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Abstract: A heuristic optimization algorithm for adaptive wireless sensor network design and 
energy management for precision agriculture is presented. The algorithm takes into account 
application-specific requirements, communication constraints and energy conservation 
characteristics. Genetic algorithms are used as the optimization tool of the developed system and 
an appropriate fitness function is developed to incorporate many aspects of network performance. 
It is shown that optimal sensor network designs constructed by the genetic algorithm system 
satisfy all application-specific requirements, fulfill the connectivity constraints and incorporate 
energy conservation characteristics. Energy management is optimized to guarantee maximum life 
duration of the network without lack of the network characteristics required by the precision 
agriculture application. 
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1. Introduction 
 
Precision agriculture refers to a set of technologies that introduce the concept of local variation into 
the large-scale mechanization, which is essential to large fields. With the determination of soil 
conditions and plant development, these technologies can lower the production cost by fine-tuning 
seeding, fertilizer, chemical and water use, and potentially increasing production and lowering 
costs. These can be achieved through the approach of agricultural control and management based 
on direct chemical, biological and environmental sensing. Sensor networks play the major role in 
that approach. In order to maximize the quantity, diversity and accuracy of information extracted 
from a precision agriculture Wireless Sensor Network (WSN) deployment, a variety of reliable, 
high-performance and cost-effective sensor technologies are needed. An important issue that 
arises in precision agriculture is the type of parameters to be sensed, which, except for regular 
environmental parameters like temperature, humidity and solar radiation, may include soil 
moisture, dissolved inorganics such as nitrogen and phosphorous species, as well as herbicides and 
pesticides. There are several sensing approaches that contribute to data collection, including 
remote sensing via satellites and airborne sensors, autonomous mobile systems and embedded, 
networked systems. WSNs belong to this last category. 
 
WSNs usually consist of a large number of low-cost, low-power, multifunctional sensor nodes that 
are small in size and communicate in short distances (Akyildiz et al., 2002). Their structure and 
characteristics depend on their electronic, mechanical and communication limitations but also on 
the requirements of the specific application. One of the most important network limitations is 
energy conservation. Wireless sensors operate on limited power sources therefore, their main 
focus is on power conservation through appropriate optimization of communication and operation 
management. Several analyses of energy efficiency of sensor networks have been realized 
(Slijepcevic and Potkonjak, 2001; Krishnamachari and Ordónez, 2003; Trigoni et al., 2004; Mhatre 
et al., 2005) and several algorithms that lead to optimal topologies for power conservation have 
been proposed (Rodoplu and Meng, 1999; Heinzelman et al., 2000; Chang and Tassiulas, 2000; 
Chmielewski et al., 2002; Zhou and Krishnamachari, 2003). However, most of the proposed 
approaches do not take into account the principles, characteristics and requirements of the specific 



application that sensor networks are used for. 
 
In this work, a novel approach of WSN design and energy management is proposed, which 
considers not only energy and communication characteristics of the network, but also application-
specific characteristics and requirements. These different in nature optimization items are 
combined with the use of the heuristic optimization methodology of Genetic Algorithms (GAs) 
(Holland, 1975). 
 
2. WSN Architecture for Precision Agriculture 
 
The precision agriculture application concerns the collection of environmental measurements on an 
open-field area with some specific cultivation of 30 by 30 length units, where a length unit is an 
abstract parameter so that the developed system for optimal design is general enough. The length 
unit is defined as the distance between the positions of two neighboring sensor nodes in the 
horizontal or vertical dimension. The initial goal is to find the optimal operation mode of each 
sensor so that application-specific requirements are met and energy consumption of the network is 
minimized. Subsequently, the final goal is to find a dynamic sequence of operation modes for each 
sensor, that is, an adaptive WSN design, which will lead to maximization of network lifetime in 
terms of number of measurement cycles. 
 
A square grid of 30 by 30 length units is constructed and sensors are placed in all 900 junctions of 
the grid, so that the entire area of interest is covered. A cluster-based network architecture in 
which sensors are partitioned into several groups is considered. Sensors are identical and may be 
either active or inactive. They are capable of transmitting in one of three supported signal ranges. 
Provided that a sensor is active, it may operate as a clusterhead transmitting in an appropriate 
signal range (CH sensor) that allows the communication with the remote base station (sink), or it 
may operate as a simple sensor transmitting in either high or low signal range (HSR/LSR sensor 
respectively). It is assumed that HSR-sensors cover a circular area with radius equal to 10 length 
units, while LSR-sensors cover a circular area with radius equal to 5 length units. Simple sensors 
are divided into clusters and in each cluster a sensor is chosen to act as a clusterhead. Simple 
sensors communicate directly with the closest clusterhead, whereas clusterheads communicate 
with a remote base station. Single hop transmission is used in both cases. It is assumed that 
communication between clusterheads and the base station can always be achieved when required 
and that the base station can communicate with every sensor in the field, meaning that every 
sensor is capable of becoming a clusterhead at some point. 
 
3. GA Methodology 
 
GAs belong to the evolutionary computation group of heuristic optimization techniques. They try to 
imitate natural evolution by assigning a fitness value to each candidate solution of the problem and 
applying the principle of survival of the fittest. Their basic components are the representation of 
candidate solutions to the problem in a “genetic” form (genotype), the creation of an initial, usually 
random population of solutions, the establishment of a fitness function that rates each solution in 
the population, the application of genetic operators of crossover and mutation to produce new 
individuals from existing ones and finally the tuning of the algorithm parameters like population 
size and probabilities of performing the pre-mentioned genetic operators. 
 
GAs have been successfully applied to sensor network design in several works (e.g., Sen et al., 
1998; Turgut et al., 2002; Jin et al., 2003; Aldosari and Moura, 2004). However, in most of these 
approaches, either very limited network characteristics are considered, or several requirements of 
the application cases are not incorporated into the performance measure of the algorithm. In this 
work, we propose an integrated GA approach, both in the direction of degrees of freedom of 
network characteristics and of application-specific requirements represented in the performance 
metric of the GA. The primary goal set in this research is to find the optimal operation mode of 
each sensor so that application-specific requirements are met and energy consumption of the 



network is minimized. More specifically, network design is investigated in terms of active sensors 
placement, clustering and signal range of sensors, while performance estimation includes, together 
with connectivity and energy-related characteristics, some application-specific properties like 
uniformity and spatial density of sensing points. Thus, the implementation of the proposed 
methodology results in an optimal design scheme, which specifies the operation mode for each 
sensor. 
 
3.1. Representation scheme and genetic operators 
 
The variables that are included in the WSN representation are the placement of the active sensors 
of the network, the operation mode of each active sensor, that is, whether it is a clusterhead or a 
simple sensor, and in the case of a simple sensor, the range of its signal (high or low). A general 
grid of sensors has r rows and c columns. For a sensor placed at each of the r·c grid positions, 
there are four possibilities represented by a two-bit encoding scheme: being an inactive sensor 
(00), being a simple active sensor, operating in a low signal range (10), being a simple active 
sensor operating in a high signal range (01) and being an active clusterhead sensor (11). The grid 
junctions are encoded row by row in the bit string. Each position needs two bits for the encoding, 
thus, the length of each sting is 2·r·c. In the specific design problem analyzed here, the values of r 
and c are both equal to 30, thus the length of the GA strings are equal to 1800. 
 
The types of crossover and mutation are of major importance to the performance of the GA 
optimization. Two types of the classical crossover operator (Goldberg, 1989) were tested, the one-
point and the two-point crossover. The mutation type that was used was the classical one for 
binary representation, that is, the swapping of the bits of each string (0 becomes 1 and vice versa) 
with some specific low probability. Crossover is also applied with some specific probability. Both 
these probabilities are tuned after proper experimentation, as it is explained in Section 4. The 
adopted selection mechanism was the roulette wheel selection scheme (Goldberg, 1989). 
 
3.2. Fitness function 
 
The fitness function is a weighting function that measures the quality or performance of a solution, 
in this case a specific sensor network design. This function is maximized by the GA system in the 
process of evolutionary optimization. A fitness function must include and correctly represent all or 
at least the most important factors that affect the performance of the system. In the design of a 
WSN, there are some factors that concern communication issues of the network, as well as others 
that concern the characteristics of the specific application of the sensor network, that is, the 
environmental measurements in the precision agriculture application examined here. In the 
network characteristics, those factors include the connectivity of the sensors, the operational cost 
of the system depending on the types of the sensors and the communication cost of the system, 
depending on the distances between sensors that communicate with their corresponding 
clusterhead. 
 
The main goal of a WSN used in precision agriculture is to take uniform measurements over the 
entire area of interest, so that a uniform picture of the conditions of the area is realized. The 
metric of measurements uniformity used here was the mean relative deviation (MRD). Low values 
of MRD mean high uniformity of measurement points. Details on the exact methodology of 
calculating the MRD factor can be found in Ferentinos and Tsiligiridis (2005). The other application-
specific parameter of the fitness function was a Spatial Density Error (SDE) factor that was used to 
penalize network designs that did not meet the minimum required spatial density of measurement 
points that would suffice adequate monitoring of the measured variables (e.g., air or soil 
temperature, air or soil relative humidity, solar radiation, etc.) in the area of interest. The desired 
spatial density ρd, was set equal to 0.2 measurement points per square unit and the SDE factor 
was evaluated as shown in Ferentinos and Tsiligiridis (2005). 
 
A crucial issue in WSNs is the assurance that network connectivity exists and all necessary 



constraints are satisfied. Here, these necessary characteristics of the sensor network were taken 
into account by including two separate parameters in the fitness function: i) A Sensors-per-
Clusterhead Error (SCE) parameter to ensure that each clusterhead did not have more than a 
maximum predefined number of simple sensors in its cluster. This number was assumed to be 
equal to 15 for the application considered here. ii) A Sensors-Out-of-Range Error (SORE) 
parameter to ensure that each sensor can communicate with its clusterhead. This of course 
depends on the signal range capability of the sensor. 
 
Energy consumption in a wireless sensor network, as explained earlier, is a crucial factor that 
affects the performance, reliability and life duration of the network. In the optimization process 
during the evolutionary design of the sensor network, three different energy related parameters 
were taken into account:  
 
i) The Operational Energy consumption parameter (OE), which refers to the energy that a sensor 
consumes during some specific time of operation and it basically depends on the operation mode 
of the sensor, that is, whether it operates as a clusterhead, a HSR or a LSR sensor. The 
corresponding relevance factors for the energy consumption of these three operating modes of the 
sensors are taken equal to 20, 2 and 1 respectively, meaning that the energy consumption of a 
simple sensor operating in clusterhead mode is 10 times more than that of a sensor operating in 
HSR mode and 20 times more than that of a simple sensor operating in LSR mode. 
 
ii) The Communication Energy parameter (CE), which refers to the energy consumption due to 
communication between simple sensors and clusterheads. It mainly depends on the distances 
between the sensors and their clusterhead, in each cluster, as defined in Ghiasi et al. (2002). 
 
iii) The Battery Capacity Penalty parameter (BCP). An important issue in WSNs is self-preservation 
of the network itself, that is, the maximization of life of network’s elements, i.e. the sensors. Each 
sensor consumes energy from its battery in order to perform its vital operations, like sensing, 
communication, data aggregation if the sensor is a clusterhead, etc. Since the operation mode of 
each sensor is known, its Battery Capacity (BC) can be evaluated at each time. Thus, when the 
design optimization algorithm is applied at a specific time t (operation cycle) the battery capacity 
penalty term can be evaluated (Ferentinos and Tsiligiridis, 2005). 
 
The final fitness function used by the genetic algorithm was: 
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where f is the fitness value of a specific wireless sensor network design. The values of the 
weighting factors α1 to α7 were chosen based on experience about the importance of each 
parameter, after experimentation. 
 
3.4. Dynamic optimal design algorithm 
 
Having completed the development of a representation scheme and forming the fitness function, 
the dynamic genetic algorithm for optimal adaptive design of the WSN could be developed. The 
algorithm consisted of two parts: the Optimal Design Algorithm (ODA), which is applied to a set of 
sensors with specific battery capacities (Fig. 1a), and the Dynamic Optimal Design Algorithm 
(DODA), which updates the battery capacities of the sensors and reapplies the optimal design 
algorithm accordingly (Fig. 1b). 
 
4. Results 
 
GAs are stochastic algorithms and thus incorporate a number of parameters that are problem 
specific and need to be explored and tuned so that the best algorithm performance is achieved. 



These parameters are the population size, the probabilities of crossover and mutation and the type 
of crossover. Initially, a number of experiments was carried out to determine the most appropriate 
population size. The best performance was achieved with population size of 300 individuals. Then, 
several explorations were performed with probabilities of crossover ranging from 0.3 to 0.9 for 
both one-point and two-point crossover types and probabilities of mutation ranging from 0.0001 to 
0.01.  The results led to the use of one-point crossover with probability pc = 0.8 and probability of 
mutation pm = 0.005. 
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Figure 1. Flow charts of the optimal WSN design algorithm (ODA) (a) and the dynamic optimal 
WSN design algorithm (DODA) (b) 

 
 



4.1. Initial WSN design 
 
The algorithm was initially applied having available all sensor nodes of the grid at full battery 
capacities. The three initial populations that gave the best results after 3000 iterations of the GA 
were recorded (abbreviated as “GA1”, “GA2” and “GA3”, starting from the fittest design). Table 1 
summarizes all the sensor network characteristics for the three GA-generated designs as well as 
some random generated designs, for comparison. Random network designs were generated 
(“Rand1” to “Rand4”) with several different numbers of active sensors and percentages of 
clusterheads, HSR and LSR sensors, as shown in the corresponding rows of the table. Values in bold 
represent the best values for each parameter, while networks that did not satisfy the 
communication constraints (i.e., networks with sensors out of range or clusters with more than 15 
sensors) were not considered in that comparison of values. It can be seen, not only from the fitness 
values but also from the parameters values, that network designs “GA1” and “GA2” have the overall 
best performance, with very good values of uniformity of sensing points, low energy consumption 
both for operation and communication issues and rational ratios of clusterhead nodes over total 
active nodes (17-19%). Designs “Rand1” and “Rand2” do not satisfy the communication constraints, 
as they both have some sensors that cannot communicate with some clusterhead and also have 
some clusters with more than 15 active sensors, which is the maximum number of sensors a 
clusterhead can handle. Design “Rand3” has a rather high value of MRD (0.1815) and does not 
achieve a satisfactory uniformity of measurement points and it also has high values of both 
operational and communication energy consumption. Design “Rand4” achieves better value of 
uniformity than “Rand3” (MRD = 0.1541), which is still much worse than that of the GA-generated 
designs and it also has very high operational energy consumption. 
 
4.2. Dynamic design performance 
 
The adaptation capabilities of the algorithm towards energy conservation but also towards 
connectivity sustainability and nursing of application-specific requirements were examined by the 
dynamic application of the algorithm to a sequence of measuring cycles. According to the energy 
consumption scheme introduced in Section 3.2, if a static clustering algorithm was used, the life 
duration of the WSN would have been five measuring cycles. The optimal design “GA1” presented 
in Table 1 was used as the starting design in the dynamic application of the algorithm, which was 
tested during 15 consecutive measuring cycles. A comparison of some preliminary results with 
those of static clustering on the initially optimal WSN (“GA1”) presented in previous work 
(Ferentinos et al., 2005) showed clear evidence of the energy conservation that is performed by 
the adaptive design of the algorithm. Here, the focus is on the analysis of the effect of the 
adaptation factor concerning energy conservation of the dynamically applied algorithm. The 
variability of this effect is determined by the weighting factor of the BCP parameter in the fitness 
function of the GA (α7), which from now on we call Energy Conservation Factor (ECF). The 
algorithm performed a trade-off between the satisfaction of the performance measures (uniformity, 

 
 “GA1” “GA2” “GA3” Rand1 Rand2 Rand3 Rand4 

MRD 0.0840 0.1018 0.1141 0.5513 0.3333 0.1815 0.1541 
SDE 0 0 0 0.0944 0 0 0 
OE 5.0086 4.6827 4.9711 2.5276 3.4021 6.5550 8.2474 

CE · 103 1.4323 1.6422 1.4965 1.3882 8.8816 1.7896 0.9610 
OOR 0 0 0 29 5 0 0 
OCC 0 0 0 4 2 0 0 

Active 699 602 622 163 378 591 679 
CH 133 105 117 9 39 161 248 

HSR 275 222 247 78 167 224 209 
LSR 291 275 258 76 172 206 222 

CH / Active 0.19 0.17 0.19 0.05 0.10 0.27 0.36 
HSR / Active 0.39 0.37 0.40 0.48 0.44 0.38 0.31 
LSR / Active 0.42 0.46 0.41 0.47 0.46 0.35 0.33 

Fitness 0.0137 0.0136 0.0131 - - - - 

Table 1. WSN designs parameter values. OOR: out of range sensors (sensors that cannot 
communicate with some clusterhead); OCC: over-connected clusters (clusters with more than 15 

sensors); Active: active sensors; 



spatial density, connectivity) and energy conservation. After some experimentation with several 
values of ECF in orders of 10, it was found that a reasonable trade-off is performed for ECF values 
between 0.01 and 10. 
 
Fig. 2 shows that the uniformity level (MRD) and the communication energy consumption of the 
WSN are highly influenced by the value of ECF. The adaptive WSN designs with ECF equal to 0.1 
and 0.01 (especially the latter) kept the MRD values quite low during all measuring cycles. There is 
a small general trend of increase in the value of MRD, but this is reasonable as more and more 
energy limitations are introduced into the network as time passes. Similarly, in the case of 
communication energy consumption of the WSNs, the adaptive design with ECF = 0.01 preserved 
the best values during the entire testing period, with values very close to the initial consumption of 
the network. 
 
The next two figures (Fig. 3 and 4) show the effect of ECF to the available energy of the sensors of 
the WSN during the period of the dynamic application of the algorithm. Fig. 3 shows the 
percentage of sensors that have battery capacity below certain levels at the end of each measuring 
cycle, with the three ECF values discussed before. Similarly, Fig. 4 shows the corresponding 
percentages of sensors with battery capacity above certain levels. Except for the indication that 
appropriate energy management of the WSN is achieved, these graphs also show that the ECF 
parameter seems to play an important role in the life duration of the network too, especially in the 
“lower energy bound” of the network, as it seems that the influence of ECF to the sensors with 
large battery capacities is limited (Fig. 4).  

 
Figure 2. MRD, OE and CE performance measures of the WSNs over the testing period of 15 

measuring cycles for three different values of the ECF. 



 
Figure 3. Percentages of sensors with battery capacities below 50%, 40%, 30% and 20% of full 

battery capacity at the end of each measuring cycle, for three different ECF values. 
 
 
 

 
Figure 4. Percentages of sensors with battery capacities above 90% and 70% of full battery 

capacity at the end of each measuring cycle for three different ECF values. 
 



5. Conclusions 
 
In this paper, an algorithm for the optimal design and dynamic adaptation of application-specific 
WSNs was developed and applied in precision agriculture. The algorithm was based on the 
heuristic optimization properties of genetic algorithms. A fixed wireless network of sensors of 
different operating modes was considered on a grid deployment and the GA system decided on 
which sensors should be active, which ones should operate as clusterheads and whether the 
remaining active normal nodes should have high or low signal range. During optimization, 
parameters of network connectivity, energy conservation as well as application requirements were 
taken into account so that an integrated optimal WSN was designed. It was shown that GA-
generated designs compared favorably to random designs of sensors. Uniformity of sensing points 
of optimal designs was satisfactory, while connectivity constraints were met and operational and 
communication energy consumption was minimized. Furthermore, it was shown that dynamic 
application of the algorithm in adaptive WSN design can lead to extension of network’s life 
duration, while keeping the application-specific properties of the network close to optimal values. 
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