
Journal of Global Optimization 23: 155–170, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

155

Heuristic optimization methods for motion planning
of autonomous agricultural vehicles

K.P. FERENTINOS1, K.G. ARVANITIS2 and N. SIGRIMIS2

1Department of Agricultural and Biological Engineering Cornell University, Ithaca, NY 14853,
USA (e-mail: kpf3@cornell.edu)
3Department of Agricultural Engineering, Agricultural University of Athens, Iera Odos 75,
Botanikos 11855, Athens, Greece (e-mail: karvan@aua.gr, n.sigrimis@computer.org)

Abstract. In this paper, two heuristic optimization techniques are tested and compared in the ap-
plication of motion planning for autonomous agricultural vehicles: Simulated Annealing and Genetic
Algorithms. Several preliminary experimentations are performed for both algorithms, so that the best
neighborhood definitions and algorithm parameters are found. Then, the two tuned algorithms are run
extensively, but for no more than 2000 cost function evaluations, as run-time is the critical factor for
this application. The comparison of the two algorithms showed that the Simulated Annealing al-
gorithm achieves the better performance and outperforms the Genetic Algorithm. The final optimum
found by the Simulated Annealing algorithm is considered to be satisfactory for the specific motion
planning application.

Key words: Autonomous agricultural vehicles; Genetic algorithms; Heuristic optimization;
Motion planning; Simulated annealing

1. Introduction

Motion planning in dynamic environments consists mainly of solving two prob-
lems: the path planning and the velocity planning. It has been shown (Canny and
Reif, 1987) that this task is NP-Complete and thus, intractable to solve with con-
ventional methods. The path planning, which is the kinematic part of the problem,
involves the computation of a collision-free path from a start point to a goal point.
There are basically two approaches to this problem: obstacle avoidance (Borenstein
and Koren, 1989) and hybrid force/position control (Asada and Slotine, 1981).
Here, the obstacle avoidance approach is used.

Several applications of motion planning in robotic vehicles can be found in
the literature. Some of them have used deterministic approaches, like Pontryagin’s
maximum principle (Galicki, 1998) or simplified physical models (Cherif, 1999)
and some others exhaustive search techniques or simple heuristics (Fiorini and
Shiller, 1998). In the literature of autonomous agricultural vehicles however, very
limited research can be found in the motion planning in the notion considered here.
Most research deals with the path planning of agricultural vehicles in the cultivated
part of the field, where in most of the cases, straight-line paths have to be followed
(for example, Hague et al., 2000; Debain et al., 2000; Tillett et al., 1998; Toda et

156 K.P. FERENTINOS ET AL.

al., 1999). The approach considered here involves the motion planning of these
vehicles when they are situated in fields with several obstacles or complicated field
borders and have to come up with the optimal path from their current point to a
goal point.

In this paper, two sophisticated heuristic optimization algorithms are used and
compared to solve the motion planning task: simulated annealing and genetic al-
gorithms.

2. Materials and methods

Heuristic optimization techniques are widely used in high-dimensional engineering
optimization problems that have search spaces with numerous sub-optimal solu-
tions (local optima). The most common heuristic methods are simulated annealing
algorithm, genetic algorithms, taboo search algorithm and several versions of the
evolutionary strategies. In the application examined here, i.e., the planning of an
autonomous agricultural vehicle’s motion, the acquisition of a good solution in a
high-dimension search space and in a very restricted time period, is the goal. Time
restriction is a critical matter because navigation decisions have to be made rapidly
in a dynamically changing environment of a moving vehicle navigated in a field of
agricultural use. Thus, for the reasons of high dimensionality and time restriction,
the heuristic approach seems the most reasonable and promising one.

2.1. DESCRIPTION OF THE PROBLEM

Two basic schemes for mobile vehicle navigation can be distinguished: the
Cartesian map-based method and the relative sensor-based method (Freyberger and
Jahns, 2000). In this work, the first method is used. We have a set of initial and
final position for an autonomous agricultural vehicle, its velocity values in these
positions, as well as some obstacles with known locations and sizes. More spe-
cifically, there are nine small obstacles on a part of the field with area of dimension
10 × 20 m. The goal is to find an optimal path through this limited part of the field,
from the initial position to the final position.

The vehicle’s path (x(t), y(t)), consists of the position variables x(t) and y(t),
where t is a time-related parameter that ranges from 0 to 1 as the vehicle goes from
the initial position to the final position. The variables x(t) and y(t) are each repres-
ented by a polynomial of degree 21. With a polynomial of such a large degree, even
extremely complicated, multi-curve paths can be accurately represented. In addi-
tion, there are eight known boundary conditions: b = [x(0)y(0)x′(0)y′(0)x(1)y(1)
x′(1)y′(1)]T . These linear boundary conditions can be expressed by an equation of
the general form: A z = b, where z is the vector containing the 44 coefficients
of the two 21-degree polynomials of the position variables x(t) and y(t) and A
is the matrix that combines these coefficients with the boundary conditions. By

HEURISTIC OPTIMIZATION METHODS FOR MOTION PLANNING 157

incorporating the eight linear boundary conditions into a representation of an input
variable, we come up with an input vector s of size 36. This vector s forms the
input to the cost function.

The path obtained must be relatively short, with the fewer sharp turns pos-
sible (low curvature) and such that the obstacles are avoided. Consequently, the
cost function for each possible path is a weighted summation of three component
costs:

(i) the total length of the path obtained, L:

L =
∫ 1

0

√(
dx

dt

)2

+
(

dy

dt

)2

dt

(ii) a measure of the curvature of the path, C:

C =
∫ 1

0

dx

dt

d2y

dt2
− dy

dt

d2x

dt2((
dx

dt

)2

+
(

dy

dt

)2
) 3

2

2

dt

(iii) a measure of the minimum distance from the centers of the obstacles to the
path (for given obstacle locations), O:

O =
∑
j

exp

(
D2

j

18

)
where: D2

j = (xj − x(tj∗))2 + (yj − y(tj∗))2,

for tj∗ such that:

(xj − x(t∗j))
dx

dt
+ (yj − y(t∗j))

dy

dt
= 0

Thus, the final cost function is given by the equation:

J (s) = w1 ∗ L + w2 ∗ C + w3 ∗ O
subject to given boundary conditions (b) and obstacle locations. The weights
w1, w2 and w3 are arbitrary selected to incorporate the common sense of
significance of each of the three factors. After some rudimental exploration,
w1 was set equal to 3, w2 equal to 10 and w3 equal to 109. Thus, paths that
led to collisions with obstacles were considered unacceptable (enormous
weight factor), while the curvature factor was considered more than three
times more significant than the length factor.

158 K.P. FERENTINOS ET AL.

Figure 1. Simulated Annealing Algorithm Pseudocode

2.2. HEURISTIC ALGORITHMS

In this section, the main features of the two heuristic optimization algorithms
that were used in this work, Simulated Annealing and Genetic Algorithms, are
presented.

2.2.1. Simulated Annealing Algorithm

Simulated Annealing algorithm (SA) is based on ideas first presented by Metro-
polis et al. in 1953. Metropolis’s algorithm simulates the change in energy of a
system when subjected to a cooling process, until it converges to a steady ‘frozen’
state. Thirty years later, Kirkpatrik et al. (1983) suggested that this type of simula-
tion could be used for solving hard combinatorial optimization problems.

Its name comes from the physical process of annealing, which is the physical
correspondence of the Metropolis algorithm. In this process, a solid is heated until
all particles randomly arrange themselves in the liquid state. Then, a slow cooling
follows, which spends relatively long time near the freezing point. At each temper-
ature, the solid is allowed to reach thermal equilibrium, where energy levels follow
Boltzmann distribution. As temperature decreases, the probability tends to concen-
trate on low energy level states (Rodrigues and Anjo, 1993). The cooling process
must be careful so that the temperature is not lowered before thermal equilibrium is
reached. Here, a real-valued version of the algorithm was used, as it has been shown
that generally, in continuous optimization problems with real variables, the binary
SA algorithm performs poorly. The algorithm can be described in the following
five steps (its pseudocode is shown in Fig. 1):

HEURISTIC OPTIMIZATION METHODS FOR MOTION PLANNING 159

(i) The parameters of the algorithm (initial random set of variables, initial
temperature, cooling rate) are initialized and the cost of the initial set of
variables is calculated.

(ii) A random new set of variables is chosen and its cost is evaluated.
(iii) If the new set of variables is an improvement, then it is accepted. If it

is not an improvement, then it is accepted with probability exp(-ä / T),
where ä is the cost difference and T is the current temperature. iv) If the
algorithm is homogeneous, the process goes to step (ii); when the maximum
number of ‘constant-temperature repetitions’ is reached, the temperature
is decreased according to the cooling schedule and the process continues
to the next step. If the algorithm is inhomogeneous, the temperature is
decreased according to the cooling schedule.

(iv) The process repeats from step (ii) until a sufficient solution is found or the
maximum number of iterations is reached.

Generally, the SA algorithm can be described by a sequence of Markov Chains.
It has been shown that these sequences converge asymptotically to a global op-
timum provided that the cooling is sufficient slow. Unfortunately, there is no way of
defining this ‘sufficient slow’ cooling schedule. Thus, the parameters of the cooling
schedule are defined experimentally. These parameters are:

– Initial value of temperature
– Length of Markov Chains
– Rule for decreasing temperature
– Final value of temperature.

The rule of decreasing temperature is a very important parameter. In the inhomo-
geneous algorithm, the temperature is decreased after each iteration, while in the
homogeneous algorithm, it is decreased after a fixed or adaptive number of itera-
tions (larger than one). The way of decreasing the temperature is usually geometric
(with a specific cooling rate), although several other methods are often used suc-
cessfully. Also, self-adaptive schedules that adjust themselves to a given problem
instance are widely used. A good example is presented in Huang et al. (1986).
In the SA algorithm used here, a geometric reduction function was used for the
cooling schedule (T (t + 1) = αT (t), 0 < α < 1), with several initial temperature
values (T (0)) and reduction rates (α).

The other major parameter of SA is the neighborhood� definition. A neighbor-
hood is basically defined by its size (i.e., the value of the search range parameter)
and its sampling method. If the optimization problem is real-valued, then the spe-
cific neighborhood size can be replaced by adding a normally distributed quantity
to a variable of the problem. The sampling of the neighborhood is usually ran-
dom. The use of cycling can sometimes improve the algorithm’s performance, as

� Neighborhood is the set of solutions that can be reached from the current solution in a single
iteration of the algorithm.

160 K.P. FERENTINOS ET AL.

Figure 2. Genetic Algorithm pseudocode

every element of the neighborhood is tried once before any are considered for a
second time. In addition, steepest-descent is sometimes used for the neighborhood
sampling, but the time consumption of this approach is often prohibited. Here, a
constant neighborhood size was used, even though several values of search range
were tested in the preliminary experimentation of the algorithm in order to find
the best neighborhood size. The sampling method was random. A steepest des-
cent sampling was not used, mainly for its large time consumption in our specific
problem.

2.2.2. Genetic Algorithm

Genetic Algorithms (GAs) (Holland, 1975) are optimization techniques inspired by
the genetic evolution process. In GAs, a number of individuals, namely the popula-
tion, evolve through several generations, with the application of some genetic op-
erators. Each individual is identified by its chromosome. Thus, each chromosome,
which contains a number of genes, represents a set of variables, i.e. a solution. All
possible values of the genes are called the alleles. The genotype is the complete
gene encoding of an individual, while the phenotype is the set of characteristics of
the individual in reality. The genetic operators are selection, crossover and muta-
tion and they will be defined later. GAs are typically implemented as follows (their
pseudocode is show in Fig. 2):

(i) A fitness function of the problem considered is defined, in a way that it
indicates the quality of any potential solution (chromosome).

(ii) A population of chromosomes is initialized (possibly subject to certain
constraints). Each chromosome is coded as a vector of fixed length (string),
with values from the alleles. If the binary encoding is followed, then this
length is determined by the desired degree of precision (Fogel, 1995).

(iii) Selection takes place. Each string is assigned a probability of reproduction
(Fogel, 1995) and is selected according to this probability. The probability

HEURISTIC OPTIMIZATION METHODS FOR MOTION PLANNING 161

is usually proportional to the fitness of each string. In this way, a new
population is formulated.

(iv) The newly formed population of strings is now passed though the genetic
operators of crossover and mutation. In crossover, two strings exchange
one or more parts in randomly chosen positions. For example, for one-point
crossover, the section that appears before the selected position in the first
string is spliced with the section that appears after the selected position in
the second string, and vice versa. In mutation, a random gene in a string is
flipped. These genetic operators happen with certain probabilities. Typical
values for the probability of crossover range from 0.6 to 0.95 and for the
probability of mutation from 0.001 to 0.01 (Fogel, 1994). However, certain
optimization problems seem to ‘prefer’ values far outside these ranges.

(v) The process halts if a satisfactory solution is reached or when the pre-
defined number of maximum generations is reached. Otherwise, it goes
to step (iii) and the cycle repeats.

The basic theoretical notion of Holland’s GAs is that of schemata (Reeves, 1995).
A schema is a subset of similar chromosomes. Their similarity is based on the
fact that they have the same fixed genes at specific positions of the string. Thus,
all these similar chromosomes can be represented by a general template made by
these fixed genes and a wild card symbol (∗) that, in each position that it is placed,
matches any possible gene (from a predefined alphabet of course). This template
is the schema. The order of a schema is the number of fixed genes and its length is
the distance between its outermost fixed genes. Holland recognized that when the
fitness value of a single string is evaluated, partial information about the expected
fitness of all possible schemata in which that string belongs is gained. This charac-
teristic is called implicit parallelism. Holland also speculated that the more implicit
parallelism an optimization process has, the better the results are and he proved that
this is achieved for alphabet of size 2, i.e., binary representation. However, most
real-valued optimization problems seem to prefer real-valued versions of GAs. The
fitness of a schema is the average fitness of all the strings that it contains. It can be
proved that if the average fitness of a schema is high, then the expected number of
strings belonging to that schema will be high, otherwise it will be low. The Schema
Theorem gives the estimate of the strings belonging to a particular schema H :

E(mH(t + 1)) �
(
�(H(t))

�̄(t)
mH (t)

)(
1 − pc

d(H)

l − 1

)
[(1 − pm)

o(H)]

where: o(H) and d(H) are the order and the length of the schema H respectively,
mH(t) represents the strings in the population that are instances of H , �(H(t)) is
the average schema fitness at time t , �̄(t) is the average fitness of the population at
time t , l is the length of the strings and pc and pm are the crossover and mutation
probabilities respectively.

This schema theorem takes into account the proportional selection (first par-
enthesis of the second part of the inequality) as well as the effects of crossover

162 K.P. FERENTINOS ET AL.

Figure 3. Average performance of SA for several neighborhood sizes.

and mutation. When evaluating a population of strings, GAs estimate the average
fitness of all schemata that are present in that population and increase or decrease
their representation according to the Schema Theorem.

GAs have been successfully applied in several famous optimization problems,
like the Traveling Salesman Problem (TSP), sequencing and scheduling applic-
ations, graph coloring, neural network learning, etc. In our case, a real-valued
version of GAs was developed and tested.

3. Preliminary experimentations

In this section, the preliminary experiments conducted with the two algorithms
described before are presented. Their goal is to find the best parameters for each
algorithm, so that the best-tuned versions of each one are tested and compared in
the next section. All preliminary experiments were run for up to 500 cost function
evaluations. Several runs (50, in most cases) were performed with different random
initial points for each set of algorithm parameters explored and the average values
of the performance over these runs were considered.

3.1. SA EXPERIMENTATION

The first experimentation with the SA algorithm was to determine the most ap-
propriate combination of initial temperature, temperature reduction rate (α) and
neighborhood size (NS) (search range value). Four different values of initial tem-
perature (500, 1000, 5000 and 10 000) were tested with several different values
of α (from 0.5 to 0.9 with step 0.1) and several values of the search range para-

HEURISTIC OPTIMIZATION METHODS FOR MOTION PLANNING 163

Figure 4. Average performance of SA for several values of α for the two best combinations
of Tinit and neighborhood range.

Figure 5. Average performance of SA for different numbers of constant temperature repeti-
tions.

meter NS (from 15 to 50). The algorithm was run 50 times for each combination
of parameters in all experimentations. The best results were achieved with values
of α equal to 0.9. Figure 3 shows the average performance of the three best initial
temperatures for this value of α (0.9), for all different neighborhood sizes that were
tested. From this graph, we can see that the best average performance is achieved
with initial temperature Tinit = 500 and search range of 40 and with Tinit = 5000

164 K.P. FERENTINOS ET AL.

and search range of 35. Thus, these two combinations were further analyzed with
all possible α values from 0.8 to 0.99 with step 0.01 (Fig. 4). The best performance
was achieved with the ‘Tinit = 500/NS = 40’ combination and α=0.95. In addi-
tion, several different schemes of temperature reduction were tested, with values of
steady temperature repetitions from 5 to 30 (all previously mentioned experiments
were conducted with just one repetition of each temperature value), and the results
are shown in Fig. 5. As one can see, no other schema can give better results than
the originally tested one (one repetition per temperature value).

From all these experimentations we can conclude that the final SA algorithm
that is going to be compared with the Genetic Algorithm, is going to have an initial
temperature equal to 500 and a neighborhood search range of 40. The experiment-
ations were run for up to 500 iterations. The final testing of the SA algorithm
will have 2000 iterations, i.e. 2000 cost function evaluations. This limit on the
maximum number of cost-function evaluations is forced by the limited time period
in which a decision on the motion path has to be taken. Thus, the α value of 0.95
that was proved to be the best for the 500 iterations must be adjusted so that the
final temperature is the same for the 2000 iterations case. Such an adjustment gives
a value of α equal to 0.9872.

3.2. GA EXPERIMENTATION

As previously outlined, there are many parameters involved with the genetic al-
gorithm. These parameters are the population size, the probability of crossover
(Pc), the parameter for crossover (arithmetic), the probability of mutation (Pm)

and the number of generations. In our case, as explained before, the maximum
number of cost evaluations was specified as 2000 so the number of generations
allowed was completely determined by the population size. If, for example, the
population size were 100, then only 20 generations would be allowed. For the other
parameters, it is reasonable to assume that the optimal values would be different
for each crossover type. Hence, a number of experiments had to be carried out to
try to determine the best possible parameters for each crossover type. After that,
the various crossover types could be compared resulting in what would be the best
parameters for a genetic algorithm for the specific problem under consideration.

The GA used was a real-valued version of genetic algorithms. Each chromo-
some consisted of 36 real numbers, which represented the input vector to the cost
function, as explained in Section 2.1. The operation of crossover did not have
any differences from that of binary GA crossover. Mutation however, was quite
different. Instead of flipping a binary value, Gaussian noise with mean zero and
some specific variance was added to some random real-valued gene. Thus, another
parameter of the algorithm exists: that of the variance of the mutation operation.

For the first parameter that was explored, the population size, the GA was ex-
ecuted with different population sizes but with all other parameters kept constant.
This approach of keeping all other parameters constant except for the parameter

HEURISTIC OPTIMIZATION METHODS FOR MOTION PLANNING 165

Figure 6. Average performance of GA versus several probabilities of crossover (Pc).

in question was repeated for every experiment. The number of cost-function eval-
uations (i.e., the size of the population multiplied by the number of generations)
was kept at around 500 for all the experimentations. For this reason, an initial
experiment was conducted in order to find the best population size / number of
generations combination that performs around 500 cost-function evaluations. That
combination (population of 60 individuals evolving over nine generations) was
used throughout the experiments. After the best parameters were found, a last
experiment found the optimal combination of population size/generations for the
2000 cost-function evaluations of the final algorithm, as it will be shown later.

Figures 6 and 7 show the results of the experimentations for several probabilities
of crossover and probabilities of mutation, for the four different types of crossover
examined (one-point, two-point, arithmetic and heuristic). In Fig. 6 the mutation
probability was kept constant at 0.2, while in Fig. 7, the crossover probability of
each crossover type experimentation was the best one found from the previous
experiment (see Fig. 6). The next two experimentations were to decide the optimal
variance of mutation for each crossover type and the best parameter of the arith-
metic crossover. Finally, as mentioned before, the best population size and number
of generations were found for the optimal parameters of each crossover type for a
maximum of 2,000 cost-function evaluations (Fig. 8).

The final optimal parameters for each crossover type are summarized in Table 1.
The first two columns correspond to probabilities of crossover and mutation re-
spectively, the third to the variance of the mutation and finally the last two columns
correspond to the size of population and number of generations of the algorithm.

166 K.P. FERENTINOS ET AL.

Figure 7. Average performance of GA versus several probabilities of mutation (Pm).

Figure 8. Average performance of GA for several population sizes.

Table 1. Optimal parameters of GA for all crossover
types

Pc Pm Var. Pop. Gen.

One-point 0.65 0.10 5 140 14

Two-point 0.15 0.20 5 200 10

Arithmetic 0.80 0.05 5 180 11

Heuristic 0.95 0.05 5 160 12

HEURISTIC OPTIMIZATION METHODS FOR MOTION PLANNING 167

4. Comparison of the algorithms

The experimentations that were presented in the previous section led to the optimal
parameter tuning of the two algorithms considered, for this specific optimization
problem. The SA algorithm parameterization led to parameter values: Tinit = 500,
α = 0.9872 and neighborhood range equal to 40. The genetic algorithm paramet-
erization gave different optimal parameters for each crossover type (Table 1) and
all crossover types were tested in this final comparison. These tuned algorithms are
compared in this section, in order to chose the best one, that is, the one that gives
the minimum cost-function value after a specific number of function evaluations.
As explained earlier, the optimization problem under analysis usually occurs in
situations where the time is very limited and therefore the most crucial factor.
For this reason, the algorithms are compared for their performance in a maximum
number of 2000 function evaluations.

Another point that must be mentioned here is that this comparison has as a goal
the achievement of the best optimal solution to this specific case of motion planning
and not the investigation of average performance of the examined algorithms. How-
ever, this average performance would be useful as an indication of the robustness
of the algorithms. For these reasons, the decision parameter in the comparison of
the algorithms is mainly the best optimal solution achieved, but in addition, the
average performance of each algorithm over a number of runs was also considered.

The final well-tuned algorithms were ran for up to 2000 cost-function evalu-
ations, with several different random initial parameters. Specifically, they were ran
100 times each. The main goal was to find the one that would give the minimum
value of the cost function. From all variations of the GA, the one that gave the best
results was that with the heuristic crossover. As described in the previous section,
this algorithm gave best results with Pm = 0.95, Pc = 0.05, V = 5, population
size equal to 160 and 12 generations. The best optimum found with SA was 299.2,
while with the GA was 359.6 (Table 2). In addition, the average performance of the
SA was much better than that of the GA, as shown in Table 2. This indicates that SA
algorithm would give better performance in general if applied to a specific motion
planning problem like the one examined. It also conveys a better robustness for this
algorithm, if it is applied to an on-line motion planning mechanism. These can also
be observed in Fig. 9, where the average best costs after specific numbers of cost-
function evaluations are plotted for the two algorithms. SA obviously outperforms
GA in any progress stage of the optimization process. The optimal path obtained
after the SA optimization is shown in Fig. 10.

5. Conclusions

Heuristic optimization algorithms were successfully used to obtain optimal motion
planning of autonomous agricultural vehicles. The Simulated Annealing algorithm
was proved satisfactory for the specific problem examined in this work and it
outperformed the Genetic Algorithm. However, other stochastic algorithms have

168 K.P. FERENTINOS ET AL.

Figure 9. Average best costs versus cost-function evaluations, for both algorithms.

Figure 10. The optimal vehicle path found with the SA algorithm after 2000 cost-function
evaluations.

also to be applied and tested in order to gain a better understanding of the specific
search space and the actual level of sophistication required for finding a satisfactory
optimal solution in reasonable time.

Furthermore, as a continuation of this work, an on-line heuristic-based naviga-
tion system that takes into account the dynamics of the agricultural vehicle should
be constructed, that finds optimal paths from starting to ending points and also
dynamically adjusts and improves the vehicle’s motion.

HEURISTIC OPTIMIZATION METHODS FOR MOTION PLANNING 169

Table 2. Best and Average
performance and standard de-
viation for both algorithms
after 2000 cost-function eval-
uations.

SA GA

Best 299.2 359.6

Average 334.3 421.1

std 12.47 9.52

References

Asada, H. and Slotine, J.-J. E. (1981), Robot Analysis and Control, Wiley, New York.
Borenstein, J. and Koren, Y. (1989), Real-time obstacle avoidance for fast mobile robots, IEEE

Transactions on Systems, Man and Cybernetics 19, 1179–1187.
Canny, J. and Reif, J. (1987), New lower bound techniques for robot motion planning problems, 28th

IEEE Symposium on Foundations of Computer Science, Los Alamos, CA.
Cherif, M. (1999), Motion planning for all-terrain vehicles: a physical modeling approach for

coping with dynamic and contact interaction constraints, IEEE Transactions on Robotics and
Automation 15(2), 202–218.

Debain, C., Chateau, T., Berducat, M. and Martinet, P. (2000), A guidance-assistance system for
agricultural vehicles, Computers and Electronics in Agriculture 25(1–2), 29-51.

Fiorini, P. and Shiller, Z. (1998), Motion planning in dynamic environments using velocity obstacles,
The International Journal of Robotics Research 17(7), 760–772.

Fogel, D.B. (1994), An introduction to simulated evolutionary optimization, IEEE Transactions on
Neural Networks 5(1), 3–14.

Fogel, D.B. (1995), Evolutionary Computation: Toward a New Philosophy of Machine Intelligence,
IEEE Press, New York, NY.

Freyberger, F. and Jahns, G. (2000), Symbolic course description for semiautonomous agricultural
vehicles, Computers and Electronics in Agriculture 25(1–2), 121–132.

Galicki, M. (1998), The planning of robotic optimal motions in the presence of obstacles, The
International Journal of Robotics Research 17(3), 248–259.

Hague, T., Marchant, J.A. and Tillett, N.D. (2000), Ground based sensing systems for autonomous
agricultural vehicles, Computers and Electronics in Agriculture 25(1–2), 11–28.

Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, Univ. of Michigan Press, Ann
Arbor.

Huang, M.D., Romeo, F. and Sangiovanni-Vincentelli, A. (1986), An efficient general cooling
schedule for simulated annealing, IEEE International Conference on Computer Aided Design,
381–384.

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983), Optimization by Simulated Annealing, Science
220(1998), 671–680.

Reeves, C.R. (1995), Modern Heuristic Techniques for Combinatorial Problems, McGraw-Hill, UK.
Rodrigues, M. and Anjo, A. (1993), On simulating thermodynamics, in René V.V. Vidal (ed.),

Applied Simulated Annealing, Springer, Berlin, Germany.

170 K.P. FERENTINOS ET AL.

Tillett, N.D., Hague, T. and Marchant, J.A. (1998), A robotic system for plant-scale husbandry,
Journal of Agricultural Engineering Research 69(2), 169–178.

Toda, M., Kitani, O. and Okamoto, T. (1999), Navigation method for a mobile robot via sonar-based
crop row mapping and fuzzy logic control, Journal of Agricultural Engineering Research 72(4),
299–309.

