
ARTICLE IN PRESS

Neurocomputing 73 (2009) 49–59
Contents lists available at ScienceDirect
Neurocomputing
0925-23

doi:10.1

� Corr

E-m
journal homepage: www.elsevier.com/locate/neucom
Feature extraction for time-series data: An artificial neural network
evolutionary training model for the management of mountainous
watersheds
Thomas J. Glezakos �, Theodore A. Tsiligiridis, Lazaros S. Iliadis, Constantine P. Yialouris,
Fotis P. Maris, Konstantinos P. Ferentinos

Agricultural University of Athens, Department of Science, Laboratory of Informatics, 75 Iera Odos Street, 11855 Athens, Hellas, Greece
a r t i c l e i n f o

Available online 6 August 2009

Keywords:

Genetic algorithms

Artificial neural networks

Maximum volume of water flow

Average annual water supply

Evolutionary time-series processing

Genetic ANN training
12/$ - see front matter & 2009 Published by

016/j.neucom.2008.08.024

esponding author. Tel.: +30 2105294181.

ail address: t_glezakos@yahoo.com (T.J. Gleza
a b s t r a c t

The present manuscript is the result of research conducted towards a wider use of artificial neural

networks in the management of mountainous water supplies. The novelty lies on the evolutionary

clustering of time-series data which are then used for the training and testing of a neural object,

applying meta-heuristics in the neural training phase, for the management of water resources and for

torrential risk estimation and modelling. It is essentially an attempt towards the development of a more

credible forecasting system, exploiting an evolutionary approach used to interpret and model the

significance which time-series data pose on the behavior of the aforementioned environmental

reserves. The proposed model, designed such as to effectively estimate the average annual water supply

for the various mountainous watersheds, accepts as inputs a wide range of meta-data produced via an

evolutionary genetic process. The data used for the training and testing of the system refer to certain

watersheds spread over the island of Cyprus and span a wide temporal period. The method proposed

incorporates an evolutionary process to manipulate the time-series data of the average monthly rainfall

recorded by the measuring stations, while the algorithm includes special encoding, initialization,

performance evaluation, genetic operations and pattern matching tools for the evolution of the time-

series into significantly sampled data.

& 2009 Published by Elsevier B.V.
1. Introduction

The most common reason for a flood surge at a certain time
and space is the condition at which bodies of water overflow, or
tides rise inexorably, due to a significant amount of rainfall or, for
some reason, an excessive snow thawing, which overloads the
water capacities of nearby natural or artificial reservoirs. Flood is
defined by the National Flood Insurance Program as an excess of
water on land that is normally drier, or a general and temporary
condition of partial or complete inundation of two or more acres
of normally dry land area from overflow of inland or tidal water, or
unusual and rapid accumulation or runoff of surface waters from
any source, or mudflow, or collapse or subsidence of land along
the shore of a lake or similar body of water as a result of erosion or
undermining caused by waves or currents of water exceeding
anticipated cyclical levels. Also, it is not necessary for a flood to
happen near vast bodies of water. Flash floods can happen
everywhere, independently of altitude, longitude or latitude,
Elsevier B.V.

kos).
when large volumes of rainfalls happen within a short period of
time in the same area.

It is also common knowledge that torrential streams which
overflow and run wild, can cause heavy floods, which become
more dangerous as the ability of the soil to absorb water
diminishes and as the average annual rain height increases. The
flow and the power of the torrential stream is not so much
dependant on the amount of water precipitation, as it is on its
peaks at certain periods of the year. The fact that torrential surges
happen at certain seasonal intervals has made the researchers
contemplate on its analysis on various data sets accumulated in
various ways. It is nowadays made clear that the water resources
of a country play one of the lead roles in the well-being of its
citizens and are very important for its sustainable development,
while their management is considered a crucial issue. The most
profound way to manage the flow of torrential streams and the
flood risk they pose on the environment is delivered by time-
series analysis, where the monthly rainfall is considered as the
most basic element. Other factors are considered as well, such as
the landscape type and structure, the altitude of the stream, the
surface of the watershed, the land use and land cover and so on,
but they are not as crucial as the time-series one.

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2008.08.024
mailto:t_glezakos@yahoo.com

ARTICLE IN PRESS

T.J. Glezakos et al. / Neurocomputing 73 (2009) 49–5950
The analysis of time-series, most of the time resorts to
regression models, such as the auto-regressive and the moving
average methods [30], which more often than not are inhibited by
the non-linearity inherent in the input time-series data. Various
fault-tolerant tools, such as fuzzy systems and neural networks
have been engaged [5,14–17,24,27,33,37,42,50–53] in order to
address this problem. Also, a lot of research has been dedicated in
studying the development and prototyping of neural network
design or the training and testing via meta-heuristic methods
[1,13,34,36,40,45]. The dimensionality of the input data vector has
been contemplated a lot in this context and has been found to be
most crucial for this kind of data analysis. Most of the researchers
agree that in case the dimensionality may be delivered too small,
the neural network might not have all the important information
at its disposal. On the other hand, if the dimensionality rises at
high levels, then we run the risk of over-feeding the network,
which might result in redundant information and noise creeping
into it, inhibiting its function, causing over-fitting and smothering
its ability to generalize [30].

The present paper describes the design, implementation and
testing of an innovative method to control the dimensionality of
the input data vector, by producing meta-data out of time-series
raw data sets, which are then used as inputs to a neural network
to predict torrential risk. The meta-data production is achieved in
an evolving fashion, via a genetic algorithm which manipulates
the input dimension of the time-series. Thus, the algorithm is
enabled to fluctuate and statistically manipulate the time interval
between two, not necessarily successive, elements of the series
which are to be fed into the network. It then utilizes the overall
root mean square (RMS) error of the network to formulate the
fitness function, while the roulette wheel method is engaged so as
to develop the selection policy for the next generation of the
population of the algorithm.
1.1. The artificial neural network concept and its implementation in

torrential risk management

The human brain is a highly complicated biologic machine,
capable of solving innumerable kinds of problems, from the most
simplistic to highly complex ones. The artificial neural network
(ANN) concept was developed in an attempt to simulate the
wondrous function of the human brain. An ANN is a software
device consisting of a number of simple processing elements
interconnected and operating in parallel. Each neuron is only
aware of the signals it receives from other connected neurons and
the information it sends from time to time to other processing
elements. In this context, an ANN is a computer program capable
of learning from examples through iteration. Most of the times no
prior knowledge of the input data is required, for the training
process is essentially a search for the best synaptic weight vector.
Learning is the process of adapting or modifying the neurons’
connection weights in response to stimuli presented as inputs
requiring the presence of a known output. This process enables
the network to learn to solve problems by adequately adjusting
the strength of the connections between their processing
elements according to the input data and the desired outputs.
Thus, a neural network may learn by example and outmatches
rivalling techniques in that it may use its knowledge under
untrained circumstances incorporating a large number of vari-
ables [18]. Such kind of software devices, have been vastly used
for recognizing patterns in the input data space or to extract
simple rules for complex non-linear problems according to their
inputs. The key factor and primary goal in neural network training
is generalization. The term refers to the capability of the network
to predict ‘‘unseen’’ inputs merely with the knowledge that has
been acquired during training. This is a process in which a result
emerging in the output corresponds to a desired response for a
given input stimulus.

The ANN concept is currently widely used in various research
works, ranging from pattern recognition, quality control and
classification, gaining wide recognition by its ability to model
numerous processes in engineering [6,19,25,35,41,48]. Lately
they have been used to predict wood–water isotherm or
sorption isotherms in food science [4,32] and in numerous
other disciplines. Their fault-tolerant behavior, as well as their
ability to process non-linear problems and generalize on unseen
information has not gone unseen by the water resources
management research. The transition to a more potent and
effective research tool was also dictated by the dramatic
climatic change happening during the recent years. This is
considered to be responsible for a lot of distinctively cata-
strophic calamities all over the world. In [5], Bodri and Cermak
developed a predictive approach based on modelling flood
recurrence via artificial neural networks to contribute in flood
management of the eastern part of the Czech Republic, Moravia,
which was seriously pelted during the 1997 Central European
floods. In [50], Toth et al. compared the accuracy of the short-
term rainfall forecasts obtained with time-series analysis
techniques, using past rainfall depths as the only input. Their
study compared the linear stochastic auto-regressive moving
average models, artificial neural networks and the non-para-
metric nearest neighbour method, concluding that the neural
network time-series analysis provides a significant improve-
ment in flood forecasting accuracy. Wei et al. in [51] developed a
potent neural network approach to provide accurate flood
disaster predictions in China. Their model is intended at
providing a system able to manipulate non-ideal time-series
data. Ni and Xue in [33] developed a radial basis function
artificial neural network to provide accurate flood risk forecast-
ing and ranking in five safety polders in the upper catchments of
the Yangtze River in China, which has undergone vast ecological
pressure due to intensified human activity during the recent
years. Filho and dos Santos [14] compared the ability of artificial
neural networks and multi-parameter auto-regression models.
Their model is fed into with time-series data so as to simulate
and forecast stage level and stream flow at Tamanduatei River
watershed in Sao Paulo of Brazil. The research shows that the
ANN approach is slightly better than the auto-regression one
and indicates its usefulness in flash flood forecasting. Harpham
and Dawson [17] studied the variation of test set error among
six different recognized basis functions used in radial basis
functions artificial neural networks. The tests were carried out
on various time-series flood prediction data sets for the Rivers
Amber and Mole, in United Kingdom. In [27], Kerh and Lee
engaged a neural network approach so as to forecast flood
discharge at a station downstream of Kaoping River. The input
to the network was information obtained by stations situated
upstream of the river, while there was no available information
at the flood location. Their verification results showed that the
neural network model outperforms the conventional Muskin-
gum method which is widely used for flood routing in natural
channels and rivers. In [37], Pulido-Calvo and Portela, as well as
Sahoo et al. in [42], developed similar models to forecast
torrential flows at various Portuguese and Hawaiian water-
sheds, respectively, concluding that the neural network ap-
proach is the most promising among the ones studied. Finally,
Jain and Kumar [24] proposed a hybrid neural network model
combining the strengths of conventional and neural techniques
for time-series forecasting using the monthly stream flow data
available for the Colorado River at Lees Ferry in the United
States of America.

ARTICLE IN PRESS

T.J. Glezakos et al. / Neurocomputing 73 (2009) 49–59 51
1.2. Genetic algorithms in water resources management

The genetic algorithm concept was inspired by evolutionary
biology, and specifically driven by the Darwinian axiom of the
‘‘survival of the fittest’’, incorporating numerous biological
procedures such as inheritance, selection, recombination (or
crossover) and mutation. They became popular through the work
of John Holland, particularly his 1975 book ‘‘Adaptation in Natural
and Artificial Systems’’. Such algorithms are mostly implemented
as computer simulations which search for optimal solutions to a
given optimization problem. The genetic algorithm starts out with
an, often random, initial population of encoded representations of
candidate solutions. These representations are referred to as
chromosomes, genotypes or genome, while the candidate solu-
tions are referred to as phenotypes. The algorithm proceeds by
generations, each of which arises as a result of the interactions
among the genotypes of the previous generation [31], which are
elected basically by their fitness and modified on the grounds of a
possible recombination and mutation to form a new population of
higher overall fitness.

There are numerous applications of genetic algorithms in
water resources management in general. In [7], Cai et al.
combined GAs with linear programming so as to propose feasible
solutions to large-scale water resources management problems.
Their work aims at smoothing out the complex variables of the
problem, rendering it linear in its remaining variables, which are
then varied by the genetic algorithm. In [10], Cheng et al. proposed
a combination of fuzzy systems and genetic algorithms to solve
the calibration problem of multi-objective rainfall-runoff models
in the Shuangpai Reservoir in China. In their model, genetic
algorithms are used in the calibration both of water balance and of
runoff routing parameters. The same researcher returns in [11]
with a further development of his previous work using an
enhanced version of his genetic algorithm to overcome the
difficulty of recognizing the model’s best behaviors during the
calibration procedure. Agrawal and Singh [2] used the same
algorithms to develop and optimize a runoff prediction model for
the Kashinagar watershed of the Vamsadhara river basin in Orissa
of India. The genetic algorithms are used in this concept for the
estimation of the model parameters and for function optimiza-
tion. Based on the grounds that watershed modelling is essential
for the management of water resources and that it requires proper
description of rainfall spatial variation, Chang et al. proposed in
[8] a model which utilizes a genetic algorithm to determine the
parameters of fuzzy membership functions representing locations
without rainfall records to their surrounding rainfall gauges. The
results of the work clearly show a reduction of the estimated error
when genetic algorithms are employed. Neural network evolu-
tionary training has been studied a lot as regards to water
resources management. In [49], Srinivasulu and Jain compared
three different neural network training techniques for rainfall-
runoff modelling, one of which was using a genetic algorithm to
formulate the training pairs and the other being normal back
propagation. A self-organizing map (SOM) was used to classify the
input/output space into different categories, before developing
neural networks for each one. The results of the work show that
the genetic algorithm technique easily outperforms normal back
propagation. During the same period, Anctil et al. [3] proposed a
neural model of improved forecasting ability through the
optimization of the mean daily rainfall time-series, which was
achieved by the implementation of a genetic algorithm. More
recently, in 2007, Chau developed a split-step particle swarm
optimization model to train multi-layered perceptrons so as to
forecast real time water levels at Fo Tan in Shing Mun River in
Hong Kong [9]. His results exhibit enhanced accuracy when
compared to benchmarking back propagation. During the same
year, Kerachian and Karamouz [26] developed a stochastic conflict
resolution technique based on genetic algorithms which, com-
bined to a water quality simulation system, was able to model
reservoir operation and waste load allocation for the Ghomrud
Reservoir River System in the central part of Iran. Finally, Damle
and Yalcin describe in [12] a novel approach to river flood
prediction using time-series data mining procedures. These,
among others, employ a genetic algorithm to search for optimal
pattern clusters in the data set. Their method was successfully
used in St. Louis gauging station located on the Mississippi River
in the United States of America.
2. Case study: the area and the problem

Cyprus, the third largest island in the Mediterranean Sea after
Sicily and Sardinia, is geographically situated in the east, south of
the Anatolian Peninsula of the Asian mainland. It is located among
Hellas to its west/north-west side, Syria, Lebanon and Israel to the
east, and Turkey at north. It is a member state of the European
Union and commonly referred to as part of the Middle East.

The landscape, mostly mountainous at the highest percentage,
includes the central plain of Mesaoria, with the Kyrenia and
Pentadactylos mountains to the north and the Troodos mountain
range to the south and west, while there are also scattered, but
significant, plains along the southern coast. The climate is
temperate Mediterranean where dry summers follow variably
rainy winters. Summer temperatures range from warm at higher
elevations in the Troodos mountains to hot in the lowlands.
Winter temperatures are mild at lower elevations, where snow
rarely occurs, but are significantly colder in the Troodos
mountains. During the recent years the dry seasons are intense,
rendering the lack of drinking water as a high pressure on the
citizens. On the other hand, floods, lower temperatures and
torrential rains throughout the wet season constitute an unusual
picture for this time of year for the island, causing erosion
problems and destroy settlements and infrastructure. There is no
doubt whatsoever that proper and efficacious water management
is the key factor not only for the well-being of the citizens and the
satisfaction of their daily needs, but for the achievement of
sustainable development as well.

The primary aim of this research is to present an attempt
towards the design and implementation of an evolutionary
technique in the line of producing meta-data for the training
and testing of artificial neural networks (ANN) for the manage-
ment of water reservoirs. The motivation for our research was
triggered off by Iliadis and Maris [21,22]. According to these
works, it is beyond doubt that an innovative approach may come
in handy, especially considering the fact that after time-consum-
ing studies and raw data acquisition, the Republic of Cyprus did
not come up with a viable solution to the problem of water
resources management. In [22], Iliadis and Maris state that the
classical statistical analysis failed to provide promising results,
although newer attempts have been conducted towards this
purpose. As they report, the undergoing research has revealed that
the water resources of the island are much lower than it was
initially regarded. It is nowadays estimated that the island’s water
reservoir is approximately 40% lower than the original belief. This
fact urges for a new and perhaps more reliable approach.

The current research focuses on producing meta-data out of
raw time-series data, in the hope of eliminating the noise inherent
in the initial information. This procedure is followed in order to
develop a highly adaptive evolutionary model towards decision
making in water resources management. The genetic algorithm
governing the meta-data production performs a forward crawl
through the input space in search of combination of genes which

ARTICLE IN PRESS

T.J. Glezakos et al. / Neurocomputing 73 (2009) 49–5952
outperform their brethren after they have been used as inputs to
the neural network, the performance of which is evaluated by
means of its root mean square error. The network performs an
effective estimation of the average annual water supply (AAWS)
on an annual basis, for each mountainous watershed of Cyprus.
The estimation of the aforementioned factor plays a highly
important role to the management of mountainous water
resources, as it is closely related to the mountainous watershed
fermentations, as well as to the potential torrential risks posed on
the areas involved [21,23,46,47].
Fig. 2. Average annual rain height (mm) from 1970 to 2000.

Table 1

Station 1 Station 2 Station 3
3. Materials and methods

3.1. Research area and data acquisition

The research area, as in the initial research [22], covers all of
the mountainous watersheds which are under the administration
of the Republic of Cyprus. Specifically, the island is divided into
nine water regions with a total of 70 torrential streams. As already
noted, the two most important landscape characteristics of the
island are the Kyrenia and Pentadactylos mountains to the north
with an altitude which reaches 1000 m and a length of 160 km,
and the Troodos mountain range to the south and west with a
maximum altitude of 1951 m.

The initial dataset was accumulated out of 78 stations located
at the span of the 70 torrential streams, as shown in Fig. 1. The
time span of the initial information covered a period of 28 years,
from 1965 to 1993, for most of the stations’ measurements. The
current research though, does not average the rainfall time-series,
but rather takes under consideration the average for every month
for each year. The parental research of Iliadis and Maris [22] used
three structural input parameters, namely the area of watershed,
the altitude and the slope and two dynamic ones, the average
annual and the average monthly rain height. For the time span of
each dynamic factor, the monthly measurements had been
averaged on a year basis and the result was used as input. The
research key point was that it used only two dynamic parameters
and among them, only the rain height should be monitored
monthly and annually, rendering the acquisition of model inputs
effortless and inexpensive both financially and in human
resources. The current research differs in that, while utilizing
the average annual rain fall, this no longer plays the most
important role in the input vector. In this case, we elected to bring
the whole monthly average measurements into play and to search
for the best combination of measurements as inputs to the neural
Fig. 1. General view of Cyprus mainstreams.
network. The key feature of this attempt is that while it keeps the
data acquisition at low level of expenses, it also goes to a lower
level of input data dimensionality, essentially rendering the input
vector more precise. Once trained, the proposed ANN continues to
be highly adaptable to various regions and places, provided that
the inputs will have been manipulated according to the genetic
algorithm decisions.

Fig. 1 depicts a general view of the island’s mainstreams, while
Fig. 2 presents the average annual rain height (mm) from 1970 to
2000. Table 1 on the other hand presents a small indicative
sample of the data accumulated. All the measurement stations
along with the data which they have collected for the whole time
span of the research belong to the Ministry of Agriculture Natural
Resources and Environment of Cyprus [28].

The input data consist of factors which, according to their type,
may effectively be classified into two categories, namely structur-
al data in the sense that they remain constant variables for the
whole time span of the research, as opposed to dynamic data,
category which holds ever changing variables.
Year 1965–66 1965–66 1979–80

M1 229 201 195

M2 62 67 165

M3 89 77 135

M4 13 8 25

M5 4 4 9

M6 0 0 0

M7 0 0 0

M8 0 1 5

M9 70 54 1

M10 146 102 60

M11 23 19 133

M12 143 146 169

Fn (km2) 38 110 22

Qmax 54 120 8.6

P (mm) 770 660 810

H (m) 550 8 600

Jk (%) 4.2 2.2 8

Qmy (m3/s) 420.62 611.95 330.6

M1–M12: the months of the year, Fn: area of watershed, Qmax: maximum supply,

P: average annual rainfall, H: absolute altitude, Jk: absolute slope, Qmy: average

annual water supply.

ARTICLE IN PRESS

T.J. Glezakos et al. / Neurocomputing 73 (2009) 49–59 53
In this context we accumulated a range of 1411 records
covering the aforementioned period of time. It was essential for
our code to remove any record which had missing values in one or
more of the studied factors, so this procedure left us with 1273
patterns of data (inputs and outputs together). This initial
recordset was used for the formulation of the training and the
testing data sets, comprising of 1152 and 121 patterns, respec-
tively. The inputs to the system were the area of the watershed (in
km2), the absolute altitude (in meters), the absolute slope (in
percentage) as structural input data, whereas the dynamic input
data consisted of the maximum water supply, the average annual
rainfall, as well as the average rainfall for each month, for each
year of measurement. The network had only one output, the
average annual water supply (in m3/s).
Fig. 3. Schematic depiction of the evolutionary training procedure.
3.2. The Python programming language and the fast artificial neural

network library (FANN)

The research team chose to develop code with the program-
ming language of Python. This selection was two-fold propulsed:
on one hand to gain insight in one of the most rapidly developing
and integrated computer programming languages available today
and, on the other, to use freely distributable open source products.
Python, as proved out to be, is easy, powerful and incorporates
efficient high level data structures as well as a simple and
effective approach to object-oriented programming. Being a
multi-platform language, it allows for programs to be developed
on most of the platforms available today. Our source code was
written in Ubuntu Linux, but can be run on a windows-based
system just as easily. Python is an interpreted language. This, of
course, renders it slower than any compiled language, but the
robust approach it offers more than compensates for it. Being an
open source project, Python is supported by a vast number of
freely available libraries, in addition to the extensive embedded
library of its own. Furthermore, the interpreter is easily extended
with new functions and data types implemented in C or C++,
standard objects and/or modules.

Python is supported by a vast number of freely distributed
libraries. One of these is the fast artificial neural network library
(FANN), a free open source neural network library implementing
multi-layer artificial neural networks in C, with support for both
fully connected and sparsely connected networks. Cross-platform
execution in both fixed and floating point types are supported,
while it also includes a framework for easy handling of training
data sets. The FANN library was used so as to construct the neural
network module of the application. The evolutionary process was
coded in Python from scratch, deriving invaluable assistance from
the work presented in [29] by Wonjae Lee and Hak-Young Kim,
while the neural network was embedded into it, in order to
provide the fitness for the population in each generation and to
contribute in the selection of the fittest chromosome.
4. The algorithm

Our research in its essence was to develop an innovative
method for the production of meta-data from time-series, which
would then be used in the training and testing phase of neural
network design. The implementation of an evolutionary process,
specifically the use of a genetic algorithm, in the line of meta-data
production for the management of natural water deposits, has not
emerged so far in the literature, according to all our knowledge.

Fig. 3 graphically illustrates the evolutionary training
procedure, from the initial stage of the raw data set, to the final
selection of the fittest trainer.
The developed algorithm should be able to produce an initially
random population of ‘trainers’ in its initial generation, that is
chromosomes behaving in a certain varied predefined manner and
able to appropriately manipulate the initial raw time-series. The
products of the trainers also should be assigned a ‘fitness’ score,
that is a floating point value from some function quantifying their
relevance towards an optimum solution to the problem. In our
case the fitness of each evolutionary produced time-series was
derived by the root mean square error of the neural network.

Let rij be the root mean square error of the neural network
trained and tested with the meta-data produced by the ith trainer
of the jth population of the algorithm. Then, the ‘fitness’ score fij

ARTICLE IN PRESS

Table 3
Trainers.

Trainer 1: Resampling discarding zeros

0 0 1 0 0 0 0 1 0 1 0 1 0 1

Trainer 2: First-One-Last-Zero Average

1 1 1 0 0 0 0 1 0 1 0 1 0 1

Trainer 3: First-One-Last-Zero Median

0 1 1 0 0 0 0 1 0 1 0 1 0 1

Trainer 4: First-One-Last-Zero MinMax

1 0 1 0 0 0 0 1 0 1 0 1 0 1

Table 4
Meta-data derived from trainers.

Meta-data 1, derived from Trainer 1

229 1 1 146 143

262 5 16 51 120

Meta-data 2, derived from Trainer 2

79.4 1.0 35.5 84.5 143

109.0 6.0 12.5 82.5 120

Meta-data 3, derived from Trainer 3

62.0 1.0 35.5 84.5 143

74.0 6.0 12.5 82.5 120

Meta-data 4, derived from Trainer 4

225.0 0.0 69.0 123.0 143

215.0 2.0 7.0 63.0 120

T.J. Glezakos et al. / Neurocomputing 73 (2009) 49–5954
assigned to the ith trainer of the jth population, should be fij ¼ 1/
|rij�c|, where c is the RMS threshold for which the fij should be
maximized. It is obvious that as fij increases, our system crawls
nearer to the ideal solution arbitrarily set in the beginning of the
algorithm. Thus, by maximizing fij we produce stronger and more
potent populations of trainers. It is crucial at this point to
emphasize on the estimation of the RMS error of the network rij,
which is achieved by measuring the error on the testing data set.
This has already been manipulated according to the scheme of
each trainer and is unseen during the training phase of the
network. Such a strategy assures for a higher level of cross-
validation with unseen patterns of data and helps in producing
stronger networks with enhanced ability to generalize. Therein-
after, the next and subsequent generations of the algorithm were
formulated according to a selection policy which should elect the
fittest members of the previous generation of the trainers.

This method is thus able to produce a vast number of training
and testing data sets, such that they may render the training of the
network concrete and precise. The evolutionary clustering of the
initial time-series is advantageous over previous research works
conducted for that matter. Firstly, we are able to effectively
manage the dimensionality of the input vector by optimizing the
balance between the number of inputs and the amount of
information they convey to the network. Secondly, we are able
to produce a much larger number of training patterns for its
training and testing phase. Thus, the network may exhibit an
enhanced generalization potential, while at the same time the
operating costs are kept at acceptable levels.
4.1. Initial data manipulation

The application starts out by incorporating the initial training
and testing data set, and then analyzing it in order to create the
initial random population of trainer chromosomes. It collects the
initial training and testing data and saves them to a locally created
nested list. Each sublist corresponds to one line of the initial raw
data time-series train and testing files. Consequently, the data is
split into time-series and non-time-series data and the portion of
it that corresponds to the initial time-series, in our case the 12
values corresponding to the rainfall averages for the months of
each year (Table 2), will be used for the creation of the basic
training population of the algorithm. The rest of the initial data,
which correspond to the structural and dynamic input non-time-
series data are set aside for future use.

The initial generation of the algorithm starts out with a user
defined number of training chromosomes, which comprise the
basic trainer. Each chromosome of the trainer contains 12
randomly chosen bits in the range of [0, 1], plus two bits in the
beginning of the chromosome which stand out as the mechanism
bits, driving and manipulating the behavior of the whole
chromosome (the bold genes in the trainers of Table 3). So the
chromosomes of the trainer for each generation is a binary list of
n+2 elements each, where n is the initial time-series data (12 for
our case) and the excess pair is the ‘‘core mechanism’’ of the
chromosome. The function of the trainer is to essentially ‘‘map’’ its
genes to the initial training and testing data sets, according to its
mechanism genes.

The mechanism genes of each chromosome dictate its behavior
in the sense that it manipulates the time-series in a rational way.
Table 2
Initial raw time series rain height data.

229 62 89 13 4 1 1 1 70 146 23 143

262 74 101 47 61 5 7 16 9 51 114 120
Thus, essentially four behaviors have been chosen: ‘‘Discard-All-
Zeros’’, is a straight-forward re-sampling procedure by which an
amount of the initial information is lost and discarded, assuming
that it has no relevance to the problem in question and its presence
is nothing more but noise, inhibiting our system from finding an
optimal solution. The rest of our behavioral scenarios include more
or less moderate resamplers. ‘‘First-One-Last-Zero Average’’, ‘‘First-
One-Last-Zero median’’ and ‘‘First-One-Last-Zero minmax’’, design
clusters of data in the initial time-series and produce a unitary
number for each. This number is not only a representation of each
cluster in the meta-data produced, but also a ‘memory’ for our
system, which thus takes under consideration the initial informa-
tion and does not discard it altogether. The only parameter which
varies in these three behaviors is the essence of this ‘memory’. In
the first case, we represent each designed cluster by the average of
its data, while in the second, we divide the cluster into two equal
parts taking the exact middle value. Finally, with the last
mechanism we are able to estimate the essential ‘width’ of each
designed cluster, embedding this aspect also into our system.

Thus, if the core mechanism genes are 00 (Table 3, trainer 1),
then it stands out as a ‘‘Discard-All-Zeros’’ re-sampling function. In
this case, the time-series will be stripped off of its values for which
the corresponding genes of the trainer is 0 (Table 4, meta-data 1).
On the other hand, if it is 11 (Table 3, trainer 2), then it stands out as
a ‘‘First-One-Last-Zero Average’’ clustering mechanism for the
initial data. In this case, the trainer extracts the average of the
time-series elements for every group of its own genes which start
with the first 1 and end with the last zero (Table 4, meta-data 2). In
the cases where the core mechanism is 01 (Table 3, trainer 3), the
chromosome behaves as a ‘‘First-One-Last-Zero median’’ clustering
mechanism, which returns the median of the initial data series
elements for each cluster which corresponds to the first 1 and the
last zero of its own genes (Table 4, meta-data 3). Finally, if the core
mechanism is 10 (Table 3, trainer 4), then the chromosome will
return the distance of the maximum to the minimum value of every

ARTICLE IN PRESS

Table 5
Activation functions used.

Activation function Dependent

variable span

Description

Linear �infoyoinf y ¼ x*s, d ¼ 1*s

Threshold xo0-y ¼ 0, xZ0-y ¼ 1

Sigmoid 0oyo1 y ¼ 1/(1+exp(�2*s*x))

d ¼ 2*s*y*(1�y)

Sigmoid symmetric �1oyo1 y ¼ tanh(s*x) ¼ 2/

(1+exp(�2*s*x))�1

d ¼ s*(1�(y*y))

Gaussian 0oyo1 y ¼ exp(�x*s*x*s)

d ¼ �2*x*s*y*s

Gaussian symmetric �1oyo1 y ¼ exp(�x*s*x*s)*2�1

d ¼ �2*x*s*(y+1)*s

x is the input to the activation function, y is the output, s is its steepness and d is

the derivation.

T.J. Glezakos et al. / Neurocomputing 73 (2009) 49–59 55
group of the initial time-series which is defined in the same
aforementioned manner (Table 4, meta-data 4).

Tables 2–4 depict the mapping of four fictitious trainer
chromosomes of a random generation of the algorithm to some
initial raw time-series data and the inevitable emergence of four
genetically produced meta-data sets.

In Tables 2–4, the genome of each trainer corresponding to the
12 months is, for the sake of simplicity, deliberately chosen to be
the same (100001010101). The only portion of the genome which
varies is the core machine of each chromosome, that is its two
starting genes, which dictate the behavior of the chromosome. In
the case of trainer 1 (00), this will trigger the re-sampling
mechanism of the trainer, discarding each number of the time-
series which corresponds to its zeros. For the rest of the trainers,
each core mechanism will produce essentially five clusters in the
time-series data, with the corresponding statistical functions, as
shown in Tables 2–4.

It is essential to be cleared at this point that the trainer of the
initial generation of the algorithm explicitly contains a chromo-
some having all of its genes equal to 1, so as to bring forth and test
the initial time-series unaltered, along with all other tests
conducted.

Following the mapping of the trainer chromosomes to the
time-series training and testing data, is the joining phase, in
which each ‘‘genetically’’ produced time-series training list will
again embed the structural and dynamic data from which was
initially deprived, in order to be genetically evolved. In the next
phase neural training and testing comes into play.
4.2. Neural training and testing

In the beginning we confronted the dilemma of constructing
a new neural network structure from the ground up, making a
variety of testing and trial and error procedures, or to follow the
initial research and test the algorithm against the original
findings. We chose to proceed with the latter solution, so as to
be able to compare the results on more steady grounds. The
only alterations which we were unable to avoid were the
changing in the input layer of the neural network. That
happened because each trainer produces different kind of data
of varying inputs, although the output remains unchanged. The
code was enhanced with a neural network object from the FANN
library, which was used as a landmark for the fitness of the
chromosomes. The neural network object was created and
trained as a standard backpropagation multi-layer perceptron
(MLP), with three layers: one input layer with varying neurons
(according to the input training and testing file), one hidden
layer of nine neurons according to the initial research and,
finally, an output layer of one neuron, predicting the average
annual water supply. The fact that a neural network may
perform well on its training data does not necessarily ensure
that it is a good module. The only positive indication that a
network performs well is its generalization capabilities. As
generalization we conceive the ability of the neural network to
predict correctly on new ‘unseen’ data. We utilized the standard
way to test an ANN in our research by setting aside a number of
initial training patterns to formulate the testing data set [18].
The fitness function implemented later in the genetic algorithm
takes under consideration the testing error of the network, the
error that is derived by testing patterns which were not used at
all during the training phase.

The neural object for the application returns the root mean
square error for the testing data each time. The input layer of the
neural network object was designed so as to be auto-formatted
according to each training and testing file that came in turn. This
was implemented via the create_standard_array() function of the
FANN library which, among others, permits for such a behavior of
the network. We should note at this point that before proceeding
to the formulation of the algorithm, we conducted a series of tests
in order to verify that the (k, 9, 1)—where k denotes the varying
number of inputs received by the genetic algorithm-structure of
the neural network was an acceptable choice for our data. The
series of tests was realized by the cascadetrain_on_data() function
of the library. The module of cascade training is totally different
from ordinary training, permitting the network to start out empty
in the hidden layer. Then, as training starts and continues, it adds
neurons one by one and layer by layer, until an optimal neural
network structure is reached. For each neuron added we tried out
several activation functions and training algorithms. Table 5
shows the activation functions tested.

The training algorithms we tried include incremental
training, batch training and the popular Rprop algorithm
[20,39]. The incremental training constitutes the basic standard
backpropagation algorithm, where the weights of the neural
network are updated immediately after each training pattern is
shown to the network, producing a numerous weight updating
during a single epoch of training. Batch training on the other
hand, is implemented by updating the weights once after the
epoch has been completed, that is after the root mean square
error has been calculated for the whole training set. This
category includes both the simple batch training and the rprop
training algorithms.

The best results were achieved with the Rprop training
algorithm in combination with the sigmoid symmetric (hyper-
bolic tangent) activation function of the neurons. This procedure
confirmed that the aforementioned proposed structure was
acceptable for most of the cases.

By performing the neural network training for all the
evolutionary produced time-series data and acquiring the net-
work root mean square error for each, we assigned the RMS error
to the corresponding trainer. Having initially set an ideal desired
neural network error, the distance of the recorded error from the
ideal already set, should suffice to stand as the fitness value for
the corresponding chromosome. The algorithm proceeded in the
selection of the fittest chromosomes for the next generation.
4.3. Selection policy and intermediate generation

In order to formulate each next generation of the algorithm,
there was a need to create a ‘behind-the-scenes’ intermediate
generation at the end of the current generation. This holds the

ARTICLE IN PRESS

T.J. Glezakos et al. / Neurocomputing 73 (2009) 49–5956
fittest members of the generation, as well as other chromosomes
not so fit. The policy of selecting the best offspring incorporated
the stochastic procedure known as roulette wheel selection.
According to this procedure the probability pij of selecting the ith
trainer, i ¼ 1,2,y,N, of the jth generation is given by

pij ¼
fij

PN
i¼1 fij

; 8j ¼ 1;2; . . . ;m:

In the above, fij is the fitness score defined in Section 4, N

denotes an arbitrary number set during the initiation of the
algorithm, and m is the number of required generations.

The roulette wheel incorporates a fitness proportionate
selection operator, which elects to perpetuate the fittest chromo-
somes, i.e. the ones with the higher fitness score. In this context,
chromosomes with relatively high fitness scores are less likely to
be eliminated. On the other hand, less fit chromosomes may not
be extinguished from the genetic pool of the next generations.
This results in the fact that some weaker solutions to the problem
at hand may survive the algorithm sweep for the forming of the
next generations, conveying their potentially useful genes to their
offspring.

The roulette wheel algorithm in our case initiates by calculat-
ing the sum of the fitness scores of all the trainer chromosomes
assigned to them during the previous steps and then creates a
probability list for each one of them by dividing each individual
fitness score with the sum of all the scores. In the next step the
algorithm creates a cumulative probability list by adding
succeeding probability scores to each other. It then constructs a
list of selected indexes, the length of which is always 100, by
sequentially electing chromosome probability scores by compar-
ing them to a randomly generated number. This list contains the
indexes of the selected trainer chromosomes.

It is prospective that chromosomes with higher fitness values,
i.e. more suitable solutions to the problem, will have a much
higher population of indexes inside the list, than less fit
chromosomes. The selected indexes list will stand out as the
genetic pool for the next generation of trainers. This genetic
storage is constructed in such a way that as the frequency of the
fitter chromosomes inside this list is higher, they are more prone
to be elected as parents for the next generation, without
forbidding the selection of less fit chromosomes, of course with
a much lower probability.
Table 6
Results of the evolutionary process: the 15 best performing trainers.

Generation RMS Fitness score Trainer

35 0.0004 1729.9088 00111010000001

35 0.0032 453.9951 00110010000001

20 0.0032 451.0162 10111011000001

30 0.0035 393.6178 00110010000001

25 0.0047 271.5085 00111011000001

33 0.0057 211.6756 00110010000001

25 0.0076 151.1994 10111111000001

12 0.0091 122.8920 00111101000011

31 0.0104 106.2722 00110010000001

31 0.0106 104.0392 00110010000001

34 0.0107 102.6436 10110010000001

32 0.0111 99.2741 00110010000001

28 0.0111 99.1814 01111011100001

32 0.0111 99.1360 00110010000001

35 0.0111 99.0733 00110010000001
4.4. Formulation of the next generation

At the stage when the population of the intermediate
generation is fixed, the genetic mechanisms of the algorithm
formulate the next generation. For each randomly picked pair of
chromosomes of the intermediate generation there is an arbitrary
set probability of selection, recombination or mutation. Recombi-
nation of chromosomes is the procedure in which the parents
contribute with different supplementary parts of their genome in
the production of their offspring. In our algorithm, the ‘breaking
point’ for the chromosome of the parent is random within the
bounds of each parent genome. On the other hand, mutation
refers to the ‘flipping’ of an offspring’s random gene.

It is well known and well documented in the literature that a
proper amount of time should be invested in the fine tuning of the
mutation and recombination probability of the genetic algorithm.
An excessively small mutation rate may lead to ‘‘genetic drift’’,
that is the statistical effect that stems from the influence that
probability poses on the survival of alleles (variants of a gene, 0 or
1 in our case) and the trait that it confers to the chromosome.
A positive genetic drift renders the allele paramount in the genetic
pool, whereas a negative genetic drift may extinct the allele. Both
limits, either too high, or too low, in the genetic drift could
potentially pose irreparable damage to the genetic pool, lowering
variability to unacceptable levels [38,43,44]. The same holds true
for the recombination probability. A variety of recombination and
mutation probabilities were tested, concluding on selecting 0.4
and 0.005, respectively.
5. Results

For every genetic algorithm the aforementioned evolutionary
process continues until a certain stopping condition is met. The
most common terminating conditions include the satisfaction of
the minimization (or maximization) criteria by one or more
generations, the trapping of the generations to a minimal plateau,
which is not improving by successive generations any longer and,
finally, if a fixed number of generations have already been
reached.

The algorithm implemented in this research falls under the
first category of stopping conditions, as the ideal RMS (0.0005),
which was set in the initialization stage, was reached and
superseded in the 35th generation. The genetic algorithm’s
optimization effect starts being apparent as early as in the 12th
generation, while the minimization of the neural network RMS is
achieved in the 35th generation. The minimum RMS errors of the
various trainers of the algorithm start out at 0.2777 in the first
generation and end at 0.0004 in the 35th. The system was forced
to run for another 500 generations, in order to have a better
understanding on the performance of the minimization search
path, but the RMS error was not further minimized. The results of
the evolutionary process are depicted in Table 6 and Fig. 4, where
it is made clear that the evolutionary process gives promising
results.

Another detail worth noting relates to the structure and
behavior of the winning chromosome. As depicted in Table 6,
the trainer 00111010000001 exhibits the least RMS error (0.0004).
This particular chromosome exerts intense re-sampling on the
initial time-series data, substantially rendering 5 months as the
most crucial, namely January, February, March, May and December.
These 1-month clusters which are formed in the raw time-series
convey the corresponding month’s precipitation unaltered in the
neural network training. The behavior of the trainer conforms
to natural behavior, for winter/spring precipitation is the most
important for the assessment of torrential risk.

ARTICLE IN PRESS

Fig. 4. The course of the evolutionary process.

T.J. Glezakos et al. / Neurocomputing 73 (2009) 49–59 57
6. Conclusion

It has been made obvious by recent trends in climatic change
that the management of water resources is of great importance,
especially for a region such as Cyprus which has already born a
significant amount of environmental pressure. The estimation of
the average annual water supply plays a very important role to the
said water resources management, as it is closely related to the
mountainous watershed fermentations on one hand and to the
potential torrential risks on the other. It is of great importance for
the policy makers to have reliable integrated tools at their
disposal, tools which could inform them about the course of the
phenomena in the near future. It is also of great importance that
these tools’ requirements are kept at as low a cost as possible,
both at the financial level and at the human-day occupation.

The main advantage of the present research work, as well as its
parental one, is the fact that it proposes the development of a tool
for the prediction of a key factor in water management and
torrential risk and elimination, which requires minimal effort and
expense as it measures only two dynamic input factors. Obviously,
the structural input data are not to change for the relatively small
era of measurements that are conducted, thus the only factor
which is to be monitored as precisely as possible on a daily basis is
rain height. Furthermore, the developed module can be re-
adjusted and developed by continuous training, as new input
data flow in, provided the availability of new training data is not
hindered for different regions.

The crucial contribution of the present research work is the
evolutionary clustering and re-sampling of the initial time-series
data. The advantages of the proposed approach are numerous.
Firstly, the researcher and the developer of the system has a vast
number of training/testing data at his disposal, because now we
do not need to average the whole time span of measurements of
the monthly rain height and create only one record of input
patterns. Instead, every year has become an input pattern for our
system, effectively multiplying the number of the initial data set.
Also, the evolutionary process diminishes both the total number
of inputs, as well as the potential noise inherent in the input time-
series data. This way we have succeeded in effectively train the
proposed neural network and produce reliable estimations, while
keeping the operating costs at acceptable levels.

There is always, of course, the invariable dilemma of the
representation of the gene. In our case, we have conducted a
number of training scenarios some of which included the floating
point representation of the basic trainer genes, instead of the
binary one. This configuration though posed a lot of problems and
was eventually dropped. For one, the whole system was very
demanding in computing power, partly due to the requirements
posed by the programming language, as well as the structure of
the initial raw data itself. The system also crashed in certain
circumstances, when the algorithm produced illegal gene values
or even illegal clustering configurations in the time-series.

Although these obstacles were too important to be overlooked,
the benefits committed by a floating point representation of the
gene, such as greater variability among the offspring and
increased probability for the algorithm to overcome trapping in
luring local minima, has posed a challenging prospect for the
future. The plans of the research team is to essentially widen the
scope of the algorithm, along with its potential, by adding more
machine genes at the chromosomes of the generation trainers, so
as to force them to expand their search plane. This development
may probably require the re-engineering of the core code of the
program so as to keep its computational demands at as low a level
as possible. Also, the development of a graphical user interface
(GUI), which could render the application friendlier to the average
user, could contribute to the acceptance of the software in
different regions.
References

[1] A. Abraham, Meta learning evolutionary artificial neural networks, Neuro-
computing 56 (2004) 1–38.

[2] R.K. Agrawal, J.K. Singh, Application of a genetic algorithm in the development
and optimisation of a non-linear dynamic runoff model, Biosystems
Engineering 86 (1) (2003) 87–95.

[3] F. Anctil, N. Lauzon, V. Andreassian, L. Oudin, C. Perrin, Improvement of
rainfall-runoff forecasts through mean areal rainfall optimization, Journal of
Hydrology 328 (2006) 717–725.

[4] S. Avramidis, L. Iliadis, Wood–Water Isotherm Prediction with Artificial
Neural Networks: a Preliminary Study. Holzforschung 59(3) 336–341, ISSN:
0018-3830.

[5] L. Bodri, V. Cermak, Prediction of extreme precipitation using a neural
network: application to summer flood occurrence in Moravia, Advances in
Engineering Software 31 (2000) 311–321.

[6] L. Boillereaux, C. Cadet, A. Le Bail, Thermal properties estimation during
thawing via real time neural network learning, Journal of Food Engineering 57
(1) (2003) 17–23.

[7] X. Cai, D.C. McKinney, L.S. Lasdon, Solving nonlinear water management
models using a combined genetic algorithm and linear programming
approach, Advances in Water Resources 24 (2001) 667–676.

[8] C.L. Chang, S.L. Lo, S.L. Yu, Applying fuzzy theory and genetic algorithm to
interpolate precipitation, Journal of Hydrology 314 (2005) 92–104.

[9] K.W. Chau, A split-step particle swarm optimization algorithm in river stage
forecasting, Journal of Hydrology 346 (2007) 131–135.

[10] C.T. Cheng, C.P. Ou, K.W. Chau, Combining a fuzzy optimal model with a
genetic algorithm to solve multi-objective rainfall-runoff model calibration,
Journal of Hydrology 268 (2002) 72–86.

ARTICLE IN PRESS

T.J. Glezakos et al. / Neurocomputing 73 (2009) 49–5958
[11] C.T. Cheng, M.Y. Zhao, K.W. Chau, X.Y. Wu, Using genetic algorithm and TOPSIS
for Xinanjiang model calibration with a single procedure, Journal of
Hydrology 316 (2006) 129–140.

[12] C. Damle, A. Yalcin, Flood prediction using time series data mining, Journal of
Hydrology 333 (2007) 305–316.

[13] D.A. Elizondo, R. Birkenhead, M. Gongora, E. Taillard, P. Luyima, Analysis and
test of efficient methods for building recursive deterministic perceptron
neural networks, Neural Networks 20 (2007) 1095–1108.

[14] A.J.P. Filho, C.C. dos Santos, Modeling a densely urbanized watershed with an
artificial neural network, weather radar and telemetric data, Journal of
Hydrology 317 (2006) 31–48.

[15] P.J. Gallant, G.J.M. Aitken, Genetic algorithm design of complexity-controlled
time-series predictors, 0-7803-8178-5/03, in: IEEE XIII Workshop on Neural
Networks for Signal Processing.

[16] J.V. Hansen, J.B. McDonald, R.D. Nelson, Time series prediction with genetic
algorithm designed neural networks: an empirical comparison with modern
statistical models, Computational Intelligence 15 (3) (1999).

[17] C. Harpham, C.W. Dawson, The effect of different basis functions on a radial
basis function network for time series prediction: a comparative study,
Neurocomputing 69 (2006) 2161–2170.

[18] S. Haykin, Neural Networks, a Comprehensive Foundation, Prentice-Hall
International, New Jersey, 1989.

[19] M.A. Hussain, M.S. Rahman, C.W. Ng, Prediction of pores formation (porosity)
in foods during drying: generic models by the use of hybrid neural network,
Journal of Food Engineering 51 (2002) 239–248.

[20] C. Igel, M. Hüsken, Improving the Rprop learning algorithm, in: Proceedings of
the Second International ICSC Symposium on Neural Computation (NC 2000),
ICSC Academic Press, Canada, Switzerland, 2000, pp. 115–121.

[21] L. Iliadis, F. Maris, An artificial neural network to estimate average maximum
instant water-flow of watersheds, in: Proceedings of the ninth International
Conference of Engineering Applications of Neural Networks, Lille, France,
2005, pp. 215–222.

[22] L. Iliadis, F. Maris, An artificial neural network model for mountainous water-
resources management. The case of Cyprus mountainous watersheds,
Environmental Modelling and Software (2006) 1–7.

[23] L. Iliadis, S. Spartalis, Fundamental fuzzy relation concepts of a D.S.S. for the
estimation of natural disasters’ risk (the case of a trapezoidal membership
function), Mathematical and Computer Modelling 42 (2005) 747–758.

[24] A. Jain, A.M. Kumar, Hybrid neural network models for hydrologic time series
forecasting, Applied Soft Computing 7 (2007) 585–592.

[25] K. Jambunathan, S.L. Hartle, S. Ashforth-Frost, V.N. Fontana, Evaluating
convective heat transfer coefficients using neural networks, International
Journal of Heat and Mass Transfer 39 (11) (1996) 2329–2332.

[26] R. Kerachian, M. Karamouz, A stochastic conflict resolution model for water
quality management in reservoir–river systems, Advances in Water Resources
30 (2007) 866–882.

[27] T. Kerh, C.S. Lee, Neural networks forecasting of flood discharge at an
unmeasured station using river upstream information, Advances in Engineer-
ing Software 37 (2006) 533–543.

[28] D. Kyprhs, P. Neofytou, Monthly river supplies of Cyprus, monthly rain-falls,
maximums of instant flow, Ministry of Agriculture Natural Resources and
Environment, Department of Water Development, Cyprus.

[29] W. Lee, H.Y. Kim, Genetic algorithm implementation in Python, in: Fourth
Annual ACIS International Conference on Computer and Information Science
(ICIS’05), ISBN: 0-7695-2296-3, Digital Object Identifier 10.1109/ICIS.2005.69,
2005, pp. 8–11.

[30] F. Liu, G.S. Ng, C. Quek, RLDDE: a novel reinforcement learning-based
dimension and delay estimator for neural networks in time series prediction,
Neurocomputing 70 (2007) 1331–1341.

[31] S.W. Mahfoud, Crossover interactions among niches, in: Proceedings of the
First IEEE Conference on Evolutionary Computation, World Congress on
Computational Intelligence, 1994, pp. 188–193.

[32] R.M. Myhara, S. Sablani, Unification of food water sorption isotherms using
artificial neural networks, Drying Technology 19 (8) (2001) 1543–1554.

[33] J.R. Ni, A. Xue, Application of artificial neural network to the rapid feed back of
potential ecological risk in flood diversion zone, Engineering Applications of
Artificial Intelligence 16 (2003) 105–119.

[34] H. Niska, T. Hiltunen, A. Karppinen, J. Ruuskanen, M. Kolehmainen, Evolving
the neural network model for forecasting air pollution time series,
Engineering Applications of Artificial Intelligence 17 (2004) 159–167.

[35] J. Paliwal, N.S. Visen, D.S. Jayas, Evaluation of neural network architectures for
cereal grain classification using morphological features, Journal of Agricul-
tural Engineering Research 79 (4) (2001) 361–370.

[36] R.B.C. Prudencio, T.B. Ludermir, Meta-learning approaches to selecting time
series models, Neurocomputing 61 (2004) 121–137.

[37] L. Pulido-Calvo, M.M. Portela, Application of neural approaches to one-step
daily flow forecasting in Portuguese watersheds, Journal of Hydrology 332
(2007) 1–15.

[38] L. Qing, W. Gang, Y. Zaiyue, W. Qiuping, Crowding clustering genetic
algorithm for multimodal function optimization, Applied Soft Computing 8
(2006) 88–95.

[39] M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation
learning: the RPROP algorithm, in: Proceedings of the IEEE International
Conference on Neural Networks, San Francisco, CA, vol. 1, 1993, pp. 586–591.

[40] F. Rossi, N. Delannay, B. Conan-Guez, M. Verleysen, Representation of
functional data in neural networks, Neurocomputing 64 (2005) 183–210.
[41] S.S. Sablani, O.D. Baik, M. Marcotte, Neural networks for predicting thermal
conductivity of bakery products, Journal of Food Engineering (2002)
299–304.

[42] G.B. Sahoo, C. Ray, E.H. De Carlo, Use of neural network to predict flash flood
and attendant water qualities of a mountainous stream on Oahu, Hawaii,
Journal of Hydrology 327 (2006) 525–538.

[43] L.M. Schmitt, Fundamental study. Theory of genetic algorithms, Theoretical
Computer Science 259 (2001) 1–61.

[44] L.M. Schmitt, Theory of genetic algorithms II: models for genetic operators
over the string-tensor representation of populations and convergence to
global optima for arbitrary fitness function under scaling, Theoretical
Computer Science 310 (2004) 181–231.

[45] R.K. Sivagaminathan, S. Ramakrishnan, A hybrid approach for feature subset
selection using neural networks and ant colony optimization, Expert Systems
with Applications 33 (2007) 49–60.

[46] S. Spartalis, L. Iliadis, F. Maris, An innovative risk evaluation system
estimating its own fuzzy entropy, Mathematical and Computer Modelling
46 (1–2) (2007) 260–267.

[47] S. Spartalis, L. Iliadis, F. Maris, D. Marinos, A decision support system unifying
fuzzy trapezoidal function membership values using T-norms: the case of
River Evros torrential risk estimation, in: ICNAAM2004 International
Conference on Numerical Analysis and Applied Mathematics, Wiley-VCH
Verlag GmbH & Co. KGaA, 2004, pp. 173–176, ISBN 3-527-40563-1.

[48] S. Sreekanth, H.S. Ramaswamy, S.S. Sablani, Prediction of psychrometric
parameters using neural networks, Drying Technology 16 (3–5) (1998) 825.

[49] S. Srinivasulu, A. Jain, A comparative analysis of training methods for artificial
neural network rainfall-runoff models, Applied Soft Computing 6 (2006)
295–306.

[50] E. Toth, A. Brath, A. Montanari, Comparison of short-term rainfall prediction
models for real-time flood forecasting, Journal of Hydrology (2000)
132–147.

[51] Y. Wei, W. Xu, Y. Fan, H.T. Tasi, Artificial neural network based predictive
method for flood disaster, Computers and Industrial Engineering 42 (2002)
383–390.

[52] R.N. Yadav, P.K. Kalra, J. John, Time series prediction with single multiplicative
neuron model, Applied Soft Computing 7 (2007) 1157–1163.

[53] P.C. Young, Advances in real-time flood forecasting, Philosophical Transac-
tions of the Royal Society of London Series A 360 (2002) 1433–1450.
Thomas J. Glezakos was born in Volos, Hellas in 1964.
He received his B.Sc. degree in 1992 graduating from
the Department of Crop Science of the Agricultural
University of Athens, Hellas and holds a Master’s
degree since 2002 in ‘‘Economic-Engineering Systems’’
from the National Technical University of Athens,
Hellas. He has worked for the National Agricultural
Research Foundation of Hellas in the Department of
Documentation, while he has been a member of the
Directory of Informatics for the Hellenic Ministry of
Rural Development & Food since 2002. He is married
with two children. Mr. Glezakos joined the Laboratory

of Informatics of the Agricultural University of Athens

in 2002 as a doctoral candidate, with a thesis entitled ‘‘Automatic Methods of
Depicting and Distributing Geographical Information’’, being supervised by Profs.
T. Tsiligiridis, C. Yialouris and L. Iliadis. His main research interests lie on the fields
of Geographical Information Systems, Artificial Neural Networks and Genetic
Algorithms.
Theodore A. Tsiligiridis received the B.Sc. in mathe-
matics from the University of Athens, Greece, his M.Sc.
in probability and statistics from the Manchester-
Sheffield University, UK, and his Ph.D. in telecommu-
nications from the University of Strathclyde, Glasgow,
Scotland. Shortly after his graduation he joined the
Computer Science and Mathematics Division of the
Agricultural University of Athens, where he is currently
a Professor. He has worked in various public and
academic posts and he is actively involved in many
research and development projects, either as a re-
searcher or as coordinator. He particularly worked in

the areas of mobile cellular systems, performance

evaluation on high-speed networks and tele-services.Professor Tsiligiridis is a
member of IEEE and ACM. His research interests include traffic modelling and
performance evaluation in almost all types of networks. He also works in the areas
of wireless multimedia communication, pervasive communication and location-
based services, particularly applied in environmental science. So far he has
published over 100 research papers in Scientific Journals and International
conferences.

ARTICLE IN PRESS

T.J. Glezakos et al. / Neurocomputing 73 (2009) 49–59 59
Dr. Lazaros S. Iliadis holds a B.Sc. in Mathematics from
the Aristotle University of Thessaloniki, Hellas, a M.Sc.
in Computer Science from University of Wales UK and a
Ph.D. in Expert Systems from Aristotle University of
Thessaloniki.He is an Associate Professor of Forest
Informatics in the Department of Forestry and Man-
agement of the Environment of the Democritus Uni-
versity of Thrace in Hellas. He is also a visiting
Professor in the Department of Information and
Communication Engineering of the University of
Western Macedonia in Hellas and a cooperating
Professor in the Department of Mathematics and

Computer Science of the Hellenic Open University.

His research interests include intelligent systems in both theoretical and
application level. So far he has published 24 research papers in Scientific Journals
of the SCI and he has made 42 presentations in international conferences.
Dr. Constantine Yialouris holds a B.Sc. in Mathematics
from the University of Athens and a Ph.D. in Expert
Systems from Agricultural University of Athens.His
current position is in the Informatics Laboratory of the
Agricultural University of Athens as an Assistant
Professor. His research interests include Expert Sys-
tems, Knowledge Engineering, Neural Networks and in
general Intelligent Systems and their application in Bio
and Earth Sciences. He has written 7 books in
Computer Science (in Greek). His published research
work include 17 scientific journals papers and 49
Conferences presentations.
Dr. Fotis P. Maris was born in Arta, Hellas in 1968. He
holds a B.Sc. in Forestry and Natural Environment from
the Aristotle University of Thessaloniki, Hellas and a
Ph.D. in Forestry from the same University. He is an
Assistant Professor in the Department of Forestry &
Management of the Environment & Natural Resources
of the Democritus University of Thrace. His research
interests include torrential risk assessment and moun-
tainous water reservoirs management.
Konstantinos P. Ferentinos received the B.Sc./M.Sc.
degree in Agricultural Engineering from the Agricul-
tural University of Athens, Hellas, in 1997 and the M.S.
and Ph.D. degrees from Cornell University in 1999 and
2002, respectively, in Biological and Environmental
Engineering, with a minor in Computer Science. During
the academic year 2003–2004 he was a postdoctoral
researcher at Cornell University, Ithaca, NY, USA.
Currently he is a visiting lecturer in the Department
of Mathematics at the University of Athens, and a
researcher in the Informatics Laboratory at the Agri-
cultural University of Athens, Hellas. His research

interests include applications of artificial intelligence

in environmental engineering, wireless sensor networks, neural network model-
ing, fault detection and evolutionary and biologically inspired optimization
algorithms. He is a member of IEEE.

	Feature extraction for time-series data: An artificial neural network evolutionary training model for the management of mountainous watersheds
	Introduction
	The artificial neural network concept and its implementation in torrential risk management
	Genetic algorithms in water resources management

	Case study: the area and the problem
	Materials and methods
	Research area and data acquisition
	The Python programming language and the fast artificial neural network library (FANN)

	The algorithm
	Initial data manipulation
	Neural training and testing
	Selection policy and intermediate generation
	Formulation of the next generation

	Results
	Conclusion
	References

