

Activation fn. tanh/L.S. tanh/L.S. tanh/L.S. tanh/L.S.

Training alg. SD SD SD SD

MSE 0.2081 0.2193 0.2220 0.2297

MSE, mean squared error; L.S., linear summation; tanh, hyperbolic

tangent; SD, steepest-descent algorithm.

K.P. Ferentinos / Neural Networks 18 (2005) 934–950946
was not controlled automatically. Thus, the fault detection

system did not have additional information concerning EC,

as it had for pH, from the values of the pH control actuator

(pH control pump). That additional information gave to the

NN the capability of not indicating normal operation during

those periods in the case of the pH sensor (‘normal’ output

always close to zero); something that did not happen in

the case of the EC sensor fault. Finally, Fig. 5 shows the NN

outputs during a testing set that contains data of normal

operation. The normal operation was indicated throughout

the entire set, without any false alarms.

From these results, it is evident that the GA system

was capable of finding a good solution that gave

satisfactory accuracy in training and testing of the NN.

A direct comparison of the solutions achieved by the GA

system and by a trial-and-error approach cannot lead to

some absolute decision on which is the best method.

However, it can give an insight into the degree of

success of the GA system. Thus, a preliminary training

was performed, using the traditional trial-and-error

experimentations, in order to find the best network

architecture and training algorithm combination. Any

information extracted from the results of the GA system

that had already been run was assumed to be unknown.

However, because it was practically unfeasible to explore

these combinations with all four possible combinations of

activation functions for the hidden and output nodes

(‘logistic/logistic’, ‘logistic/linear summation’, ‘tanh/tanh’

and ‘tanh/linear summation’), only the combinations

containing linear summation functions were explored.

This could be considered as ‘cheating’ because no

previous information or experience existed or could

exist for this decision, which was completely based on
the results of the GA system which gave clear indication

that the ‘logistic/logistic’ and ‘tanh/tanh’ combinations

seemed to perform poorly compared to the ones that had

linear summation functions in the output nodes.

The preliminary explorations mainly focused on 1-HL

architectures because most of the 2-HL ones that were

investigated at the beginning of the experimentations

performed poorly compared to the results of the 1-HL

networks. The best solution according to the trial-and-error

approach was the 1-HL NN with 30 hidden nodes,

hyperbolic tangent activation functions in hidden nodes

and linear summation functions in output nodes, trained

with the steepest descent algorithm. This solution gave a

value for the MSE of 0.2081, which is slightly better

than the best solution of the GA system, and is the same as

the fourth best solution of the GA system. Also, the second

best solution of the trial-and-error method was the one that

was actually found by the GA system and was used as the

final network (1-HL with 28 hidden nodes). These results

are summarized in Table 5.

Table 6

Characteristics of best networks found with the GA system and the trial-

and-error procedure for the predictive modeling application

Trial-and-

error

GA system

(first

choice)

GA system

(second

choice)

GA system

(third

choice)

Architecture 1-HL 1-HL 1-HL 1-HL

Nodes 9 30 18 18

Activation fn. log/L.S. tan h/L.S. log./L.S. tan h/L.S.

Training alg. QN QN QN QN

pH MSE 4.6!10K2 3.5!10K2 4.4!10K2 4.6!10K2

K.P. Ferentinos / Neural Networks 18 (2005) 934–950 947
The high similarity of the results given by the two

approaches is an indication that the performance of the GA

system was indeed successful. Only the fourth solution of

the trial-and-error approach proposes a different training

algorithm (conjugate gradient algorithm), but its perform-

ance is much worse than the performances of the GA system

solutions. In addition, if hyperbolic tangent activation

functions had not been used in the trial-and-error approach,

then the best solution of the trial-and-error method would

have been much worse than the solution of the GA system.

EC MSE 3.3750 2.9451 3.3197 3.2411

MSE, mean squared error; log, logistic; L.S., linear summation; tanh,

hyperbolic tangent; QN, quasi-Newton algorithm.
5.2. Predictive modelling application results

The training set for the predictive modelling application,

with data collected as described in Section 2, was fed into

the GA system. A number of experiments were carried out

to determine the best possible GA parameters. The type

of crossover used was again the one-point crossover

(Goldberg, 1989a,b,c). The results of that preliminary

experimentation led to the following optimal parameters

of the GA: population size of 20 individuals, maximum

number of generations equal to 30, probability of crossover

PcZ0.9 and probability of mutation PmZ0.08. Fig. 6a

shows the best MSEs found after each generation during the

best run of the GA system. In this run, the best solution was

found after 25 generations. In Fig. 6b, the corresponding
2.70

2.90

3.10

3.30

3.50

3.70

3.90

4.10

4.30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Generation

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Generation

B
es

t
M

S
E

(a)

(b)

5.50

6.00

6.50

7.00

7.50

8.00

8.50

9.00

9.50

A
ve

ra
ge

 M
S

E

Fig. 6. (a) Best mean squared errors (MSEs) found during the best genetic

algorithm run for the predictive modelling system; (b) average mean

squared errors of the entire population during the best genetic algorithm

run.
average MSEs of the entire population after each generation

are shown. Again, it is evident that the average performance

of the population generally improves.

The best solution found was the string [0 1 0 1 1 1 0 0 1 1],

which is interpreted as a 1-HL NN with 30 nodes in the

hidden layer, hyperbolic tangent activation functions in

hidden nodes and linear summation functions in the output

nodes, trained with the quasi-Newton backpropagation

algorithm. This solution gave a value for the MSE of 3.5!
10K2 for the pH and 2.9451 mS cmK1 for the EC, in the

training data set. The details of this optimum selection

together with the next two selections of the GA system and

the best network of the trial-and-error procedure are shown in

Table 6. From these results, it seems that generally the quasi-

Newton algorithm was the most appropriate algorithm for the

specific modeling application. Also, 1-HL architectures

seemed to outperform in general the 2-HL ones. Finally,

the best performance is given by networks with linear

summation functions in the output nodes. The comparison of

the GA-constructed networks’ performance in the training

set with that of the trial-and-error, shows that the GA system

found larger networks to be more appropriate for the

modeling task. The trial-and-error network had 9 hidden

nodes, while the GA-constructed networks have 30 and 18

hidden nodes. The training MSEs of all three networks

proposed by the GA system are smaller than the training error

of the best NN found by the trial-and-error procedure.

Thus, the final NN model constructed by the GA system

consisted of nine inputs, one hidden layer with 30 nodes and

two outputs. It contained hyperbolic tangent activation

functions in hidden nodes and linear summations in output

nodes and was trained with the quasi-Newton backpropaga-

tion algorithm. Further training was performed in this NN,

with several random initial values of weights and thresholds

and a variety of algorithm parameters, until the final

network was achieved.

The final NN model was then tested on new data, namely

the testing data set. The performance of the network on this

new data was again better than the performance of the trial-

and-error constructed NN model. Fig. 7 shows the

frequency distributions of the absolute prediction errors on

the testing data (Fig. 7a) and its cumulative frequency

Intervals' frequencies

0

0.1

0.2

0.3

0.4

0.5

0.6

< 0.0005 0.0005-0.001 0.001-0.003 0.003-0.005 > 0.005

pH absolute prediction errors

trial-and-error NN

GA-system NN

Cumulative frequencies

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

< 0.0005 < 0.001 < 0.003 < 0.005 > 0.005

pH absolute prediction errors

trial-and-error NN

GA-system NN

(a)

(b)

Fig. 7. Intervals’ (a) and cumulative (b) frequency distributions of absolute

prediction errorsontestingdata forpH, for the two differently constructedNNs.

K.P. Ferentinos / Neural Networks 18 (2005) 934–950948
distributions (Fig. 7b), for the pH. The results of both

the NNs constructed by the trial-and-error method and the

GA-system method are shown. The corresponding fre-

quency distributions and cumulative frequency distributions

for the EC, for both networks, are presented in Fig. 8.
Intervals' frequencies

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

< 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 > 2.0

EC absolute prediction errors

trial-and-error NN

GA-system NN

Cumulative frequencies

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

< 0.5 < 1.0 < 1.5 < 2.0 > 2.0

EC absolute prediction errors

trial-and-error

GA-system NN

(a)

(b)

Fig. 8. Intervals’ (a) and cumulative (b) frequency distributions of absolute

predictionerrorson testingdataforEC, for the twodifferentlyconstructedNNs.
In these figures, the generalization capabilities of the two

NN models can be observed. More specifically, about the

NN constructed by the GA system, it can be observed

that:
†
 About 98% of prediction errors for pH differed from

real measurements by less than 0.005, more than 80%

by less than 0.003 (Fig. 7b), while 55% were between

0.001 and 0.003 pH units (Fig. 7a).
†
 83% of prediction errors for EC differed from real

measurements by less than 2.0 mS cmK1, almost 75%

by less than 1.5 mS cmK1 (Fig. 8b), while more than

25% were between 0.5 and 1 mS cmK1 (Fig. 8a).

By comparing the two differently constructed NN models

from their results as shown in Figs. 7 and 8, one can report

that:
†
 The NN constructed by the GA system has considerably

higher frequencies in the lower error intervals for the pH

predictions than the NN constructed by the trial-and-error

procedure (Fig. 7a). This is also shown in the cumulative

frequencies (Fig. 7b), where for example, 83% of the pH

absolute errors are below 0.003 for the GA-system

constructed NN model, while the corresponding percen-

tage of the trial-and-error NN is about 65%.
†
 The performances of the two NN models as far as the EC

predictions are concerned, are quite similar. However,

again the GA-system constructed NN seems to give

slightly lower errors, as the lower error intervals have

slightly larger frequencies for this model.
6. Conclusions

Two real-world biological engineering applications of

neural networks were presented. An evolutionary approach

to automated feedforward neural network design and

training parameterization based on genetic algorithms was

used. The design consisted of the appropriate selection of

network topology and types of activation functions of the

hidden and output network nodes, while the training

parameterization consisted of the appropriate selection of

multidimensional minimization algorithm of the back-

propagation training. The method is general enough to

permit the inclusion of more architectures than those

presented here, more possible types of activation functions

and even more different variations of the backpropagation

algorithm. Some general advantages and disadvantages of

the proposed GA system can be drawn as follows:

Advantages of the GA system:
–
 It is based on some optimization heuristic for combina-

torial problems.
–
 It is automated, thus it requires much less human effort

than trial-and-error.

K.P. Ferentinos / Neural Networks 18 (2005) 934–950 949
–
 It incorporates some user experience about the modelling

problem (mainly in the choice of the range of network

architecture search space).
–
 It extends the user experience by using the evolutionary

properties of the GA optimization.
–
 It is very robust in applications of feedforward neural

networks.
–
 It can exploit the developing technology of parallel

processing.
Disadvantages of the GA system:
–
 It is not fully automated, as the parameters of the genetic

algorithm have to be adjusted.
–
 It can be trapped in local minima if the initial population

is not good enough.

The complexity of the application systems developed

in this work is such that the trail-and-error approach to

network design and parameterization can become proble-

matic. The high accuracy of the developed NN models in

both applications, demonstrates the good performance of

the GA system. The results of the comparisons showed

that the developed GA system should be preferred over

the traditional trial-and-error approach, mainly because of

its higher degree of confidence that some near optimal

solution of the problem of network design and training

parameterization will be found. This is ensured because of

the optimization principles that the GA system is based

on. In addition, it is an automated system, whose

results could be used as initial guidance for a more

detailed trial-and-error effort for designing and training

parameterization.

It should be mentioned that the developed GA system

is not fully automated. There are still some exploration

parameters in the process, as GAs are stochastic

algorithms and several parameters, like probabilities of

crossover and mutation and population size, have to be

tuned. However, the exploration of these parameters is

much simpler than the search for optimality in the

parameters involved in the construction and parameteriza-

tion of NN models, because the influence of the variation

of the GA parameters is not as significant to the final

performance of the system as that of the parameters of

NN design and training.
Acknowledgements

The author would like to thank Prof. Bart Selman of

the Computer Science Department at Cornell Univer-

sity and Professors Louis D. Albright and Norman

D. Scott of the Department of Biological and

Environmental Engineering, for their helpful advice

on this research.
References

Altendorf, C. T., Elliott, R. L., Stevens, E. W., & Stone, M. L. (1999).

Development and validation of a neural network model for soil water

content prediction with comparison to regression techniques. Trans-

actions of the ASAE, 42(3), 691–699.

Angeline, P. J., Saunders, G. M., & Pollack, J. B. (1994). An evolutionary

algorithm that constructs recurrent neural networks. IEEE Transactions

on Neural Networks, 5(1), 54–65.

Bebis, G., Georgiopoulos, M., & Kasparis, T. (1997). Coupling weight

elimination with genetic algorithms to reduce network size and preserve

generalization. Neurocomputing, 17, 167–194.

Bhat, N. V., Minderman, P. A., McAvoy, T. J., & Wang, N. S. (1990).

Modeling chemical process systems via neural computation. IEEE

Control Systems Magazine, 24(4), 24–30.

Blum, A. L., & Rivest, R. L. (1992). Training a 3-node neural network is

NP-complete. Neural Networks, 5(1), 117–127.

Castillo, P. A., Merelo, J. J., Prieto, A., Rivas, V., & Romero, G. (2000). G-

Prop: Global optimization of multilayer perceptrons using GAs.

Neurocomputing, 35, 149–163.

Collins, R., & Jefferson, D. (1991). An artificial neural network

representation for artificial organisms. In R. Manner, & D. E. Goldberg

(Eds.), Parallel problem solving from nature. Heidelberg: Springer.

Dasgupta, D., & McGregor, D. R. (1992). Design application-specific

neural networks using the structured genetic algorithm. In D. Whitney,

& J. D. Schaffer (Eds.), Proceedings of the international workshop on

combinations of genetic algorithms and neural networks (COGANN-

92) (pp. 87–96). Los Alamitos, CA: IEEE Computer Society Press,

87–96.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification (2nd

ed.). New York: Wiley.

Ferentinos, K. P., & Albright, L. D. (2002). Predictive neural network

modeling of pH and electrical conductivity in deep-trough hydroponics.

Transactions of the ASAE, 45(6), 2007–2015.

Ferentinos, K. P., & Albright, L. D. (2003). Fault detection and diagnosis in

deep-trough hydroponics using intelligent computational tools. Biosys-

tems Engineering, 84(1), 13–30.

Filho, E., & de Carvalho, A. (1997). Evolutionary design of MLP neural

network architectures. Proceedings of the fourth Brazilian symposium

on neural networks (pp. 58–65). Goiania, GO, Brazil.

Fine, T. L. (1999). Feedforward neural network methodology. New York:

Springer.

Fletcher, R. (1987). Practical methods of optimization. New York: Wiley.

Fogel, D. B. (1994). An introduction to simulated evolutionary optimiz-

ation. IEEE Transactions on Neural Networks, 5(2), 3–14.

Fogel, D. B. (1995). Evolutionary computation: Toward a new philosophy

of machine intelligence. New York: IEEE Press.

Frean, M. (1990). The upstart algorithm: A method for constructing and

training feedforward neural networks. Neural Computation, 2,

198–209.

Gallant, S. (1993). Neural-network learning and expert systems. Cam-

bridge, MA: MIT Press.

Garcia-Pedrajas, N., Hervas-Martinez, N., & Munoz-Perez, J. (2003).

COVNET: A cooperative coevolutionary model for evolving artificial

neural networks. IEEE Transactions on Neural Networks, 14(3),

575–596.

Goldberg, D. E. (1989a). Genetic algorithms in search, optimization and

machine learning. Reading, MA: Addison.

Goldberg, D. E. (1989b). Genetic algorithms and Welsh functions: Part I, a

gentle introduction. Complex Systems, 3, 129–152.

Goldberg, D. E. (1989c). Genetic algorithms and Walsh functions: Part II,

deception and its analysis. Complex Systems, 3, 153–171.

Hancock, P. J. B. (1992). Genetic algorithms and permutation problems: a

comparison of recombination operators for neural net structure

specification. In D. Whitney, & J. D. Schaffer (Eds.), Proceedings of

K.P. Ferentinos / Neural Networks 18 (2005) 934–950950
the international workshop on combinations of genetic algorithms and

neural networks (COGANN-92) (pp. 108–122). Los Alamitos, CA:

IEEE Computer Society Press, 108–122.

Harp, S. A., Samad, T., & Guha, A. (1989). Towards the genetic synthesis

of neural networks. In J. D. Schaffer (Ed.), Proceedings of the third

international conference on genetic algorithms. Fairfax, VA: Morgan

Kaufmann.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann

Arbor: University of Michigan Press.

Hong, F., Tan, J., & McCall, D. G. (2000). Application of neural network

and time series techniques in wool growth modeling. Transactions of

the ASAE, 43(1), 139–144.

Hwang, M.W., Choi, J.Y., & Park, J. (1997). Evolutionary projection neural

networks. In: Proceedings of the IEEE international conference on

evolutionary computation (ICEC’97) (pp. 667–671). Indianapolis, IN.

Iyoda, E. M., & von Zuden, F. J. (1999). Evolutionary hybrid composition

of activation functions in feedforward neural networks Proceedings of

the IEEE international joint conference on neural networks

(IJCNN’99), Vol. 6. Washington, DC: IEEE Computer Society Press.

Jiang, N., Zhao, Z., & Ren, L. (2003). Design of structural modular neural

networks with genetic algorithm. Advances in Engineering Software,

34, 17–24.

Judd, J. S. (1990). Neural network design and the complexity of learning.

Cambridge, MA: MIT Press.

Kitano, H. (1990). Designing neural networks using genetic algorithms

with graph generation system. Complex Systems, 4, 461–476.

Lacroix, R., Salehi, F., Yang, X. Z., & Wade, K. M. (1997). Effects of data

preprocessing on the performance of artificial neural networks for dairy

yield prediction and cow culling classification. Transactions of the

ASAE, 40(3), 839–846.

Liu, Y., & Yao, X. (1996). Evolutionary design of artificial neural networks

with different nodes. In: Proceedings of the IEEE international

conference on evolutionary computation (ICEC’96) (pp. 670–675).

Japan: Nagoya.

Miller, G. F., Todd, P. M., & Hegde, S. U. (1989). Designing neural

networks using genetic algorithms. In J. D. Schaffer (Ed.), Proceedings

of the third international conference on genetic algorithms (pp. 379–

384). Fairfax, VA: Morgan Kaufmann, 379–384.

Nowlan, S., & Hinton, G. (1992). Simplifying neural networks by soft

weight sharing. Neural Computation, 4(4), 473–493.
Parekh, R., Yang, J., & Honavar, V. (2000). Constructive neural-network

learning algorithms for pattern classification. IEEE Transactions on

Neural Networks, 11, 436–450.

Phelan, R. M. (1977). Automatic control systems. Ithaca, NY: Cornell

University Press.

Reed, R. (1993). Pruning algorithms—A survey. IEEE Transactions on

Neural Networks, 4, 740–747.

Reeves, C. R. (1995). Modern heuristic techniques for combinatorial

problems. McGraw-Hill: UK.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning

representations by back-propagating errors. Nature, 323, 533–536.

Schmitz, G. P. J., & Aldrich, C. (1999). Combinatorial evolution of

regression nodes in feedforward neural networks. Neural Networks, 12,

175–189.

Seginer, I., Boulard, T., & Bailey, B. J. (1994). Neural network models of

the greenhouse climate. Journal of Agricultural Engineering Research,

59, 203–216.

Sridhar, D. V., Seagrave, R. C., & Bartlett, E. B. (1996). Process modeling

using stack neural networks. AIChE Journal, 42(9), 2529–2539.

Suykens, J., Vandewalle, J., & De Moor, B. (1996). Artificial neural

networks for modelling and control of non-linear systems. The

Netherlands: Kluwer.

Weigend, A., Rumelhart, D., & Huberman, B. (1991). Generalization by

weight elimination with application to forecasting. Advanced Neural

Information Processing Systems, 3, 875–882.

White, D., & Ligomenides, P. (1993). GANNet: A genetic algorithm for

optimizing topology and weights in neural network design. In:

Proceedings of the international workshop on artificial neural network

(IWANN’93). (pp. 322–327). Lecture Notes in Computer Science.

Berlin: Springer.

Yao, X. (1993). A review of evolutionary artificial neural networks.

International Journal of Intelligent Systems, 8, 539–567.

Yao, X. (1999). Evolving artificial neural networks. Proceedings of the

IEEE, 87(9), 1423–1447.

Yao, X., & Liu, Y. (1997). A new evolutionary system for evolving

artificial neural networks. IEEE Transactions on Neural Networks, 8(3),

694–713.

Yao, X., & Liu, Y. (1998). Towards designing artificial neural networks by

evolution. Applied Mathematics and Computation, 91, 83–90.

	Biological engineering applications of feedforward neural networks designed and parameterized by genetic algorithms
	Introduction
	Materials and methods of application systems
	Experimental arrangement
	Fault detection system
	Predictive modeling system

	Literature review
	Genetic algorithm system
	Bit-string representation
	The algorithm

	Results
	Fault detection system application results
	Predictive modelling application results

	Conclusions
	Acknowledgements
	References

