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Abstract. In this paper, a model of the taper of 
fir natural forests in three specific areas of 
Greece is developed. The modeling approach was 
that of feedforward neural networks, trained by 
the backpropagation training algorithm. Several 
one- and two-hidden-layer topologies were inves-
tigated and three final networks were trained and 
tested on real measured data. The obtained taper 
values were accurate enough so that neural net-
works could be considered as a useful alternative 
to the not so precise multivariable linear regres-
sion methodology used so far. 
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1.   Introduction 
 

Forests management planning is a compli-
cated task due to the high number of environ-
mental and forest variables that participate in 
forest evolution, the long scheduling time and the 
contradictory human demands. Due to the com-
plexity of forest management planning, forests 
managers need to have some insight information 
about all the factors that affect forest production. 
Factors with crucial role are the potential forest 
productivity and the usability of the produced 
timber for various uses.  

The productivity of a forested area depends 
on several environmental factors, such as climate 
and topography, and tree species. This is ex-
pressed by the high of dominant trees at a refer-
ence age [6]. Other indices for site quality also 
apply, such us climatic characteristics and soil 
properties, but they are not considered credible 
for general use [16]. The usability of a tree log 
for special uses such as poles, depends on its 
shape. The shape of tree stem can be described 
by the change of its diameter over the length unit 

of the stem, which is called taper. The diameter 
of trees is affected by stand density; subse-
quently taper is also affected by stand density 
[3]. This is the reason why taper is considered of 
limited applicability as site quality index. How-
ever, due to the impact of stand density, taper 
can be manipulated by applying convenient sil-
vicultural treatments to the stand. Thus, the im-
provement of timber usability can be achieved 
for each forest location, in respect both to envi-
ronmental limitations and silvicultural treat-
ments. 

The purpose of this paper is to demonstrate a 
methodology that could be able to estimate the 
taper of a tree species (fir in our case), based on 
selected environmental factors and stand density. 
Two parameters were used as a metric of stand 
density: the crown closure and the basal area of 
the trees with diameter larger than 14cm. Rele-
vant studies have been made for the prediction of 
the Site Quality Index or taper by environmental 
factors  [5], [6], [8], [12], [21], [22]. Most of the 
undertaken studies use the multivariable linear 
regression as the basic correlation mechanism. 
Due to the fact that certain environmental vari-
ables like altitude have no linear effect on forest 
species, linear regression is not considered as the 
best method in this case. In addition, non-linear 
regression models are difficult to apply. In this 
work, feedforward neural networks were used to 
model the taper. 

Neural networks (NNs) have been used to 
model a variety of biological and environmental 
processes (e.g., [1], [9]-[12], [20]), but not in the 
specific area of taper modeling. Due to their ca-
pability to model highly non-linear processes, 
purely based on measured data, feedforward NNs 
were considered a proper alternative to the not so 
successful multivariable linear regression.  

  



2.   Materials and methods 
 

The samples were collected from three differ-
ent areas of the mainland of Greece, namely 
(from south to north) Parnitha, Karpenisi and 
Pertouli. These three areas are mountainous with 
varying topography. The first study area (Par-
nitha), according to Scaltsoyiannes et al. [19] and 
Mitsopoulos and Panetsos [19], is covered by fir 
forest (Abies Cephalonica). The forest was de-
clared as a national park and consists of very old 
trees due to the reduction of cuttings. It suffers 
from severe attacks by parasite Viscum album 
[14]. The climate is hot-Mediterranean and the 
summer is hot with an annual number of biologi-
cally dry days between 40 and 75. The majority 
of rocks are limestone and flysch. The soil in 
most cases is shallow and only in a few places 
with low inclination and reach vegetation it is 
deep. 

The second study area (Karpenisi) consists of 
a hybrid fir species (Abies borissi-regis) pro-
duced by fertilization between Abies alba and 
Abies Cephalonica [15], [19]. The forest is in 
good condition and is managed by the local for-
est service. The climate is wet and cold, the aver-
age annual rainfall is 1380mm and in the winter 
there is high snow accumulation. The dry season 
is short and appears annually from July to Sep-
tember. The most common types of rocks are 
flysch, psammite and limestone. The soil is of 
medium depth and also contains medium quanti-
ties of organic matter. 

The forest in the third study area (Pertouli) 
consists of Abies borissi-regis and is one of the 
few forests that belong to the School of Forestry, 
University of Thessalonica. The forest is in good 
condition and managed regularly. 

 
2.1. Taper 

 
Taper is defined as the amount of tree diame-

ter change over the unit length of tree stem [13]. 
It expresses the tree stem completeness and thus 
provides an index for the stem usability to some 
special uses, such as poles. Taper is not constant 
across the whole length of the tree stem. Two 
types of taper can be distinguished: 
i. The absolute taper, which is the difference 

between two diameters with a distance of one 
meter, and 

ii. The relevant taper, which is the difference 
between breast height diameter (considered 
having a value equal to 100) and other diame-

ters, which are measured in various distances 
from breast height and expressed as a per-
centage of the breast height diameter. 
There are various ways to calculate taper [2], 

[13], [17]. In this study, taper is calculated by: 
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where, T is taper, d1.30 is the diameter at breast 
height (in cm) and h is the total tree height (in 
m). 

In order to investigate the effect of taper cal-
culation to the accuracy of the prediction, taper 
was calculated by two sets of trees. Specifically, 
it was calculated over either the entire number of 
measured trees of each data set, or over the five 
dominant trees. 

 
2.3. Sampling methodology 
 

Seventy eight sampling surfaces were col-
lected in total (29 from Parnitha, 21 from 
Karpenisi and 28 from Pertouli). Each surface 
forms a square with a side of 15 meters (225m2 
area). The two sides were positioned in parallel 
to the contours and the other two vertically. In 
each sampling surface, only trees with a breast 
height diameter equal to or greater than 14cm 
were considered. For each tree the diameter at 
breast height and the total tree height were meas-
ured. The following factors were also measured: 
Altitude with GPS, aspect with a compass, slope 
with a clinometer, position on the incline in 
qualitative terms, incline shape in qualitative 
terms, soil depth in qualitative terms taken from 
maps and field observations, surface rock content 
measured as coverage percentage and taken from 
field observations, soil acidity (pH) measured by 
pH-meter, crown closure measured as coverage 
percentage, taken from field observations. 

 
3. Feedforward Neural Network 

modeling 
 

Given the fact that the traditional statistic 
methods are not well adapted to the problem, it 
was decided that the design and use of an appro-
priate NN with good generalization capabilities, 
could facilitate towards a solid solution. The 
program that was used for the design and imple-
mentation of the various networks was Brain-
Maker [4]. The feedforward type of NNs was 
used (multi-layer perceptron) while the back-



propagation training algorithm [18] was used as 
the training methodology. 

 
3.1. Initial data manipulation 

 
The initially accumulated data, which con-

tained 78 samples, were assembled out of the 
three study areas. All measured variables de-
scribed in Section 2.3 comprised the NN inputs, 
while taper was the single NN output (Table 1). 
These variables were selected in regards to their 
relevance towards the value of taper, as well as 
their availability and ease of measurement.  

Table 1. The 12 measured environmental vari-
ables that formed the NN inputs 

Variable Type of NN 
input 

Min Max Number of 
NN inputs 

Altitude       Number 
 (meters) 

750 1391 1 

Aspect  Number 
(grads) 

0 395 1 

Slope  Number 
(degrees) 

0 39 1 

Soil acidity 
(pH) 

Number 4.2 7.3 1 

Surface rock 
content  

Number 
(percent) 

2 90 1 

Basal area Number 
(m2) 

0.279 2.576 1 

Crown clo-
sure 

Number 
(percent) 

10 90 2 

Position on 
the incline 

Qualitative 
(Binary) 

0 1 3 

Incline shape Qualitative 
(Binary) 

0 1 3 

Soil depth Qualitative 
(Binary) 

0 1 3 

Location Qualitative 
(Binary) 

0 1 3 

Tree species Qualitative 
(Binary) 

0 1 2 

Total number of NN inputs: 22 
 
They can be organized into two categories: 

structural data, such as altitude or soil depth, 
which express constant variables for each loca-
tion, and variable data, such as basal area or 
crown closure, which express properties at the 
level of the tree. 

The initial data set was characterized by cer-
tain problems towards its usage as input to the 
NN. Firstly, the volume of the data set is consid-
ered to be minimal for the training and testing of 
a NN. In addition to that, there were 21 missing 
values for the crown closure variable, which 
were manipulated according to the procedures 
proposed in [4]. 

Finally, there was the need to analyze the 
available data in order to uncover possible stand-
alone predictors of the taper variable. Each col-
umn of data was compared with the taper column 
in regards to correlation and Table 2 was pro-
duced. 

The strength of correlation reveals the inten-
sity of the connection between two variables, as 
well as its direction. The results clearly show a 
strong correlation of positive strength between 
the requested outputs taper and slope as well as 
soil acidity (pH). The rest of the correlation val-
ues are not that strong and probably indicate that 
it should take the combination of such inputs to 
render a recognizable effect as a strong predictor 
for taper. The role of the NN to be designed is to 
uncover such relationships and take control of 
them so as to produce a system with good gener-
alization capabilities. 

Table 2. Strength of input/output data correla-
tions 

Variable Strength 
Altitude – Taper  0.35 
Slope – Taper 0.47 
Soil acidity (pH) – Taper 0.41 
Surface rock content – Taper 0.27 
Basal area – Taper 0.30 

 
The next step in data manipulation was to ex-

amine the distribution of data for each variable 
and eliminate the potential problem arisen by 
outlier values. Such values may turn the net-
work’s attention to certain isolated cases which, 
although they may exist, they are not so common 
in the data set. If these extreme values were to 
bear the same importance as the more common 
values, the network would have more trouble in 
distinguishing between them and the more com-
mon ones and setting them aside. For example, 
the data distribution histogram for the variable 
basal area (Fig. 1a) clearly shows that there is an 
extreme lonely case at the far right which should 
be eliminated before the variable would be fed 
into the NN. 

  
 
 
 
(a) 
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Figure 1. Distribution histogram of basal area 
variable in the training data set, (a) initially and 
(b) after appropriate data manipulation 

 
In order to improve the performance of the 

network by giving to the NN the inherent ability 
to look more closely at the most typical values, 
the maximum range should be altered for this 
variable, resulting in a more normally spread out 
distribution histogram (Fig. 1b). This does not 
mean that the extreme values are swept away 
from the network’s consideration, but rather that 
the system will give more attention looking 
closer at the typical range, without of course 
ignoring the outliers. 

Finally, shuffling of the available data sam-
ples was performed in order to minimize the bias 
of the system to be produced. The initial data set 
was comprised of records grouped by the loca-
tion of the study areas. 

 
3.2. Data sets formulation and NN design 

and training 
 
The need to overcome the scarcity of data led 

to the decision to develop a large number of net-
works and evaluate them initially by their scores 
towards a small number of samples which the 
networks had not “seen” before. The networks 
which best performed during this procedure 
would furthermore undergo training using cross-
validation. 

The initial randomized and manipulated data 
set of the 78 samples was split into two parts. 
The first segment of data, comprising of 73 sam-
ples, was considered as the training set and 
would be further split into two sections in a ratio 
of 9:1, forming the training and cross-validation 
data sets for the NNs respectively. The second 
segment of the initial data set, including only 5 
samples, formed the testing set to be used for the 
evaluation of the performance of the trained net-
works. 

 

3.2.1. Design of NN topologies 
 

In order to select the best performing network 
topology, the common trial-and-error approach 
was used, evaluating the performance of each 
NN topology in regards to RMS and average 
errors and the achieved R-squared. The networks 
were trained with training tolerance and cross-
validation tolerance equal to 0.1, a constant 
learning rate of 1 and a basic smooth factor equal 
to 0.9. Several feedforward NN topologies rang-
ing from one hidden layer (1-HL) containing 
only 5 neurons to two hidden layers (2-HL) with 
5 and 22 hidden neurons respectively were 
trained and investigated. The most effective net-
work according to both average and RMS errors, 
but also one with the best R-squared, had two 
hidden layers with 7 and 11 hidden nodes respec-
tively. Table 3 shows the 5 best performing NN 
topologies sorted by their RMS error values. 

The criterion for the number of hidden layers 
and neurons for the next network which partici-
pated in our research, took under consideration 
the number of inputs and patterns of our initial 
data set, as well as the number of data samples 
contained in the initial training set. This network 
had only one hidden layer with 9 hidden nodes, a 
value given by the following equation [4]: 
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Where, 
HN = Hidden Neurons, 
NoTS = Number of Training Samples. 
 
Lastly, the third NN contained again only one 

hidden layer with 19 neurons, which was the 
output of another trial-an-error procedure, based 
on the raw available data, before any special data 
manipulation. 

 
3.2.2. NN training and cross-validation 
 
Initially, we tried to fully train the networks 
without cross-validation, that is, by using the 
entire training set of 73 samples. However, after 
convergence, their evaluation was lower than 
expected, with success ranging from 62.5% to 
67.5%. This was a clear indication that the train-
ing set was rather small, thus cross-validation 
was used for early stopping of the training proc-
ess so that overfitting was avoided. 



Three pairs of networks were trained with two 
randomly generated training and cross-validation 
sets from the initial set of available data. The 
entire NN design and training process was re-
peated five times with different randomly gener-
ated training/testing sets combinations, in order 
to better prove the value of the results. 

Table 3. Best performing NN topologies sorted by 
their RMS error values. 

Rank-
ing 

1-
HL 

2-
HL 

Training 
iterations 

Avg 
error 

RMS 
error 

R2 
Taper 

1 7 11 285 0.0183 0.0240 0.9540 
2 36 7 672 0.0235 0.0336 0.9322 
3 22 8 145 0.0260 0.0317 0.9224 
4 33 10 97 0.0281 0.0358 0.9581 
5 38 6 346 0.0289 0.0331 0.9439 

 
4. Testing results 

 
In this section, the results of the application of 

the three final NN topologies to the four testing 
data sets are presented. These three network to-
pologies were trained each time with two differ-
ent randomly generated training sets. Training 
was performed with and without cross-validation 
for early stopping. Thus, in total, 12 different 
configurations were produced, as described in 
Table 4. 

As described in Section 2.2, taper values were 
calculated over either the entire number of meas-
ured trees of each data set, or over the five domi-
nant trees. These two approaches are denoted as 
Taper-All and Taper-5, respectively. Figures 2–4 
summarize the average performance of all 12 

configurations over the five randomly generated 
testing sets. 

Table 4. The various network configurations con-
sidered for testing. Configurations ending with 
“1” used cross-validation during training for early 
stopping, while those ending with “0” did not. 

Configurations NN topology Training  
data set no. 

CONF10, CONF11 1-HL, 9 nodes 1 
CONF20, CONF21 1-HL, 9 nodes 2 
CONF30, CONF31 1-HL, 19 nodes 1 
CONF40, CONF41 1-HL, 19 nodes 2 
CONF50, CONF51 2-HL, 7 – 11 nodes 1 
CONF60, CONF61 2-HL, 7 – 11 nodes 2 

 
Generally, RMS of Taper-5 has less variation 

among the various configurations, compared to 
Taper-All. Its best performance is achieved with 
configuration 11 (CONF11), with RMS value of 
0.369 (cm/m) (Fig. 2). Taper-All has the best 
performance with configuration 51 (CONF51), 
with RMS value of 0.350 (cm/m) (Fig. 2). 

The observed and predicted values of Taper-5 
with CONF51, averaged over the five testing 
sets, are given in Fig 3. The correlation coeffi-
cient (R) between the observed and predicted 
values is 0.559, while the corresponding value 
for Taper-All is 0.701. In Fig. 4, the observed 
and predicted values of Taper-All with configu-
ration CONF51 are shown, again averaged over 
the five testing sets. Among all examined cases, 
the predicted values of Taper-All using the con-
figuration CONF51 achieved the best fit to the 
observed values. 

   
 

Figure 2. Average RMS of observed and predicted values of Taper-5 and Taper-All, for the five tested 
data sets, with the various configurations of NN. 



   
Figure 3. Observed and predicted values of Taper-5, averaged over the five testing sets, based on 

NN configuration 11 (CONF11), and the corresponding errors. 

   
 

Figure 4. Observed and predicted values of Taper-All, averaged over the five testing sets, based on 
NN configuration 51 (CONF51), and the corresponding errors.

5. Conclusions 
 
In this work, a model of the taper of fir natu-

ral forests in three specific areas of Greece was 
developed. Taper values for training and testing 
purposes were calculated over either the entire 
number of measured trees of each data set, or 
over the five dominant trees. After some data 
manipulation and preliminary training explora-
tions over the best possible network topology, 12 
network topology/training approach configura-
tions were considered for the final testing of the 
developed modeling methodology. Among all 
these configurations, a 2-hidden-layer NN with 7 
and 11 nodes in the first and second hidden layer 
respectively, trained using cross-validation for 
early training stopping to avoid overfitting, 
achieved the best performance.  

Linear models of taper use a large number of 
variables and thus loose their efficacy or they 
obtain low accuracy. In addition, any appropriate 
non-linear models are very hard to manipulate. 
Therefore, the accuracy achieved by the pro-
posed neural network approach, make it a useful 
modeling alternative. 

Future work includes the introduction of dif-
ferent environmental variables and the considera-
tion of a larger amount of measured data samples 
for further improvement of the developed neural 
network model. 
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