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The intelligent computational tools of feedforward neural networks and genetic algorithms are used to develop
a real-time detection and diagnosis system of specific mechanical, sensor and plant (biological) failures in a
deep-trough hydroponic system. The capabilities of the system are explored and validated. In the process of
designing the fault detection neural network model, a new technique for neural network designing and training
parameterisation is developed, based on the heuristic optimisation method of genetic algorithms. Sensor and
actuator faults are detected and diagnosed in sufficient time that the fault detection model can be applied on-
line as a reliable supervisor of the operation of an unattended deep-trough hydroponic system. Biological
faults were not detected in general. It seems that the interaction between plants and their root-zone
microenvironment is not equally balanced, as the condition of the plants is highly influenced by the conditions
in their root zone microenvironment, while these microenvironment conditions (as they are represented by the
measurable variables) are not influenced in the same degree by the conditions of the plants. Finally, the genetic
algorithm system developed here can be successfully applied to a combinatorial problem such as deciding the
best neural network architecture, activation functions and training algorithm for a specific model.
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1. Introduction

Greenhouse engineering and hydroponics are two
very rapidly developing sectors of agriculture and are
strongly linked with each other. Computational intelli-
gence, mainly in the form of automatic monitoring and
control, is a major tool of this development. Highly
developed instrumentation and ‘intelligent’ control in
hydroponics provides an opportunity for maximising
both quality and quantity of production through the
advanced management of all involved processes. The
production systems are continuously monitored and
precisely controlled. An important issue in these highly
computerised and automated systems is the quality of
information provided by the sensors, as well as the
quality of decisions passed to the actuators. The quality
of information received from or passed to the system is
not checked in the vast majority of automated green-
house or hydroponic facilities.
Artificial intelligence (AI) has developed to such a

degree that it can lead to an intelligent control system
capable of self-examination. The combined information

from different sensors, through AI methodologies such
as neural networks (NNs), can lead to quality classifica-
tion of isolated information derived from specific
sensors or actuators. In this way, a fault detection and
diagnosis system could eventually be developed, capable
of detecting and identifying specific failures in parts
(sensors or actuators) of the hydroponic system, by
simply reading the collected measurements of the system
sensors and actuators.
As an extension of the ‘speaking plant’ approach

(Hashimoto, 1989), the hydroponic system, which
consists of mechanical and electronic equipment and
also of cultivated plants, could be considered as one
hybrid (bio-mechatronic) system. In this extent, biolo-
gical failures, in the sense of stressed situations of the
plants, could possibly be detected by a fault detection
(FD) system, simply using the readings of the above-
mentioned measurements.
In this work, an NN-based fault detection and

diagnosis system is developed (Ferentinos, 2002). The
main area of concentration is deep-trough hydroponic
systems. The motivation was the fact that detection of

1537-5110/03/$35.00 13 # 2003 Silsoe Research Institute. All rights reserved

Published by Elsevier Science Ltd



stressed plants is very important for the final produc-
tion. This detection can be made via measurements on
the environment of the plants. This becomes easier in
hydroponics, for several environmental variables of the
plants, and particularly root zone dynamics, can readily
be monitored. Another direction of this work was
towards the development of a system for design and
training parameterisation of NNs that would be more
sophisticated than the trial-and-error methodology
usually used for these tasks. The system was based on
the evolutionary optimisation characteristics of genetic
algorithms (GAs), a heuristic optimisation method
inspired by Darwinian evolution. This automated
process can overcome difficulties embedded in the
human intervention of the trial-and-error approach,
such as trapping in local minima or poor exploration of
the search space.
NNs have been proved capable of identifying faults in

several complex biological processes in which neither
analytical models nor intermediate residual calculations
were used. Watanabe et al. (1989) used a two-stage
multi-layer NN to detect five different types of faults in a
chemical reactor. The results showed that use of a two-
stage NN could diagnose incipient faults from only three
noisy process measurements, which is very encouraging
considering the complexity of the examined process;
thus, it was concluded that NNs have a great potential
for FD in chemical plants.
Venkatasubramanian and Chan (1989) examined the

detection of faults in a catalytic cracking unit using
NNs. In particular, their methodology performed multi-
ple fault diagnosis while being trained on knowledge of
single faults. It was concluded that NNs, with their
ability to learn from example and extract salient features
from data and tolerate noisy and random data, were
ideal for fault detection and diagnosis in processes in
chemical engineering. Sorsa et al. (1991) reported on
three different types of NNs used to detect faults on a
simulated process consisting of a heat exchanger and a
tank reactor. The conclusion was that the multi-layer
perceptron network was best, and use of the hyperbolic
tangent as the non-linear element improved the training
rate of the whole network. Of course, it must be
understood that the whole work was based on a
simulation model and the network was trained with
data coming from a mathematical model. Experiments
with real processes have to be made in those networks.
Several other works such as, for example, Parlos et al.

(1994), Hoskins et al. (1991), Chow and Yee (1991) and
Xiaoming et al. (1997), showed similar results in
applying NNs for fault detection and diagnosis in
chemical plants. However, in all these works, simulation
data were used for the training of the networks. This is
dangerous and may lead to incorrect diagnoses, so

further stabilisation of these systems should be done by
training with real data.

2. Materials and methods

2.1. Experimental arrangement

The experiments were conducted in a section of the
Kenneth Post Laboratory (KPL) Greenhouses at
Cornell University, in Ithaca, NY, USA. The green-
house section had a floor area of about 85m2 and it was
fully equipped with a staged ventilation system, an
evaporative cooling system, a lighting system and a
movable shading system. The controlled environmental
variables were the daily integral of light [photosynthe-
tically active radiation (PAR)] and the air temperature.
Light intensity, air temperature, relative humidity and
CO2 concentration were continuously monitored. Dur-
ing the experiments, temperature setpoints were 248C
during the day and 198C during the night and were
achieved within�0�58C. The daily PAR integral set-
point was 17molm�2 and was achieved by using
supplemental lighting from 21 high-pressure sodium,
400W, lamps during winter and the shading screen
during summer. The relative humidity was maintained
between 30 and 70%.
The cultivation system was a deep trough hydroponic

system that consisted of three small growing ponds
(tanks). The ponds of this system were filled with
nutrient solution (Sonneveld & Straver, 1994) and the
plants were placed in specially placed holes (Fig. 1) on
Styrofoam panels that covered the ponds and floated on
the surface. Each stainless steel pond had an area of
0�75m2 (1�25m by 0�60m) and root zone control was
completely independent of the others. In that way, the
systems could be monitored and controlled in parallel
and, thus, more data sets could be constructed. Lettuce
(Lactuca sativa, var. Vivaldi) was chosen as the
cultivated plant in these experiments. Seedlings were
transplanted from a growth chamber into the ponds 12
days after sowing. Foam spacers of 2 cm width were
used to provide sufficient room for the plants as they
grew larger and were added incrementally, as shown in
Fig. 1. As can be seen in the same figure, each pond had
a range of plant ages ranging from 12 days old, which
was the transplanting age of the plants from the
germination chambers to the ponds, to 27 days old.
Every 2 days, the largest plants of the hydroponic
system (of 28 days of age) were harvested, the rest of the
plants were moved upwards (see layout of Fig. 1), 12-
day old plants (of dry weight around 0�04 g plant�1)
were transplanted from the growth chamber into the
ponds and new seeds were sown in the growth chamber.
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In this way, a ‘continuous production’ type of system
was developed, which resembles real-life hydroponic
production systems more closely than other techniques
that have been used in NN modelling applications (e.g.
Ferentinos, 1999) and, in addition, it produces nearly
constant conditions.
The monitoring and control system consisted of a

personal computer (PC) running LabVIEW software
(available from National Instruments), a data acquisi-
tion board connected to the computer and several
meters, sensors and actuators connected to the board.
The monitored parameters were the pH, the electrical
conductivity (EC), the temperature, the dissolved oxy-
gen (DO), the weights of two of the three ponds (for
measuring evapotranspiration) and the control signals
of pH and DO. For each pond, there was a metering
pump used to control the pH of the nutrient solution by
adding acid or base, and solenoid valves that controlled
the DO by adding oxygen. The program monitored and
controlled the system every 10 s and logged its data
every 5min. The control methodology was based on the
pseudo-derivative feedback (PDF) control algorithm
(Phelan, 1977).
The experiments for collecting training and testing

data sets were performed between November 2000 and
May 2001. In addition to the monitored variables
mentioned before, environmental variables such as air

temperature, relative humidity and light (PAR) intensity
at the level of the plants were also logged. The pH
setpoint was 5�8 and the DO was maintained between
6�5 and 7mg l�1. The EC was not controlled auto-
matically but its values were kept between the recom-
mended setpoints of 115–125mSm�1 by adjusting
manually every 2 days by adding reverse-osmosis water
to replace evapotranspiration and solution stocks to
maintain the EC.

2.2. Fault types and neural network model

The NN approach to this FD application was chosen
mainly because of the specific nature of hydroponics,
but also for its simplicity. Hydroponic systems are
highly non-linear because of the non-linearity of the
biological processes involved. Thus, estimation methods
for FD would not be suitable, mainly because of their
high computational demands in the cases of non-linear
systems. In addition, precise analytical models of the
hydroponic system do not exist; thus, estimation
methods become unacceptable. From the pattern
recognition methods for FD, NNs were considered to
be the most appropriate because it was decided that the
autonomy that AI gives to this approach is preferable to
some arbitrary selection of complicated mathematical
tools that other pattern recognition techniques would
require.
The procedure of training the NN model requires,

first, an accurate definition of ‘normal operation’,
defined in our case as unstressed plants in a system
which is in control. There is no need to express this
normal situation by means of specific values of the
environmental variables because, as mentioned before,
NNs do not need such a representation in order to learn
the pattern. It is necessary to know only when the
system and, in extension, the plants are in conditions
considered to be normal by the producers, and also to
know which training data sets correspond to those
normal conditions. It is also required to define the
‘faulty operation’ and categorise this kind of operation
into different types of faulty operations, one for each
different kind of fault. In order to obtain data sets for
each kind of fault, one has to impose those faults and
take the corresponding measurements of the micro
environment variables.
When the environmental and nutrient solution vari-

ables are within their limits and the plants appear
healthy, the growth rate is optimised and operation of
the system is considered ‘normal’. The ‘faulty operation’
consisted of three different kinds of faults.
(1) Actuator/mechanical faults. These are failures in

some actuator or some mechanical part of the hydro-

Days 12−13

Days 14−15

Days 16−17

Days 18−19

Days 20−21

Days 22−23

Days 24−25

Days 26−27

Fig. 1. Plant spacing and age distribution on each pond of the
hydroponic system: horizontal lines represent 2 cm wide spacers
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ponic system. The actuator fault considered was the
malfunction of the pH control pump and the mechanical
fault was the malfunction of the nutrient solution
circulation pump.
(2) Sensor faults. These are failures in the sensors of

the system. The ones considered were (a) pH sensor
failure and (b) EC sensor failure.
(3) Plant faults. These are problems in the cultivated

plants themselves and are divided into (a) root area
faults and (b) shoot area faults.
For the first two categories of faulty operations, real

data existed because sensor and actuator failures were
encountered during daily operation of the system. In
addition, several faults were especially imposed in order
to train the NN model and investigate its inherent FD
capabilities. For the third category however, faults were
imposed directly on the plants.
The first experiments dealing with plant faults (or

biological faults) consisted of imposing several different
faults on the plants in order to examine their effect on
the monitored variables of the nutrient solution of the
system. Four different series of experiments were
performed. In the first, most of the largest plants were
removed from the pond for 5min. In this way, possible
problems in the root zone of the plants were imitated. In
the second series, several leaves of the largest plants were
removed. This action imposed permanent damage on
the plants and imitated the effects of major problems in
the shoot zone of the plants. A similar but less
influential series of experiments was the one in which
leaves of the plants were disturbed for intervals of 5min
and slightly damaged. These experiments imitated shoot
problems less important than the ones imitated in the
previous series of experiments. Finally, in the fourth
series, the largest plants were covered with transparent
plastic bags. This imposed a temporary fault that
imitated major problems in the shoot zone, as tran-
spiration was drastically reduced.
Effects of plant faults, unfortunately, in most cases,

were not significant enough to be used in an FD scheme.
The pH and the electrical conductivity appeared not to
be affected by the faults. The transpiration, a variable
known to be drastically affected by the condition of the
plants, was so highly affected by the environmental
conditions of the greenhouse (temperature, light inten-
sity and relative humidity) that effects of plant damage,
even when seemingly severe, were not noticeable. In the
experiments in which some leaves of the plants were cut,
where one would expect major impacts on the tran-
spiration rate, the effects were ‘hidden’ by the high
correlation of the transpiration with the environmental
parameters, especially temperature and light intensity,
probably because transpiration was occurring through
the cut surfaces. The only fault that showed some

correlation with transpiration, but not with any of the
other variables, was the one where the largest plants
were covered with plastic transparent bags. These results
led to the decision to exclude the plant faults from the
main fault detection NN (FDNN) model. A separate
model was created for these kinds of faults and it is
presented in Ferentinos et al. (2002), together with some
results on the influences of biological faults in the
measured variables of the hydroponic system.
The feedforward methodology of NNs (Fine, 1999)

was used for the development of the detection and
diagnosis system. The inputs of the NN were aerial
environment parameters (air temperature Tair; relative
humidity HR; and light intensity L), the measurable
variables of the root zone of the plant (pH, EC, DO and
nutrient solution temperature Ts) and the control signals
of the pH (UpH) and the DO (UDO) control (amounts of
acid and oxygen added, respectively). Each output of the
NN corresponded to a specific fault and one output
corresponded to normal operation.
Thus, the NN model was formed to have five outputs:

one for normal operation, two for actuator/mechanical
faults and two for sensor faults (Fig. 2). In addition to
the network inputs listed above, one- and two-step
histories of the solution acidity pH, electrical conduc-
tivity s and dissolved oxygen Od variables were
included. That is, for each of these variables, three
inputs existed: one for time t (current time), one for time
t�1 (previous time step) and one for time t�2 (two time
steps before). Therefore, the network had 15 inputs
(Fig. 2). The time step was 10min. Fault types are listed
in Table 1.
The values of the outputs used for training the NN

were binary. An output of unity for a specific output
denoted the existence of the corresponding fault type (or
of normal operation when referring to the first output).
The values of the other outputs were zero. The outputs
during testing of the model were, of course, continuous,
with values from 0 to 1. In this way, a decision process
was formed to determine above which value an output
should be meaningful in terms of the existence of a fault.
The basic training methodology used here was the

Backpropagation Training Algorithm (Rumelhart et al.,
1986). This algorithm has several modifications accord-
ing to the multi-dimensional minimisation algorithm
that it uses to minimise the error estimator. Four
different types of minimisation algorithms were con-
sidered: steepest descent, quasi-Newton, conjugate
gradient and Levenberg–Marquardt algorithm. Their
main difference is the way of approximating the inverse
of the Hessian matrix. The steepest descent and the
conjugate gradient algorithms replace the inverse of the
Hessian with the identity matrix, while the other two
algorithms try to approximate it with different methods
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(Fine, 1999). A crucial point is the choice of the learning

rate a, which must be such to minimise the error of the
next iteration (epoch). In the large majority of works in
the literature, a fixed-value learning rate is used during
the training of the NN. Here, an on-line adjustable
learning rate was used, as it seemed to perform better
and, in addition, it has been proven successful in prior
similar applications in hydroponic systems (Ferentinos,
1999). In the steepest descent algorithm, the Hessian was
used to solve for the ‘best’ learning rate at each iteration.
This is considered to be computationally prohibitive,
but this algorithm turned out to be much faster than the
other three, even when the learning rate was calculated
by this way. For the other algorithms, the ‘best’ learning
rate was calculated with an approximate line search
using a cubic interpolation.
Both inputs and outputs (target values) were stan-

dardised to have mean zero and standard deviation one.
The initial conditions, that is, the initial weights and
biases of the NN, were uniformly generated (randomly)
in the range ð�1=

ffiffiffi
d

p
; 1=

ffiffiffi
d

p
Þ (Duda et al., 2001), where

d is the number of network inputs (in this case 15), and
several experiments with different initial weights and
biases were performed in order to take the best possible
results. The two most common techniques of controlling
the complexity of large NNs, validation and regularisa-
tion, were used.

2.3. Genetic algorithm system

The application of NNs in modelling non-linear
processes has a central drawback: the lack of a precise
method to choose the most appropriate network
topology, type of activation functions and parameters
of the training algorithm. These tasks are usually based
on a ‘trial-and-error’ procedure performed by the
developer of the model. In that way, optimality or even
near-optimality is not guaranteed, as the explored space
is just a small portion of the whole search space and the
type of search is random. To overcome the problems
associated with human network design and training
parameterisation, an automated method, based on the
evolutionary properties of the GAs, was developed. GAs
evolve several network designs with different activation
functions and several minimisation algorithms so that
the best possible combination is finally chosen.
In the vast majority of relevant works in the literature,

the minimisation algorithm of the backpropagation
learning process is not considered in the encoding of
the GA system (Harp et al., 1989; Miller et al., 1989;
Kitano, 1990; Filho & de Carvalho, 1997; Iyoda & von

pH(t)

UDO(t)

UpH(t)

HR (t)

L(t)

Tair(t)

Ts(t)

Od (t−2)

Od (t−1)

Od (t)

 σ (t−2)

 σ (t−1)

σ (t )

pH(t−2)

pH(t−1)

Actuator fault, type 1

EC sensor fault, type 4

pH sensor fault, type 3

Mechanical fault, type 2

Feedforward

neural

network

Normal operation

Fig. 2. Inputs and outputs of the fault detection neural network model: pH, s, and Od, variables for solution acidity, electrical
conductivity and dissolved oxygen at time t and for the previous two time steps (t�1) and (t�2); Ts(t), temperature of nutrient
solution at time t; Tair(t), air temperature at time t; L, light intensity at time t; HR(t), relative humidity at time t; UpH(t), control

signal for the pH at time t; UDO(t), control signal for the dissolved oxygen (DO) at time t

Table 1
Definitions of faults; EC, electrical conductivity

Fault type Fault description

1 pH control pump out of order
2 Circulation pump out of order
3 Failure in pH sensor
4 Failure in EC sensor
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Zuben, 1999). With the exception of the work of Iyoda
and von Zuben (1999), the types of activation functions
of the NN are not considered either. In addition, some
possible a priori knowledge of the system characteristics
and possible general intuitions about the expected
topology of the NN were not taken into account. Such
a priori knowledge can drastically limit the huge search
space of the problem of NN design, and more
dimensions of the problem, like the minimisation
algorithm or the types of activation functions, can also
be encoded into the GA without making the encoding
extremely complex and difficult to be optimised.
The main aspect in an evolutionary system such as the

one developed here is the way of encoding the several
possible phenotypes of the NN into specific genotypes.
A phenotype, in our case, consists of the NN topology,
its activation functions in the hidden and the output
nodes and, in addition, the minimisation algorithm that
is used by the backpropagation algorithm during
training. A genotype is a sequence of bits (0 or 1) with
a specific constant length. Each genotype corresponds to
a unique phenotype.
The representations that encode network phenotypes

into string genotypes are generally divided into two
categories: the direct or strong specification or low-level
representations (Miller et al., 1989) and the indirect or
weak specification or high-level representations (Harp
et al., 1989). The representations of the former category
encode explicitly every network connection from node
to node in a way that someone, by just looking at a bit
string, can encode the corresponding network topology.
A bit of 1 corresponds to a connection while a bit of 0
corresponds to lack of connection. This type of
representation requires very large binary strings and
can be problematic with all the restrictions that
feedforward NNs comprise (i.e. no cycles, no connec-
tions between nodes of non-successive layers or between
nodes of the same layer, etc.). The representation of the
weak specification category uses specific correspon-
dences of specific binary strings to specific network

architectures that are pre-defined by the user. This is the
point where the a priori knowledge of the specific
application problem to be considered is taken into
account so that the infinite search space is reduced
drastically.

2.3.1. Bit-string representation

The weak specification representation was used here.
The developed scheme incorporates three tasks of the
NN design and training parameterisation:

(i) the selection of the minimisation algorithm used by
the backpropagation training algorithm;

(ii) the architecture of the NN;
(iii) the types of the activation functions of the hidden

nodes and of the output nodes.

Representation of the minimisation algorithm used by

the backpropagation algorithm. There are four different
multi-dimensional minimization algorithms considered
by the GA: steepest descent, quasi-Newton, Levenberg-
Marquardt and conjugate gradient algorithms. These
four algorithms can be represented with two binary
entries, as follows: 00, steepest descent; 01, quasi-
Newton; 10, Levenberg–Marquardt; 11, conjugate
gradient; and they form the first two bits of the binary
string representation (Fig. 3).

Representation of the network architecture. The next
six binary entries of the string (Fig. 3) represent 64
possible network architectures of one-hidden layer (1-
HL) networks with two to 30 nodes and two-hidden-
layer (2-HL) networks of several combinations of nodes
in each layer.

Representation of the activation functions. Two activa-
tion functions were considered for the hidden-nodes of
the NN: the logistic function and the hyperbolic tangent
function. In addition, the output nodes were allowed to
have either the same activation function as the hidden
nodes, or a linear summation function. Thus, four
different combinations were included in the genetic

1 2 3 4 5 6 7 8 9 10

Minimisation algorithm

Network architecture

Hidden/output nodes

activation functions

Fig. 3. Binary representation of neural network topology and training parameterisation
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representation and were encoded with two final binary
entries in the bit string, as shown in Table 2.
Thus, each binary string (genotype) of an individual

of the GA that represents a specific phenotype of NN
architecture and training parameterisation, had a total
of 10 bits, as shown in Fig. 3. A fitness function was
applied to the GA system, in order to measure the
performance of each individual. The fitness of each
string was simply a large number minus the mean
squared error (MSE) after the training of the specific
network architecture with the corresponding activation
functions, by the corresponding training algorithm. The
large number was added to the function to assure that
the final fitness was always a positive number. Each
string was assigned a probability of reproduction
(Fogel, 1995) and was selected according to that
probability, which was proportional to the fitness of
each string. All strings of the population were then
subject to the evolutionary operations of crossover and
mutation (Goldberg, 1989), after which the final
population was formed. This process was repeated until
the maximum number of generations was reached.

3. Results

The training data set consisted of a matrix with
columns that represented the average measurements of
10min periods and were of the form:

½pHðtÞpHðt � 1ÞpHðt � 2ÞsðtÞsðt � 1Þsðt � 2Þ . . .

OdðtÞOdðt � 1ÞOd ðt � 2ÞTsTairLHRUpHUDO�T

where: t is a specific time, t�1 is the previous time step
(i.e. 10min before), t�2 is two steps before, pH is the
solution acidity, s is the electrical conductivity, Od is the
dissolved oxygen, Ts is the temperature of the nutrient
solution, Tair is the temperature of the air inside the
greenhouse, HR is the relative humidity inside the
greenhouse, UpH is the control signal for the pH and
UDO is the control signal for the DO, and T is the
transpose operator. This training set was fed into the
GA system for NN synthesis, that is, optimal design and
training parameterisation for the specific process that

had to be learned. Use of GAs is a probabilistic
optimisation technique. Therefore, the entire optimisa-
tion process must be repeated several times, starting
from different random initial populations each time. The
basic parameters of GAs that must be explored are the
population size M, the probability of crossover Pc, the
probability of mutation Pm and the number of genera-
tions G. A number of experiments had to be carried out
to determine the best possible parameters. The type of
crossover used was the most common one, the one-point
crossover (Goldberg, 1989). The first experimentation
dealt with the determination of the best values of Pc and
Pm. These runs of the system were made with a
population size of 20 strings and for 30 generations.
The best performance was achieved with a value for Pc

of 0�9 and for Pm of 0�05. After the best solution was
found by the optimal (concerning its parameters) GA
system, that solution, i.e. best network architecture,
training algorithm and activation functions combina-
tion, was further trained. Finally, the value of the
FDNN model was evaluated on the performance
achieved in new, testing data sets, with samples that
contained specific faults or normal data.
Thus, the final GA system had a population size of 20

individuals and evolved for 30 generations with a
probability of crossover between individuals equal to
0�9 and probability of mutation in each bit of the
individuals equal to 0�05. Figure 4 shows the best MSEs
found after each generation during the best run of the
GA system. In this run, the best solution was found after
27 generations. In Fig. 5, the corresponding average
MSEs of the entire population after each generation are
shown. One can see that the average performance of the
population generally improves, because of the evolu-
tionary selection process of the algorithm.
The best solution found was the string [0 0 0 1 1 0 1 0

1 1], which is interpreted as a 1-HL NN with 28 nodes in
the hidden layer, hyperbolic tangent activation functions
in hidden nodes and linear summation functions in

Table 2
Binary encoding of activation function combinations for hidden

and output nodes of the neural network

Bit sequence Hidden nodes
activation function

Output nodes
activation function

00 Logistic Logistic
01 Logistic Linear summation
10 tanh tanh
11 tanh Linear summation

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Generation

B
es

t M
SE

Fig. 4. Best mean squared error (MSE) found during the best
genetic algorithm run
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output nodes, trained with the steepest descent back-
propagation algorithm. This solution gave a value for
the MSE of 0�2193. It should be mentioned here that
algorithms were trained for up to 50 iterations during
the optimisation process of the GA system. The second
and third best solutions, with slightly worse perfor-
mances, were 1-HL networks with 22 and 18 nodes,
respectively. They were each trained with the steepest
descent algorithm and each had hyperbolic tangent
activation functions in hidden nodes and linear summa-
tion functions in output nodes. The values for their
MSEs were 0�2220 and 0�2297, respectively. From these
results, it seems that generally the steepest descent
algorithm was the most appropriate algorithm for the
specific application and, in addition, hyperbolic tangent
activation functions in hidden nodes and linear summa-
tion in output nodes had better performance than the
other combinations of activation functions. Also, 1-HL
architectures seemed to outperform in general the 2-HL
ones.
Thus, the final NN consisted of 15 inputs, one hidden

layer with 28 nodes and five outputs. It contained
hyperbolic tangent activation functions in hidden nodes
and linear summations in output nodes and was trained
with the steepest descent algorithm. Further training
was performed in this NN, with several random initial
values of weights and thresholds and a variety of

algorithm parameters. The MSE of the final NN was
0�1148 after 1000 iterations.

3.1. Fault detection and diagnosis testing results

The testing process on the FDNN consisted of
presenting new data sets to the network, namely the
testing sets, each of which contained some specific fault
imposed at the moment that the set started, and
exploring its performance. In addition, testing sets that
contained only normal data were included in the testing
process, to investigate the ability of the network to avoid
false alarms. The testing tests were distributed through-
out the entire period of data collection. Twelve data sets
were constructed. The first three contained fault type 1
(pH control pump failure), the next six contained fault
types 2 (circulation pump failure), 3 (pH sensor failure)
and 4 (EC sensor failure), respectively, in pairs, and the
last three data sets represented normal operation and
differed from each other by periods of 1 month.
The decision support approach that was used to

decide whether a fault has been indicated or not, in
order to initially evaluate the performance of the NN
model, was the following: output values above 0�6
indicate a fault, values below 0�4 indicate normal
operation and values in the interval [0�4, 0�6] indicate
the previously known condition of the output.
The most important issue in a fault detection and

diagnosis application is how fast the faults are detected
and diagnosed. After the first detection of some fault
and after that detection has been supported by a series
of ‘faulty’ indications of the model for some period of
time, if the NN outputs return to ‘normal operation’, it
is not crucial, as we know that faults are not reversible
without human intervention. Thus, the most important
factor in this FD system is its on-line performance and
more specifically, the rapidness of detection of faults.

3.1.1. Classification of results

Table 3 shows the percentages of the testing sets of
each fault type that were classified correctly (that is, the
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Fig. 5. Average mean squared errors MSEs of the entire
population during the best genetic algorithm run

Table 3
Percentages of testing sets of each fault that were correctly classified after specific time periods from the initiations of the faults; EC,

electrical conductivity

Fault type Correct classification of fault, %

Test period, h
0�17 0�33 0�5 1 1�5 3�5 6 8 13

Actuator fault, type 1 0 0 0 0 0 0 33 66 100
Mechanical fault, type 2 50 100
pH sensor fault, type 3 0 0 0 0 50 100
EC sensor fault, type 4 0 50 100
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corresponding fault was detected) according to the time
of detection after each fault was imposed. For example,
within 1�5 h, 100% of the testing sets containing faults 2
and 4 were correctly classified (i.e. their faults were
detected), 50% of the testing sets containing fault 3 were
correctly classified and none of the testing sets contain-
ing fault 1 was correctly classified. Fault types 2 and 4
were the most rapidly detected ones. Fault type 2
(circulation pump failure) was detected in average after
10–20min and fault type 4 (EC sensor failure) was
detected after 20–30min. The detection of fault type 3
(pH sensor failure) took much longer; this fault was
detected in 1�5–3�5 h. Finally, fault type 1 (pH control
pump failure) was the slowest detected fault, as it was
detected on average more than 9 h after the fault
occurred. However, it should be noted here that this
specific fault is situation-dependent because the pH
control pump does not operate continuously. Thus,
if in specific situations the pump does not operate, the
fault cannot be detected. When the pump should have
started to operate, the fault was usually detected within
30min.
Another important issue in a fault detection and

diagnosis system is the probability of false alarms. This
leads to the evaluation of the off-line performance of the
system. First, the following terms should be defined:
False alarm probability PFA is the probability of

detecting some fault while the system is in normal
operation.
Misclassification probability PMC is the probability of

diagnosing a specific fault while the actual fault is a
different one or diagnosing normal operation when a
fault exists.
Correct classification probability PCC is the prob-

ability of diagnosing a specific fault while this fault
indeed exists or detect normal operation when indeed no
fault exists in the system.
It is obvious that, if the probabilities are expressed as

percentages, in situations of normal operation,

PCC ¼ 100� PFA ð1Þ

while, in situations of ‘faulty’ operation,

PCC ¼ 100� PMC ð2Þ

In the evaluation of the on-line performance, percen-
tages of correctly classified testing sets were used
because the classification of each sample of data was
not the important factor. However, in off-line perfor-
mance (i.e. the probabilities of false alarms and
misclassifications), the percentages of correctly or
incorrectly classified samples of data will need to be
used. A data sample, or simply a sample, is defined as a
set with the 15 inputs to the NN values, measured at a
specific time interval. In the case of PFA, the percentages

concern the testing sets of normal operation. In the case
of PMC, they concern the testing sets that contain some
fault. The important characteristic of this specific FD
system is the false alarm probabilities.
Table 4 shows the percentages of classification of the

samples of the three ‘normal’ testing sets. The sum of the
percentages that indicate the existence of some fault,
represents the actual PFA of the system. Thus, a value
for PFA of 0�8% is a very low probability. However, the
situation where the FD returned neither normal nor
faulty operation, was not included in the estimation of
PFA, because in that specific situation the FD system
prompts for a possibility of ‘unknown fault’ (see Section
4); thus, according to the formal definition of the term
‘false alarm’, this situation cannot be included. The
overall probability of ‘unknown fault’ indication
during testing in ‘normal’ data sets was 14�3%. This
means that the PCC of normal operation was 99�2 –
14�2=84�9%. However, as it is not known exactly what
had happened during the collection of the third of the
three ‘normal’ testing sets, where all the ‘unknown fault’
indications occurred, it should be concluded that the
actual value for PCC of normal operation lies between
85 and 99%.
Table 5 shows the classification probabilities of all

faulty data samples into the four fault types or the
‘unknown fault’ case. The grey boxes represent PCC

values. The percentages in the last column represent the
probabilities of ‘unknown fault’ classification. All other
entries represent the PMC values. Some rare cases when
more than one fault were indicated by the system, were
included in the ‘unknown fault’ category.
With the exception of fault 1, all PCC values are very

low. In addition, as explained earlier, misclassification
probabilities are not important in most cases because of
the irreversible nature of the faults. Only the misclassi-
fications that occurred before the correct classification
of the actual fault are important and should be
considered as true PMC. Therefore, the actual probabil-
ities of most misclassifications are smaller than those
presented in Table 5, which makes the actual PCC values
larger.

Table 4

Classification percentages of data samples of normal operation;

EC, electrical conductivity

Output class Actual data: ‘normal ’, %

Normal 99�2
Actuator fault, type 1 0�2
Mechanical fault, type 2 0�4
pH sensor fault, type 3 0�2
EC sensor fault, type 4 0
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3.1.2. Fault diagnosis testing results

Figures 6–10 show some examples of the NN model
outputs during five testing data sets, one for each type of
fault and one set that contains only normal data. The
time step is 10min. It should be noted here that each
fault in these testing sets starts at the beginning of the

tests. This means that the first interval shown in each
plot represents the outputs of the network for measure-
ments taken 10min after the initiation of the fault. In
Fig. 6 the outputs of the network during the existence of
fault type 1 (pH control pump failure) are shown. In this
specific data set, the fault was detected in about 8 h after

Table 5
Classification percentages of data samples of faulty operations

Tested data set of type Classification, %

Normal Fault 1 Fault 2 Fault 3 Fault 4 Unknown fault

Fault 1 25�5 70�1 0�2 0 4�2 0
Fault 2 1�9 0 92�4 0 3�8 1�9
Fault 3 0 0 1�5 92�1 3�9 2�5
Fault 4 1�8 0 1�7 2�4 92�9 1�2

Fault 1, actuator; fault 2, mechanical; fault 3, pH sensor; fault 4, electrical conductivity.

0 20 40 60 80 100 120 140 160

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

N
N

 o
ut

pu
t 

1

0 20 40 60 80 100 120 140 160

N
N

 o
ut

pu
t 

2

0 20 40 60 80 100 120 140 160

N
N

 o
ut

pu
t 

3

0 20 40 60 80 100 120 140 160

N
N

 o
ut

pu
t 

4

0 20 40 60 80 100 120 140 160

N
N

 o
ut

pu
t 

5

Time, 10 min intervals

(a)

(b)

(c)

(d)

(e)

Fig. 6. Neural network (NN) outputs during a ‘fault type 1’ testing data set: (a) normal output; (b) actuator fault, type 1 output;
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its occurrence, when the values of the first output of the
NN (normal operation) fall to near zero and the values
of the second output (fault type 1) increase drastically.
The faulty indication of ‘fault type 2’, failure in the
circulation pump, shown as a peak in the third NN
output around interval 35, cannot be interpreted as an
actual false alarm because at the following time step,
that output value has returned to normal values.
Figure 7 shows the NN outputs during the exploration
of a testing set that contains data during the existence of
‘fault type 2’, which is the circulation pump failure. The
fault was detected 20min after its occurrence (NN
output 3). The values of ‘normal’ and ‘fault type 4’
outputs were quite high during the entire data set, but
with the exception of ‘fault type 4’ output towards the
end of the set, they were kept below the upper threshold
of 0�6. In Fig. 8, the NN outputs during a testing set that
contains data during the existence of ‘fault type 3’ (pH

sensor failure) are shown. The fault was detected after
approximately 1�5 h. However, from the moment that
the fault was imposed, the output that corresponds to
the fault (output No. 4), was continuously giving values
around 0�5, while the output of ‘normal’ operation was
almost zero. This indicated that something wrong was
happening from the beginning. As before (Fig. 6), some
isolated instances of some outputs cannot be interpreted
as indications of the corresponding faults. However,
there seems to be a periodic reduction (but not below
0�5) of the values of ‘fault type 3’ output. This can be
explained by the nature of the imposed pH sensor fault,
which was a periodic sine-wave noise added to the
sensor readings. In that way, at periods when the noise
was close to zero, the faulty indication returned to
normal values. However, normal operation was not
indicated for those periods, thus the system ‘knew’ that
there was something wrong, even though the pH values
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Fig. 7. Neural network (NN) outputs during a ‘fault type 2’ data set: (a) normal output; (b) actuator fault, type 1 output;
(c) mechanical fault, type 2 output; (d) pH sensor fault, type 3 output; (e) electrical conductivity (EC) sensor fault, type 4 output
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were normal. In addition, this effect is not crucial, as the
fault had already been detected and diagnosed. Figure 9

shows the NN outputs during a testing set that contains
data during the existence of ‘fault type 4’, which is the
EC sensor failure. The fault was detected after 20min.
Before that, an instantaneous indication of ‘fault type 3’
was given, but the value of that output returned to
normal in the next time step. The periodic fluctuations
of the ‘fault type 4’ output and, at the same time, the
indication of normal operation (output No. 1) hap-
pened, like in the case of the pH sensor fault, because of
the periodic nature of the imposed fault, which consisted
of adding a sine-wave noise to the sensor readings. At
periods when the noise was close to zero, the NN
outputs indicated normal operation. This effect was
stronger in this type of fault than it was in the pH sensor
fault because EC was not controlled automatically. Thus,
the FD system did not have additional information

concerning EC, as it had for pH, from the values of the
pH control actuator (pH control pump). That addi-
tional information gave to the NN the capability of not
indicating normal operation during those periods in the
case of the pH sensor (‘normal’ output always close to
zero); something that did not happen in the case of the
EC sensor fault. Finally, Fig.10 shows the NN outputs
during a testing set that contains data of normal
operation. The normal operation was indicated through-
out the entire set, without any false alarms.

3.2. Validation of the genetic algorithm system

From the results presented in the previous section, it is
evident that the GA system was capable of finding a
good solution that gave satisfactory accuracy in training
and testing of the NN. This system was developed in
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Fig. 8. Neural network (NN) outputs during a ‘fault type 3’ data set: (a) normal output; (b) actuator fault, type 1 output;
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order to optimise and automate the procedure of finding
the best combination of network architectures, training
algorithms and activation functions for a specific NN
model. The commonly used technique for this procedure
is trial-and-error. The search space of the general
problem under investigation is infinite. After some
restrictions on the available training algorithms and
types of activation functions, and mainly after some
specific limitations on the candidate network architec-
tures, the search space can be drastically diminished.
However, even that limited search space is usually too
large to be searched exhaustively. Trial-and-error
techniques in this kind of search spaces cover limited
portions of them. For some cases, the trial-and-error
approach may be ‘lucky’, for some others it may be
unfortunate. But when the search space is vast, the
probabilities of being lucky decrease dramatically.
However, the chances of trial-and-error approach to

be successful increase with the use of experience and
possible insight by the person who performs the trials.
In the specific problem under consideration, the

search space consisted of 210 (i.e. 1024) possible
combinations. If one also thinks that each combination
has to be trained several times with different initial
conditions, then it is obvious that exhaustive search
becomes practically infeasible and a trial-and-error
approach becomes quite problematic. A sophisticated
heuristic optimisation algorithm, like GA, is able to
explore vast search spaces in an intelligent way so that
computational power is drastically limited compared to
an exhaustive search and the result is more likely to be a
good solution than the result of a trial-and-error
approach.
From these, it can be concluded that a direct

comparison of the solutions achieved by the GA system
and by a trial-and-error approach cannot lead to some

0 50 100 150 200 250

0

1

0 50 100 150 200 250

0

1

0 50 100 150 200 250

0

1

0 50 100 150 200 250

0

1

0 50 100 150 200 250

0

1

0.5

0.5

0.5

0.5

0.5

N
N

 o
ut

pu
t 

1
N

N
 o

ut
pu

t 
2

N
N

 o
ut

pu
t 

3
N

N
 o

ut
pu

t 
4

N
N

 o
ut

pu
t 

5

Time, 10 min intervals

(a)

(b)

(c)

(d)

(e)

Fig. 9. Neural network (NN) outputs during a ‘fault type 4’ data set: (a) normal output; (b) actuator fault, type 1 output;
(c) mechanical fault, type 2 output; (d) pH sensor fault, type 3 output; (e) electrical conductivity (EC) sensor fault, type 4 output
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absolute decision on which is the best method. However,
it can give an insight into the degree of success of the
GA system, especially if one thinks that human as well
as computational efforts are reduced by such an
automated approach. Thus, a preliminary training was
performed, using the traditional trial-and-error experi-
mentations, in order to find the best network architec-
ture and training algorithm combination. Any
information extracted from the results of the GA system
that had already been run was assumed to be unknown.
However, because it was impossible to explore these
combinations with all four possible combinations of
activation functions for the hidden and output nodes
(‘logistic/logistic’, ‘logistic/linear summation’, ‘tanh/
tanh’ and ‘tanh/linear summation’), only the combina-
tions containing linear summation functions were
explored. This could be considered as ‘cheating’ because
no previous information or experience existed or could

exist for this decision, which was completely based on
the results of the GA system and which gave clear
indication that the ‘logistic/logistic’ and ‘tanh/tanh’
combinations seemed to perform poorly compared to
the ones that had linear summation functions in the
output nodes.
The preliminary explorations mainly focused on 1-HL

architectures because most of the 2-HL ones that were
investigated at the beginning of the experimentations
performed poorly compared to the results of the 1-HL
networks. The best solution according to the trial-and-
error approach was the 1-HL NN with 30 hidden nodes,
hyperbolic tangent activation functions in hidden nodes
and linear summation functions in output nodes, trained
with the steepest descent algorithm. This solution gave a
value for the MSE of 0�2081, which is slightly better
than the best solution of the GA system, and is the same
as the fourth best solution of the GA system. Also, the
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second best solution of the trial-and-error method was
the one that was actually found by the GA system and
was used as the final network (1-HL with 28 hidden
nodes).
The high similarity of the results given by the two

approaches is an indication that the performance of the
GA system was indeed successful. Only the fourth
solution of the trial-and-error approach proposes a
different training algorithm (conjugate gradient algo-
rithm), but its performance is much worse than the
performances of the GA system solutions. In addition,
if hyperbolic tangent activation functions had not
been used in the trial-and-error approach, then the
best solution of the trial-and-error method would
have been much worse than the solution of the GA
system.
The advantages and disadvantages of the GA system

could be summarised as follows.
Advantages of the GA system

(1) It is based on some optimisation heuristic for
combinatorial problems.

(2) It is automated, thus it requires much less human
effort than trial-and-error.

(3) It incorporates some user experience about the
modelling problem (mainly in the choice of the
range of network architecture search space).

(4) It extends the user experience by using the evolu-
tionary properties of the GA optimisation.

(5) It is very robust in applications of feedforward NNs.
(6) It can exploit the developing technology of parallel

processing.

Disadvantages of the GA system

(1) It is not fully automated, as the parameters of the
GA algorithm have to be adjusted.

(2) It can be trapped in local minima if the initial
population is not good enough.

(3) It requires some general a priori knowledge or
intuition about the modelled system.

4. Discussion

The NN model developed in this work, together with
an ‘alarm decision’ tool, form the complete fault
detection and diagnosis scheme, as shown in Fig. 11.
The greenhouse that contains a hydroponic system with
cultivated plants is subjected to the outside weather
conditions and the inside climate control scheme. All
these have an effect on the hydroponic system which, in
addition, is subject to the hydroponic control scheme.
The connection between this control scheme and the
hydroponic system is where the actuator fault is

introduced. The mechanical fault is within the hardware
of the hydroponic system itself, while the biological fault
concerns the plants of the system. Outputs from both
the greenhouse and the hydroponic system are fed into
the FDNN model. The last kind of fault considered, the
sensor fault, is applied to the output of the hydroponic
system. Some of the hydroponic system and greenhouse
outputs, together with the transpiration data of the
plants, are also fed into the ‘biological fault detection
(BFD) neural network’ model (Ferentinos et al., 2002).
The outputs of the network go into the ‘alarm decision’
scheme, which is also provided with some user-defined
output thresholds. These thresholds determine the
triggering or not of an alarm.
The final performance of the developed FD model can

be considered satisfactory, based on the fact that faults
of all four types considered were detected in reasonable
time, while the probability of false alarms was very
limited. Some of these faults (e.g. the circulation pump
failure) could have easily been detected by simpler
methodologies than the one used here, i.e. feedforward
NNs. However, the majority of faults detected by the
developed system deal with complicated processes like
actuators that do not operate continuously, and sensor
failures. In addition, the effects of these faults are inter-
related in complicated ways such that the detection and,
more specifically, the isolation of the specific existing
fault (diagnosis) requires advanced knowledge extrac-
tion and pattern recognition capabilities that simpler
detection methods do not include.
The existence of the additional output for normal

operation gives the model a high degree of adaptability
in new, unknown failures of the system. With this
output, the model can detect some ‘unknown fault’ by
simply indicating neither ‘normal operation’ (zero in the
‘normal operation’ output) nor fault indication (zero in
all four ‘fault’ outputs). This means that there is neither
a known fault in the system, nor normal operation,
which leads to the conclusion that some unknown
failure exists. If the additional output of normal
operation was not included in the network, then, in
the case of an ‘unknown’ fault, normal operation would
be } mistakenly } concluded. This capability was not
tested in the current work because of the lack of
appropriate data, but its conceptual validity is indis-
putable and can be validated with real data in the future.
As far as the biological faults are concerned, all

observations showed that biological faults of the type
imposed in this study could not be detected in this kind
of cultivation system using the measurable variables that
were used in this research. The interaction between
plants and their root zone microenvironment is not
equally balanced, as the condition of the plants is
highly influenced by the conditions in their root zone
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microenvironment, while these microenvironment con-
ditions are not influenced in the same degree by the
conditions of the plants. The most probable explanation
of this property is the inertia that the overwhelming
mass of the nutrient solution (compared to the mass of
the plants) produces, in a way that it becomes a
limitation factor to the influence of plants condition to
their root zone microenvironment. However, the suc-
cessful detection of some specific biological fault that
has to do with the transpiration rate, even though it is
understandable that that fault severely affected the
plants and represents an extreme, rather unrealistic
situation, gives motivation for further research in the
area of biological fault detection and diagnosis. Several
approaches could be followed. One possibility could be
the use of additional measured variables of the plant
microenvironmental conditions like, for example,
changes of the nitrate concentration of the nutrient
solution. Another approach could be the application of
this kind of detection system to different types of
hydroponics, such as nutrient film technique (NFT)
systems. In NFT, the roots of the plants contact the
nutrient solution only in thin film of solution, in
contrast to the case of deep-trough systems where the
roots are in contact with the entire mass of the solution
of each pond. Finally, an approach that could lead to
the desired detection of biological faults could be the
combination of the proposed methods with the use of
more ‘plant-oriented’ measurements that could more
precisely represent the actual conditions of the plants
than the measured variables of this work.

5. Conclusions

The work presented here investigated the capabilities
of detecting and diagnosing failures in a deep trough
hydroponic system at an early stage, that is, before they
become visible or obvious and their effects become
irreversible. The feedforward neural network methodol-
ogy was used as the main tool for the development of
the fault detection model. The major advantage was that
no mathematical model of the process was needed; thus
the fault detection model was entirely based on real,
measured data. In the process of designing the fault
detection neural network model, a new technique for
neural network synthesis was developed, based on the
heuristic optimisation method of genetic algorithms.
As far as the fault detection and diagnosis model of

mechanical and sensor faults is concerned, the following
conclusions can be derived.

(1) All mechanical and sensor faults considered (pH
control pump failure, circulation pump failure, pH

sensor failure and electrical conductivity sensor
failure) were detected and diagnosed in real time
at an early stage, so that the fault detection model
can be applied on-line as a reliable supervisor of the
operation of the human-unattended hydroponic
system.

(2) Feedforward neural networks were capable of
learning the physical and chemical interactions
between the plants and the measured variables of
the root zone and shoot zone microenvironments as
well as the effects of specific failures of the system to
these variables.

(3) The developed system showed great generalisation
capabilities in the task of detecting and diagnosing
faults in new data sets.

(4) The one-hidden-layer architecture of neural net-
works proved to be more successful than the two-
hidden-layer one. The steepest-descent backpropa-
gation training algorithm with on-line adjustable
learning rate by solving the Hessian matrix, gave
the best results. The most appropriate activation
functions of the network were the hyperbolic
tangent function for the hidden nodes and the
linear summation function for the output nodes.
The final neural network consisted of 28 hidden
nodes.

As far as the application of the novel methodology for
neural network synthesis based on genetic algorithms is
concerned, the following conclusions can be derived.

(1) Genetic algorithm encoding and optimisation can
be successfully applied to a combinatorial problem
such as the decision of what is the best neural
network architecture, activation functions and
training algorithm for a specific model.

(2) Compared to the common for these tasks trial-and-
error procedure, the genetic algorithm gave similar
results.

(3) In most cases, the genetic algorithm model
should be preferable, mostly because it is an
automated methodology, compared to the trial-
and-error one and it is based on optimisation
properties.

(4) For some cases, the output of the genetic algorithm
methodology could give useful information and
insights for further, more successful application of
the trial-and-error approach.

Finally, as far as the biological faults are concerned,
it was discovered that biological faults of the type
imposed in this study cannot be detected in this kind
of cultivation system using the measurable variables
that were used in this research. The inertia introduced
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by the overwhelming mass of the nutrient solution
compared to the mass of the plants, can be considered
as the most important limiting factor that led to
the lack of success in detecting, in general, biological
faults.
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