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A mechanistic growth model for tomato seedlings cultivated in unheated beds is devel-

oped, based on modifications of existing tomato growth models. Photosynthetically active

radiation at crop level, air temperature and CO2 concentration are taken into account,

while simulated variables include dry weights of leaves, shoot and root, leaf area index

(LAI) of the seedlings, number of leaves per plant and finally, shoot length and thickness.

Model calibration is formed into an optimisation problem, taking into account model errors

of the first five simulated variables, i.e., dry weight of leaves, shoot and root, LAI and

number of leaves per plant. Three heuristic optimisation algorithms are explored during

model calibration: genetic algorithms, simulated annealing and tabu search. Genetic al-

gorithms proved to be the most successful approach, resulting in an overall average de-

viation between simulated and measured values of around 16%. The calibrated model is

tested and validated on measurements not used for calibration, showing a satisfactory

performance in modelling most seedling characteristics, like the number of leaves per

plant, the shoot length and thickness and the dry weight distribution, while it is not so

accurate in predicting of other features like leaf and shoot dry weight and LAI. The tomato

seedling characteristics that are mainly related to seedling quality (shoot length and dry

weight, and number of leaves) were satisfactorily modelled with an average deviation

between measured and simulated values around 16% for most of the simulation period.

Finally, possible improvement strategies for future research are also discussed.

© 2015 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The overall quality of seedlings of high-yield crops plays an

important role in the growth rate of the plants after
9.
oulas).
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transplanting and therefore to the quality and quantity of

production (Pavlovic, Petrovic, & Stevanovic, 1998). Modern

greenhouse cultivation and commercial trends call for uni-

form and standard quality seedlings, regardless of season.

Seedling cultivation should therefore be scheduled and
.
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Nomenclature

[CO2] CO2 concentration of the air, ppm

ASRleaf assimilate requirements of the leaf, g (CH2O) g�1

(DM)

ASRroot assimilate requirements of the root, g (CH2O) g�1

(DM)

ASRshoot assimilate requirements of the shoot, g (CH2O) g�1

(DM)

Ci CO2 intercellular concentration, ppm

Droot increase demands of the roots, g CH2O

Dshoot increase demands of the shoot, g CH2O

Dtotal total increase demands of all organs, g CH2O

DM dry matter, g

DMleaf leaf dry matter, g

DMroot root dry matter, g

DMshoot shoot dry matter, g

DWLS dry weight per length unit of the shoot, g cm�1

em photochemical efficiency, mmol (CO2) mmol�1

(photon)

e0 potential photochemical efficiency, mmol (CO2)

mmol�1(photon)

fasm coefficient that incorporates the effect of sugars

availability on the development of new leaves, e

fT coefficient that incorporates the effect of lower

than optimal temperatures on the development of

new leaves, e

GA genetic algorithm, e

І0 radiation intensity above canopy level, mmol m�2

(ground) s�1

Iabs radiation absorbed by the canopy, mmol m�2

(ground) s�1

IabsSum accumulated amount of absorbed solar radiation

during the entire cultivation period, MJ m�2

k light extinction coefficient, e

Kc CO2 MichaeliseMenten constant, ppm

Κο O2 MichaeliseMenten constant, ppm

L canopy depth as a function of the LAI of the

overlying canopy, e

LA leaf area of a single plant, mm2

LAI leaf area index, e

Lsm minimum specific leaf area, m2 g�1

Lss maximum specific leaf area, m2 g�1

MAINT demands in CH2O for maintenance of 1 g of dry

matter, g (CH2O) g�1 (DM) day�1

ME model error, e

minr percentage of available sugars that will be

distributed to the root, e

Nleaves number of leaves per plant, e

Οa ambient Ο2 concentration, ppm

Pl possible increase rate of leaf area, as a percentage

of the existing leaf area, e

Pool quantity of available sugars in the “pool”, g m�2

PoolLimit capacity (limit) of the “pool”, g m�2

Pr possible increase rate of the root, as a percentage

of existing root weight, e

pSLA specific leaf area, m2 g�1

Q10(t) changing factor of t for a 10 �C temperature

change, e

Q10,resp changing factor of respiration for a 10 �C
temperature change, e

rm maintenance respiration rate, g(CH2O) day�1

rLA increase rate of leaf area, as a percentage of the

existing leaf area, e

rM maximum rate of new leaves development, leaves

plant�1 day�1

rN rate of development of new leaves, day�1

rRoot increase rate of the root, as a percentage of

existing root weight, e

SA simulated annealing, e

SL shoot length, cm

ST shoot thickness, mm

Tleaf leaf temperature, �C
Tl coefficient for influence of temperature on the

increase rate of leaf area, e

Tr coefficient for influence of substrate temperature

on root growth, e

TS tabu search, e

vc CO2 absorption rate, limited by Rubisco activity,

mmol (CO2) m
�2 s�1

vq CO2 absorption rate, limited by light intensity,

mmol (CO2) m
�2 s�1

Vc,max maximum CO2 absorption rate from Rubisco

activity, mmol (CO2) m
�2 s�1

G* CO2 equilibrium point, ppm

DDMroot root dry matter accumulation, g m�2

DDMshoot shoot dry matter accumulation, g m�2

DDMleaf leaves dry matter accumulation, g m�2

DLAI increase of leaf area index, e

r radiation reflectance coefficient e

t CO2/O2 specificity factor, e
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optimised by means of controlling plant growth through

greenhouse microclimate management. This is achieved by

specialised control systems that manage the basic control

actions of greenhouse seedling cultivation, like heating,

ventilation and CO2 enrichment. The operation of such sys-

tems can be improved by means of precise greenhouse and

crop models, so that their control actions can be optimised by

accurate environmental and plant growth predictions. Several

greenhouse climate and cropmodels have been developed but

only a few models concern seedlings.
Nowadays, specialised nurseries for the development of

high quality seedlings (the plant characteristics relevant to

quality are given later in this section) have started to operate

and expand, trying to fulfil growers' demand for high quality

transplants, deliverable on specific dates. Themost important

factor in the operation of these nurseries is the appropriate

control of the microclimatic conditions that would lead to

high quality seedlings. Optimal control practices should rely

on Decision Support Systems (DSS), which in turn rely on

greenhouse climate models, crop growth models, weather
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forecasts and cost estimation models. Despite the develop-

ment of tomato crop models, such as TOMGRO (Jones, Dayan,

Allen, van Keulen, & Challa, 1991), TOMSIM (Heuvelink, 1996)

and others, only a few tomato seedling growth models have

existed until recently. Among them are CROPGRO-TOMATO

(Scholberg, Boote, Jones, & McNeal, 1997) and GreenLab (Yan,

Kang, de Reffye, & Dingkuhn, 2004), which are specialisa-

tions of other, more general crop growth models. However, to

the best of our knowledge, all tomato growth models focus on

the reproductive stage of cultivation, in which there is con-

current development of shoot and reproductive organs so they

cannot be used for seedling modelling, since several differ-

ences exist between seedlings and crops in the production

stage [e.g., a seedling does not have reproductive organs and

all organs are young; seedling growth rate is exponential while

that of a productive crop is linear (Goudriaan and van Laar,

1994), etc].

For the production of high quality tomato seedlings, the

characteristics relevant to their quality and sale prices have to

be initially determined. Some of those features that are closely

related to seedling quality have been empirically determined

in the literature and some relevant indicators have been

defined. However, their optimal values have not been inves-

tigated, so there is no clear relation between indicator values

and quality level of the seedlings. For the seedling state

evaluation, both morphological and physiological indicators

have been used. The first category includes height, shoot

diameter and shoot-to-root weight ratio, while the second

includes tissue electrolyte leakage, enzymatic activity, water

potential and mineral nutrition. Radoglou and Raftoyannis

(2002) investigated the potential of using several physiolog-

ical indicators (like moisture content in shoot and root, shoot

water capacity and tissue electrolyte leakage) to predict future

quality and growth performance of the cultivated plants.

Their results were quite promising. Hoek, Ten Cate, Keijzer,

Schel, and Dons (1993) concluded that the development of

the 5th leaf expressed as leaf area, can constitute a reliable

indication of tomato growth at low temperatures. Pucheta,

Schugurensky, Fullana, Pati~no, and Kuchen (2006) tackled

the problem of optimal control of a tomato nursery so that

seedling productionwith specific desired characteristics could

be achieved in the most economical way. The characteristics

that were taken into account were dry weight and number of

leaves, with desired values of 0.21 g and 3 leaves, respectively.

Andersen (1986) used quality indicators for tomato seedlings

based on dry weight to height and dry weight to fresh weight

ratios, to assess supplemental lighting methodologies.

Herrera, Castillo, Chica, & L�opez Bellido (2008) used an

extensive number of indicators to estimate tomato seedling

quality, like height, shoot thickness, height to thickness ratio,

dry weight of leaves, shoots and roots, number of leaves, leaf

area, leaf area index (LAI) and leaf area to dry weight ratio.

Morimoto and Hashimoto (1996) used the total leaf length to

shoot diameter ratio as an index of balanced growth for to-

mato seedlings. That ratio has been recognised as a good in-

dicator for growth prediction of reproductive organs and

shoots, with higher values being associated with higher

growth. Finally, Gupta, Chandra, Samuel, and Singh (2012)

developed a mathematical model to correlate tomato seed

germination with soilless medium temperature and used it to
develop a decision support system to attain the desired dry

weight of tomato seedlings at the time of transplanting

(Gupta, Samuel, & Sirohi, 2010).

Thus, it can be concluded that a combination of indicators

should be used to better estimate the overall quality of the

seedlings and that the characteristics that have the strongest

correlationwith quality are the dryweight of roots, shoots and

leaves and also the plant leaf area. Accordingly, the aim of this

work is to present a tomato seedling growthmodel (TOMSEED)

that has been developed based on appropriately modified

features of the TOMGRO model (Jones et al., 1991), and to

optimally calibrate it and evaluate its performance with

experimental measurements.
2. The TOMSEED model

During the period from germination to transplanting, only

vegetative growth takes place in seedlings. Although this fa-

cilitates their growth simulation, several modelling chal-

lenges remain,mainly because of the changing characteristics

of the growing seedlings. Initially, there is no inter-leaf over-

lapping and growth rate is nearly proportional to the leaf area,

resulting in an exponential growth rate. However, as leaf area

increases and leaves start to overlap, growth rate converges to

a constant value, thus growth becomes independent of the

leaf area. Additionally, it has been reported that seedling

growth depends on the air temperature, with the optimal

night temperature during the first month being 4 �C lower

than that for the rest of the growing period (Seginer & Raviv,

1984).

The proposed growth model, TOMSEED, is a mechanistic

model that simulates the growth of tomato seedlings culti-

vated on unheated beds, as a function of photosynthetically

active radiation (PAR) at crop level, air temperature and CO2

concentration. Simulated variables include leaf, shoot and

root dry weight (per unit ground area), LAI of the seedlings,

number of leaves per plant and shoot thickness and length.

The model consists of two loops, following the TOMGRO

approach. The first loop performs the time steps of the

simulation, which are subdivisions of the day. Even though

the number of time steps is user-defined, it is suggested that

each step's duration is not less than one hour (i.e., a maximum

of 24 time steps). At each time step, photosynthesis and

transpiration are estimated, while the products of pure

photosynthesis are stored. The second loop is executed once

at the end of each day. Potential growth rates for the envi-

ronmental conditions of the specific day are estimated and

photosynthetic products are distributed to the existing or-

gans. When the produced metabolites can sufficiently cover

total needs, their distribution is based purely on the demand

of each organ, while, in the case where the production cannot

cover the overall demand, the distribution is based on the

priority of each organ.

The initial point of model application is one week after

emergence. At that point, the first real leaf has appeared and

in some plants even the second leaf has started to appear.

Initial variable values are given to themodel by an external file

and they include LAI, dry weight of leaves, shoots and roots

per m2, number of leaves per plant and density of the

http://dx.doi.org/10.1016/j.biosystemseng.2015.09.004
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seedlings. Cotyledons are considered to operate as normal

leaves, thus they are included in the calculation of LAI, how-

ever they are not included in the count of the number of leaves

per plant. Details of the two loops of the model are presented

in Appendix A.
3. Materials and methods

3.1. Greenhouse facilities and plant material

The experiments were performed in an arch type greenhouse,

NeS oriented (36� declination from north 0�), located at the

University of Thessaly near Volos (latitude 39� 440, longitude
22� 790, altitude 85 m) on the continental area of eastern

Greece. The greenhouse was covered by a double inflated

polyethylene film for the roof and by glass for the sidewalls

and gables. The geometrical characteristics of the greenhouse

were as follows: eaves height, 3 m; ridge height, 4.6 m; total

width, 10 m; total length, 30 m. The greenhouse was equipped

with two side flap vents and a roof vent. Greenhouse heating

was by means of a fan heater and plastic pipes located above

the ground. The heatingwas controlled by an on-off controller

following the daytime and night-time set point.

The experiments were conducted during three periods

between November 2007 and May 2008. The starting date of

each period was taken as the date when 75% of seedlings had

emerged. The temperature regime differed from period to

period, and the mean air temperature values for daytime and

night-time were as follows:

- Period 1 (10 November 2007 to 15 December 2007):

20.5 ± 0.7 �C and 14.8 ± 0.4 �C
- Period 2 (21 December 2007 to 30 January 2008): 24.6 ± 0.9 �C
and 19.8 ± 0.6 �C

- Period 3 (31 May 2008 to 5 July 2008): 26.9 ± 1.2 �C and

21.4 ± 0.9 �C

for daytime and night-time respectively. The mean tempera-

ture difference between day and night-time temperature was

about 5 �C.
Three different light treatments were tested for each

period of measurement in three different parts of the green-

house: a) reduced lighting, b) natural lighting and c) supple-

mental lighting. Reduced lightingwas achieved by extending a

shading net above the plants during the total period of mea-

surements resulting in about 10% shading, while supple-

mental lightning was implemented using HPS lamps (Master

GreenPower 600W EL 400V Mogul 1SL, Philips). The lamps

were: (a) turned on whenever the solar radiation intensity in

the control treatment was lower than 200 W m�2 and (b)

switched off if the solar radiation integral in the supplemental

lighting was more than 21% greater than that in the control

treatment. The first condition was necessary to ensure that

supplemental lighting is provided when solar radiation in-

tensity is a limiting factor for plant development while the

second one was used to limit supplemental lighting to a

certain extent. During the three periods, the total light energy

integrals were:
- Period 1 (10 November 2007 to 15 December 2007):

230 MJ m�2, 177 MJ m�2 and 160 MJ m�2,

- Period 2 (21 December 2007 to 30 January 2008): 220 MJ m�2,

171 MJ m�2, 155 MJ m�2 and

- Period 3 (31May 2008 to 5 July 2008): 403MJm�2, 400MJm�2

and 368 MJ m�2, for supplemental lighting, natural lighting

and reduced lighting treatments, respectively.

It should be noted that during experimental period 3,

which took place during summer, photoinhibition problems

seem to have been induced in the seedlings due to the high

levels of solar radiation and thus the measurements were

stopped nearly 3 weeks after sowing. The high levels of solar

radiation occurring during the last experimental period

resulted also in only small differences between supplemental

lighting and the control treatment, due to limitations in sup-

plemental lighting from condition (a) of lamps' control

described above.

The tomato seedlings (Lycopersicon esculentum, cv. Bella-

dona) were grown in 150 cell plates, 0.8 m by 0.6 m. The

resulting density of the seedlings was 312 plants m�2. Irriga-

tion and fertilisation were applied according to the practice

followed by the growers of the region. Water and fertilisers

were supplied by a sprinkler irrigation system, which was

automatically controlled by a fertigation computer.

3.2. Measurements

The following microclimate data were recorded in each

treatment during the period of measurements: Air tempera-

ture and relative humidity by means of temperature and

relative humidity sensors (model H08-032-08, HOBO in-

struments, Bourne, MA, U.S.A.), total solar radiation bymeans

of solar pyranometers (model CM-6, Kipp and Zonen, Delft,

The Netherlands), and CO2 concentration by means of a CO2

sensor (model WMA-4 CO2 gas analyser, PP Systems Interna-

tional, Inc., MA, USA).

All the measurements were collected by a data logger

system (model DL3000, Delta-T Devices, Cambridge, U.K.).

Measurements took place every 30 s and 10-min average

values were recorded.

Plant destructive measurements were carried out every

week, starting from the first week after 75% of the seedlings

had emerged, and finishing when most plants had five true

leaves, which usually took 4e5 weeks. Each week, 25 plants

were randomly chosen in each treatment. After measuring

the leaf area, the number of leaves per plant and the shoot

length and thickness, the different organs (stems, leaves and

roots) were dried for 48 h at 85 �C, in order tomeasure their dry

weight. Sampled plants where replaced by plants of the same

age and growth stage, grownunder the same conditions as the

sampled ones.

3.3. Model calibration and validation

As analysed in Appendix A, where the details of the TOMSEED

model operation are presented, the proposed model contains

several constant parameters with unknown values that have

to be calibrated. Thus, model calibration consisted of fine-

tuning the following ten basic model parameters:

http://dx.doi.org/10.1016/j.biosystemseng.2015.09.004
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- Lss (maximum specific leaf area) and Lsm (minimum spe-

cific leaf area) parameters were selected for calibration

because experimental measurements showed that the

specific leaf area of the seedlings was around 0.1, which is

much greater than the reported value for mature plants.

- The Q10,resp (factor for change in respiration for a 10 �C
temperature change) parameter was selected because its

reported values in the literature vary over quite a wide

range, from 1.4 to 2.

- Pl0 and lgf (empirical coefficients used for the computation

of possible increase rate of leaf area), Pr0 and rgf (empirical

coefficients used for the computation of increase rate of

the root weight), minr (percentage of available sugars that

will be distributed to the root), rM (maximum rate of new

leaf development) and GENFAC (coefficient of the effect of

sugars availability to the development of new leaves), were

also selected because there are no specific suggestions for

their values in the literature, and even though some of

them can be extracted from existing tomato growth

models, their values do not seem to be adequate for the

case of seedling cultivation.

It should be noted that (1) Lss and Lsm parameters both

refer to specific leaf area (pSLA) computation, (2) Q10,resp refers

to maintenance respiration (rm) computation, (3) Pl0 and lgf

both refer to the computation of increase rate of leaf area

(rLA), (4) Pr0 and rgf refer to the computation of increase rate of

the root weight (rRoot), (5) minr refers to the computation of

root dry matter accumulation (DDMroot), and (6) rM and GEN-

FAC refer to the computation of rate of development of new

leaves (rN). Thus, although ten model parameters were

selected to be estimated, only six plant functions were in fact

calibrated.

Dry weight of leaves, shoots and roots, as well as LAI,

number of leaves per plant and shoot length and thickness

have been chosen for simulation, since these characteristics

give satisfactory indication of the growth aswell as the quality

of tomato seedlings.

The calibration problem was formed into an optimisation

task with a goal to minimise the model error when compared

to real measurements. Because of the high number of explo-

ration parameters and the non-continuous nature of the

modelling error function to be optimised, the optimal cali-

bration was tackled using heuristic and evolutionary optimi-

sation algorithms, which have the advantage of having good

performance in complicated, real-life applications with

numerous parameters and complex search spaces. Several

heuristics were developed for the calibration process, based

on genetic algorithms (Holland, 1975; Goldberg, 1989), simu-

lated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983) and tabu

search (Glover, 1989) methodologies.

3.3.1. Heuristic algorithms
Genetic algorithms (GAs) (Holland, 1975; Goldberg, 1989)

belong to a class of algorithms known as evolutionary

computation. They imitate the process of natural evolution by

assigning fitness values to possible solutions of the problem

and applying a mathematical model of the Darwinian princi-

ple of survival of the fittest. A number of possible solutions of

the problem evolve during several generations, through the
application of specific genetic operators. Each individual (or

chromosome, in the GA terminology) consists of a string of

values (genes) for the set of parameters that formulate the

problem to be solved or the system to be optimised. Through

the genetic operators, the individuals are combined and

transformed, and through some selection mechanism, which

is based on the Darwinian principle of the “survival of the

fittest”, the best ones survive and reproduce to form even

better solutions.

Simulated annealing (SA) (Kirkpatric et al., 1983) is based

on ideas first presented by Metropolis, Rosenbluth,

Rosenbluth, Teller, and Teller (1953). Metropolis's algorithm

simulates the change in energy of a systemwhen subjected to

a cooling process, until it converges to a steady, “frozen” state.

The SA algorithm that is inspired by the physical process of

annealing is typically implemented by initialising the tuning

features of the algorithm (i.e., initial random set of parameter

values, initial temperature and cooling rate) and calculating

the cost of the initial set of parameters. Then, a random new

set of parameters is chosen and its cost is evaluated and if this

new set is an improvement, it is accepted, otherwise it is

accepted with probability e�DC/T, where DC is the cost differ-

ence and T is the current temperature. This process repeats

and when the maximum number of “constant-temperature

repetitions” is reached, the temperature is decreased accord-

ing to some “cooling schedule” and the entire process is

repeated until a sufficient solution is found or the maximum

number of iterations is reached.

Tabu search (TS) (Glover, 1989) is a powerful heuristic

optimisation methodology, which is basically a local search

strategy with a flexible memory structure. Its name comes

from its basic feature, which is a list of solution points that

must be avoided, i.e., they are not allowed to be accepted as

possible solutions, leading to the exploration of new areas in

the search space. This list is referred to as the “tabu list” and it

is updated based on some memory structure (short-term

memory). At each iteration of the algorithm, the best of a set of

solutions neighbouring the current solution is chosen, unless

it belongs to the tabu list. Another important feature of the

algorithm is that at each iteration, the best neighbouring so-

lution that does not belong to the tabu list will necessarily be

selected, even if it is worse than the current solution. Finally,

some “aspiration criteria” exist, which allow for exceptions

from the tabu list, if such moves lead to promising solutions.

The algorithm has several tuning features that are

application-specific and have to be explored, like the size of

tabu tenure, the type of tabu restriction, the size of the

neighbourhood, etc.

3.3.2. Calibration approach
Each possible solution to the calibration problem consisted of

a set of values for each of the ten calibration parameters. In

heuristic optimisation, each solution must have a quality

metric, usually referred to as “fitness” of the solution, which is

estimated by an appropriate fitness function. In all three algo-

rithms, the same fitness function was used, which was based

on the sum of the absolute errors of themainmodel's outputs,
compared to actual, measured values. The comparisons for

the estimation of the model error were made at several time

points that corresponded to specific measurement points of

http://dx.doi.org/10.1016/j.biosystemseng.2015.09.004
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Table 1 e Performance of the three algorithms during
model calibration. Errors are represented as average
percentage deviations from real measurements over all
model outputs.

Algorithm Average
error (%)

Standard deviation
of error

Minimum
error (%)

GA 19.23 2.45 16.05

SA 26.37 3.65 20.06

TS 29.77 3.13 25.54
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leaf (DMleaf), shoot (DMshoot) and root (DMroot) dry weights, leaf

area index (LAI) and number of leaves per plant (Nleaves). Thus,

at each specific time point that morphological measurements

existed, the model error (ME) was estimated by the following

equation:

ME ¼

���DMs
leaf � DMm

leaf

���
DMm

leaf

þ
��DMs

shoot � DMm
shoot

��
DMm

shoot

þ
��DMs

root � DMm
root

��
DMm

root

þ jLAIs � LAImj
LAIm

þ
��Ns

leaves �Nm
leaves

��
Nm

leaves

that is, the sum of all normalised absolute differences be-

tween simulated values (denoted by the “s” superscript) and

measured values (denoted by the “m” superscript) of each

variable. For a total of M available measurement points (dur-

ing all available cultivation periods), the fitness f of a specific

solution is given by:

f ¼ 1PM
i¼1 MEi

The goal of each algorithm was to maximise the value of f,

that is, to find the solution with themaximumpossible fitness

value, which would be the optimal solution leading to the

smallest possible model error.

In all three optimisation algorithms used for the calibration

of TOMSEED, the same fitness function was used to qualify

each possible solution, that is, each combination of model

parameter values. GAs work with a population of possible

solutions that evolve through iterations (namely, genera-

tions), while the other two algorithms are iterative too, but not

population-based. Another common characteristic of all three

algorithms is that their performance depends on the

randomly selected starting solutions, thus they have to be

repeated several times from different starting positions.

Finally, they all have several tuning features that have to be

explored and defined through experimentation, as these fea-

tures are application-specific and their optimal values cannot

be defined a priori. In GAs, these features are the population

size, the percentages of crossover and mutation occurrence

and the specific types of crossover and mutation. In SA, the

basic tuning features are the initial value of the temperature

factor and its decrease scheme. In TS, the features that have to

be tuned are the size of the tabu list, its tenure, the size of the

neighbourhood of the solutions and the definition of the

aspiration criteria that allow exceptions in the tabu list.

Finally, for all algorithms, a stopping criterion has to be

defined, as there is no way of knowing whether a specific so-

lution is the global optimum. The general criterion (that was

not satisfied in practice) was an average overall model error of

5%. Because of the different processes involved in the three

algorithms, a criterion based on a maximum number of iter-

ations of the algorithms would not be fair for algorithm

comparison, thus a stopping criterion based on a maximum

number of fitness function evaluations was used instead.

Several experimentswere performed for each algorithm, in

order to fine-tune the corresponding optimisation features.

3.3.3. Validation approach
The validation of themodel was performed using climatic and

morphological data from experimental periods that were not
used during the calibration process of the model and were

intentionally kept for the process of model validation. More

specifically, those periods were:

- the natural lighting (control) treatment of experimental

period 2 (21 December 2007 to 30 January 2008, average

daytime temperature of 24.6 ± 0.9 �C, night-time temper-

ature of 19.8 ± 0.6 �C, total solar radiation integral of

170.9 MJ m�2) and,

- the reduced lighting (shading) treatment of experimental

period 3 (31 May 2008 to 5 July 2008, average daytime

temperature of 26.9 ± 1.2 �C, night-time temperature of

21.4 ± 0.9 �C, total solar radiation integral of 368 MJ m�2).

The calibrated model was applied to these climatic data

and its outputs (dry weight of leaves, shoot and root, LAI,

number of leaves, shoot length and shoot thickness) were

compared with the available measured values.
4. Results

4.1. Calibration results

Table 1 presents the final performance results of the three

algorithms during model calibration. Genetic Algorithms

(GAs) proved to be more successful in the model calibration

process, followed by Simulated Annealing algorithm (SA),

while Tabu Search algorithm (TS) was the least successful

algorithm. Table 2 shows the optimal values of the calibration

parameters of the model, which were found using the GA

methodology. The average overall model error with these

values was 16.1% and was achieved with a GA population of

10,000 chromosomes, probabilities of crossover and mutation

equal to 0.8 and 0.1, respectively, and simple arithmetic

crossover type. The evolution progress during model calibra-

tion for the best GA run is shown in Fig. 1, where both the

fitness progress of the best solution found by the algorithm, as

well as the average fitness of the entire GA population, are

plotted. The total running time of the algorithm for the 100

iterations (1 million fitness function evaluations) was about

13min on a single core of an i5 quad-core processor at 3.2 GHz.

Figure 2 shows the model predictions and the actual

measurements with one standard deviation error bars, for all

seven modelled variables during one of the experimental pe-

riods (Period 1, natural lighting) used in the calibration pro-

cess. It can be seen that the model successfully simulates all

variables and in most cases, even 35 days after germination,
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Table 2 e Optimal values of calibrated model constant
parameters.

Model parameter Optimal value Unit

Lss 0.086 m2 g�1

Lsm 0.0336 m2 g�1

Q10,resp 1.86 e

Pl0 0.0074 e

lgf 0.7949 e

Pr0 0.1543 e

rgf 0.3734 e

rM 0.16 Leaves plant�1 day�1

minr 0.028 e

GENFAC 1.09 e
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the predicted values are very similar to the measured ones.

The increase trends are accurately followed in most cases,

with the exception of root dry weight (Fig. 2c), which is over-

estimated between days 15e30. In general, there is very little

deviation between measured and simulated values.
4.2. Model validation

As described in Section 3.3.3, the calibrated model was tested

and validated using different data than those used for cali-

bration. The performance of the GA-calibrated model in each

of the output variables is presented hereafter.

Figure 3 shows the model predictions and the actual

measurements for all seven modelled variables during

experimental period 2 with natural lighting conditions (first

validation period). It can be seen that, with the exception of

the first two weeks, the model underestimates the values of

shoot dry weight (Fig. 3b), and LAI (Fig. 3d), although the

general trend is similar to the actual one, and also the vari-

ability of measurements drastically increases with time, thus

the modelling error is expected to be higher. The maximum

deviation between predicted and actual measurements
Fig. 1 e Evolution progress of the best solution, i.e. the best

fitness value ( ) and the entire population, i.e. the

average fitness value ( ) of the GA during the best run of

the model calibration process.
reached 45%. Predicted values of leaf (Fig. 3a) and root (Fig. 3c)

dry weight were quite satisfactory, as they deviated by around

35% during the first days, but this difference dropped to 2e8%

for the rest of the testing period. In addition, measured and

predicted values had very similar trends. The number of

leaves per plant (Fig. 3e) is a characteristic which is also

modelled quite well with slightly overestimated values in

general, except for the final ones. The simulation of shoot

length is very accurate (Fig. 3f), as the predicted values up to 21

days after germination are almost identical to the measured

ones, and for the rest of the testing period, their deviation does

not exceed 10%. Finally, the shoot thickness is simulated

satisfactorily (Fig. 3g), as, with the exception of the first

measurement, the deviation between predicted andmeasured

values does not exceed 12%.

Figure 4 shows the model predictions and the actual

measurements for all seven modelled variables during

experimental period 3 with reduced lighting (shading) condi-

tions (second validation period).

It should be noted that although the set of measured data

shown in Fig. 4 corresponds to shading conditions, due to the

fact that period 3 was carried out during summer, the solar

radiation integral of reduced lighting treatment of period 3

(368 MJ m�2) was higher than the solar radiation integral of

periods 1 and 2. In addition, the average air temperature

values observed during period 3 were also higher than those

observed during periods 1 and 2.

For leaf dry weight (Fig. 4a), the performance of the model

is poorer than that during the first validation period (Fig. 3a),

as there is significant overestimation which increases with

time. The deviation between predicted values and actual

measurements of shoot dry weight (Fig. 4b) is limited to a

maximum of 15%, which is much better than that during the

first validation period. In the case of root dry weight (Fig. 4c),

model performance is very poor, as the deviation between

predicted and actual values reaches a maximum of 92% and it

only drops down to 10% at the end of the testing period. LAI,

on the other hand, is better simulated (Fig. 4d), with a differ-

ence between predicted and measured values in the range of

20%e70%, with the exception of the second value, where the

difference is just 1.7%. The simulation of the number of leaves

is quite successful (Fig. 4e). The values are constantly slightly

overestimated, but with predicted values very close to the

measured ones. Shoot length is accurately predicted up to day

14 (Fig. 4f), but after that the deviation between predicted and

measured values increases to 74% and finally drops to 28%.

The model error increases after the secondmeasurement due

to the small actual increase of the shoot length and dryweight

during that period. The problematic prediction of the shoot

dry weight during these days (Fig. 4b) led to the relative large

errors in shoot length simulation. It can be seen that during

the entire period, shoot length is overestimated by the model.

The same is true for the shoot thickness (Fig. 4g), where the

model constantly overestimates the actual values. However,

the increase rate of the predicted shoot thickness is the same

as the measured one.

Thus, it can be seen that although the model performs

quite well during the first validation period, it mainly over-

estimates the actual values during the second validation

period where data from a summer experiment (with higher
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Fig. 2 e Calibrated model predictions ( ) and actual measurements ( ) during an experimental period used for calibration

(period 1), with natural lighting. Time is in days after germination. (a) leaf dry weight, (b) shoot dry weight, (c) root dry

weight, (d) LAI, (e) leaves per plant, (f) shoot length, (g) shoot thickness. The error bars represent the standard deviation of

the measured values.
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values of solar radiation integrals and average air temperature

compared to the rest of the experimental periods available)

were used.
5. Discussion

5.1. Calibration process evaluation

The proposed growth model for tomato seedlings in-

corporates the features that play an important role in seedling

quality. The complex process of calibrating a number ofmodel

parameters was tackled using powerful heuristic optimisation

algorithms. These algorithms are application-specific, thus

their final performance and exact suitability cannot be known

a priori (Michalewicz & Fogel, 2004). Furthermore, heuristic

optimisation methods are application-specific and act as

“black-boxes” in most cases, thus it is not possible to justify

their relative performance based on the characteristics of the

problem. The superiority of genetic algorithms in comparison

to the other two algorithms (simulated annealing and tabu

search) may be due to its population-based nature, where a

large number of possible solutions evolve, instead of a single

solution that is used by the other two algorithms. The
structure of the specific optimisation problem seems to favour

that approach.

The actual performance of the model was validated using

two sets data, different from those used for calibration. The

presented results of the validation data are promising. Not all

model variables were accurately simulated, with leaf and

shoot dry weight giving the worst prediction results. Similar

problems in leaf and shoot dry weight prediction have also

been observed by other authors working with tomato crop

modelling (e.g. Dayan et al., 1993b; Dimokas et al., 2009).

As noted in Section 3.3.3, the model was validated using

data from two experimental periods, a winter (21 December

2007 to 30 January 2008) and a summer (31 May 2008 to 5 July

2008) one. It could be seen that although themodel performed

quite well during the first validation period (Fig. 3), it mainly

overestimated the simulated variables during the summer

experimental period (Fig. 4), where relatively high values of

solar radiation intensity and air temperature were observed.

This may relate to the absence from the TOMSEED model of

any function to take into account for the effect of such non-

optimal climate conditions on seedling development and

growth.

Vanthoor, De Visser, Stanghellini, and Van Henten (2011)

reviewed the effects of temperature on a tomato crop, sum-

marising that: (a) both instantaneous andmean temperatures

http://dx.doi.org/10.1016/j.biosystemseng.2015.09.004
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Fig. 3 e Model simulated ( ) and actual values ( ) during validation in natural lighting conditions (period 2). (a) leaf dry

weight, (b) shoot dry weight, (c) root dry weight, (d) LAI, (e) leaves per plant, (f) shoot length, (g) shoot thickness. The error

bars represent the standard deviation of the measured values.
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affect crop yield, (b) both sub-and supra-optimal temperatures

affect several growth processes, resulting in lower yield, (c) it

is difficult to identify one single growth process causing crop

stress because growth processes influence each other, (d)

stress sensitivity is cultivar-dependent. Thus, in the tomato

yield model they developed, periods of unfavourable tem-

peratures were taken into account in two ways: In the first

place sub- and supra-optimal temperatures result in a decre-

ment of actual photosynthesis in comparison to maximal

photosynthesis under the given light and CO2-conditions. In

the second place temperature also affects the ability of organs

to store and release assimilates. This is accounted for by

functions for tomato growth inhibition at non-optimal tem-

peratures, taking into account the difference between

instantaneous and 24-h average temperatures. Thus, after an

extensive review, they suggested that the optimal boundary

for instantaneous values could be taken at 28 �C and for the

24 h mean could be taken at 22 �C.
Accordingly, taking into account the findings and sugges-

tions given by Vanthoor et al. (2011), it seems that the air

temperature values observed during the summer period in the

present work (Period 3) were higher than the limits they

indicated, inducing stress conditions that were not taken into

account by our model. This could possibly explain the over-

estimation of some variables by TOMSEED model during the

summer period.
5.2. Model evaluation

Considering that the proposed model is a first attempt to

model tomato seedlings growth, its overall performance is

regarded sufficient as a basis upon which, more accurate and

complex models can be built. By incorporating additional

processes and crop characteristics, the applicability of the

TOMSEED model could be extended and the quality of the

results improved.

Some assumption modifications and additions could

improve the final performance of the model and will be

investigated as a next step to TOMSEED development. The

current model assumes that intercellular CO2 concentration

is 70% of the ambient concentration. However that value

increases non-linearly when CO2 enrichment takes place

(Morison, 1987), thus an empirical equation or a special sub-

model have to be used, something that was not feasible in

this work, as there was no CO2 enrichment during the ex-

periments. Another drawback of the model was the use of

not so accurate estimates of leaf temperature, especially

during summer months (see Appendix Eq. (5)). This could be

overcome in a future version of the model with the use of

infrared sensors for the accurate measurement of leaf

temperatures.

In addition, there is an obvious correlation between over-

estimation versus underestimation of the actual
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Fig. 4 e Model simulated ( ) and actual values ( ) during validation in reduced lighting conditions (shading) (period 3). (a)

leaf dry weight, (b) shoot dry weight, (c) root dry weight, (d) LAI, (e) leaves per plant, (f) shoot length, (g) shoot thickness. The

error bars represent the standard deviation of the measured values.
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measurements and the existing lighting and temperature

conditions during seedling cultivation. Thus, the way that

light intensity and air temperature are incorporated into the

model has to be further studied and analysed, so that its

outputs can be better adjusted to actual lighting conditions.

Furthermore, additions to the model, like the effects of

high light intensity and air temperature, such as the one

introduced by Vanthoor et al. (2011) to take into account

supra-optimal conditions, would be useful and will be inves-

tigated for inclusion in the next version of TOMSEED.

Another area for development could be root growth which

is treated in the simulation in a rather rudimentary fashion. A

more detailed description is required that allows evaluation of

the capacity of the root system to supply the required water

and nutrients for optimum crop functioning.

Connecting the biological model with a climate model

could allow the production process to be optimised. Although

optimisation is rarely used for crop development (Garcia,

1999), it can be applied for greenhouse climate and crop pro-

duction to provide the best strategy according to growers

needs. Optimisation would allow the best management

strategy to be determined for a range of possible future cli-

mates to which the greenhouse may be subjected. This would

help growers in the strategic management of the crop and

climate, in order to achieve the best benefit of the production

according to their time schedule.
6. Conclusions

Amechanistic growth model for tomato seedlings (TOMSEED)

was developed, based on modifications of existing tomato

growth models. PAR at crop level, air temperature and CO2

concentration were taken into account, while simulated var-

iables included dry weights of leaves, shoot and root (per

ground area unit), LAI, number of leaves per plant and finally,

shoot length and thickness. Its calibration processwas formed

into an optimisation problem, taking into account model er-

rors of five simulated characteristics: dry weight of leaves,

shoots and roots, LAI and number of leaves per plant. Three

heuristic optimisation algorithms were explored during

model calibration: genetic algorithms, simulated annealing

and tabu search. Genetic algorithms proved to be the most

successful approach in the specific model calibration task,

resulting on an overall average deviation between simulated

and measured values of around 16%.

TOMSEED validation results showed that the proposed

model was able to simulate satisfactorily most of the seed-

lings characteristics, like shoot length and thickness, number

of leaves per plant and dry weight distribution, while other

characteristics, like dry weight of leaves, shoot and root, as

well as LAI, were modelled less successfully. Nevertheless,

evenwith small differences betweenmeasured and simulated
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values, the model gives the opportunity to use it to develop

and tune sophisticated climate control and management

systems towards the development of high quality seedlings.

APPENDIX A. TOMSEED model loops

A.1. First loop or sub-daily loop

A.1.1. Photosynthesis
Photosynthesis can be restricted by several environmental

factors (temperature, radiation) as well as biochemical and

physiological factors (Rubisco activity, demand). In the pro-

posed simulation model, photosynthesis is estimated as the

minimum value affected by three limiting factors: light,

Rubisco and demand (sink limitation).

A.1.1.1. Light limiting factor. The CO2 absorption rate being

limited by light intensity (vq) is calculated by the following

equation (Teh, 2006):

vq ¼ emIabs
Ci � G�
Ci þ 2G� (1)

where em is the photosynthetic efficiency, Iabs is the radiation

absorbed by the canopy, Ci is the CO2 intercellular concen-

tration, and G* is the CO2 equilibrium point.

The radiation that is absorbed by the canopy (Iabs) is

calculated by the following equation:

Iabs ¼ ð1� rÞ$І0$
�
1� e�k$L

�
(2)

where r is the radiation reflectance coefficient, I0 is radiation

intensity above canopy level, k is the light extinction coeffi-

cient, and L is the canopy depth as a function of the LAI of the

overlying canopy.

A typical value for r is 0.07 (Marcelis, Heuvelink, &

Goudriaan, 1998), while a proper value of k for tomato seed-

lings is 0.57 (Peponakis, 2008).

Photosynthetic efficiency is estimated by the following

equation (Bertin & Heuvelink, 1993):

em ¼ e0
½CO2� � G�
½CO2� þ 2G� (3)

where e0 is the potential photochemical efficiency and [CO2] is

the CO2 concentration of the air.

The value of the potential photochemical efficiency for

tomato plants is equal to 0.084. The CO2 equilibrium point is

estimated by the following equation (Teh, 2006):

G� ¼ ½CO2�
2t$QððTl�25Þ=10Þ

10ðtÞ
(4)

where t is the CO2/O2 specificity factor, Q10(t) is the factor for

the change in t for a 10 �C temperature change, and Tleaf is the

leaf temperature.

The O2 concentration is 210,000 ppm, while Q10(t) is 0.57.

For the estimation of leaf temperature (Tleaf), the empirical

equation developed byWang and Deltour (1999) is used, based

on air temperature (Tair) and solar radiation intensity (Ii):

Tleaf ¼ �2:05þ 1:01$Tair þ 0:00425$Ii (5)

The use of this equation was consider adequate in the case
of seedlings that are not grown on heated beds. In addition, it

was taken into account that seedling LAI, which affects leaf

temperature, can reach or even surpass that of mature plants.

The validity of the equation was not tested with regular

measurements of leaf temperature, though it was validated

with the sporadic use of infrared thermometers and proved to

be quite accurate inmost cases, with the exception of summer

months, when the equation seemed to overestimate leaf

temperatures.

A.1.1.2. Rubisco limiting factor. According to Teh (2006), the

CO2 absorption rate limited by Rubisco activity (vc) is calcu-

lated by the following equation:

vc ¼ Vc;maxðCi � G�Þ
Kcð1þ Oa =KoÞ þ Ci

(6)

where Vc,max is the maximum CO2 absorption rate from

Rubisco activity, Kc and Ko are the CO2 and O2 Michae-

liseMenten constants respectively, and Oa is the ambient O2

concentration.

The value of Vc,max for a temperature of 25 �C (Vc,max(25)) is

equal to 200 mmol m�2 s�1 (Bernacchi, Singsaas, Pimentel,

Portis, & Long, 2001). For various temperature values, it can

be estimated by the following equation, which also takes into

account that Rubisco activity ceases for temperatures above

40 �C:

Vc;max ¼ Vc;maxð25ÞQ
ðTleaf�25Þ=10
10ðvcÞ

1þ e0:128ðTleaf�40Þ (7)

A.1.1.3. Demand limiting factor (sink limitation). The CO2 ab-

sorption rate limited by demand (vs) is calculated by the

following equation (Teh, 2006):

vs ¼ Vc;max

2
(8)

A.1.2. Respiration
Similarly to TOMSIM and TOMGRO models, respiration is

divided into maintenance respiration and growth respiration.

Maintenance respiration depends on temperature and some

factor that expresses the CH2O demands for the maintenance

of 1 g of existing dry matter. The value of that factor is

different for each plant organ. Thus, maintenance respiration

is estimated by the following equation:

rm¼ (DMroot$MAINTrootþDMleaf$MAINTleafþDMshoot$MAINTshoot)

$Q10,resp
(T�25)/10 (9)

where DMroot, DMleaf and DMshoot are the root, leaf and shoot

dry matter, respectively, and MAINTroot, MAINTleaf and

MAINTshoot are the root, leaf and shoot demand in CH2O for

maintenance of 1 g of dry matter, respectively. According to

Heuvelink (1995), MAINT coefficients for a temperature of

25 �C have the following values: MAINTroot ¼ 0.01 g

(CH2O) g�1 (DM) day�1, MAINTl ¼ 0.03 g (CH2O) g�1 (DM) day�1

and MAINTst ¼ 0.015 g (CH2O) g�1 (DM) day�1. It should be
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noted that these values are general and have not been pro-

posed specifically for tomato plants at any growth stage.
A.2. Second loop or daily loop

At the end of each sub-daily cycle, the photosynthesis prod-

ucts minus themaintenance respiration are added to a “pool”.

The pool's content is available for plant growth during the

execution of the daily loop. The pool is not reset at the end of

each daily loop, thus any remaining content is available for

use during the following day. The capacity of the pool was set

to 4.2 g (CH2O) m�2 (leaf area), based on the relevant sugges-

tion by Sitheswary, Putman, and Janes (1990).

A.2.1. Leaf growth demand
Initially, the estimation of the possible growth rate of the

plants' organs is performed. The increase rate of leaf area

depends only on the temperature, as it does not seem to be

influenced by radiation (Peponakis, 2008). Thus, the following

formula was used for the estimation of possible increase rate

of leaf area (rLA):

rLA ¼ Pl$Tl (10)

where Pl is the possible increase rate of leaf area as a per-

centage of the existing leaf area, and Tl is the coefficient for

the influence of temperature on the increase rate of leaf area.

The values of Tl have been calculated at specific temperature

values between 0 and 50 �C byDayan et al. (1993a) and are then

estimated by interpolation. For the estimation of Pl, the

following exponential equation was derived, as a function of

the number of leaves per plant (Nleaves), which is an indication

of plant growth:

Pl ¼ Pl0$e
Nleaves$lgf (11)

where Pl0 and lgf are empirical coefficients, and Nleaves is the

number of leaves per plant.

In order to estimate the total demand of the leaves, the

specific leaf area (pSLA) has also to be taken into account. pSLA

depends on the availability of photosynthetic products

(sugars) and the increase rate of leaves. High increase rate of

leaves and low sugars availability would lead to high pSLA

values. This happens when solar radiation intensity is low,

limiting photosynthesis, while temperature is high, and

keeping the plant's metabolism high. For the estimation of

pSLA, the following approach was developed and used in the

model:

� If the ratio Pool to PoolLimit is greater than the ratio rLA to Pl

(where, Pool is the quantity of available sugars in the “pool”

and PoolLimit is the capacity of the “pool”), then:
pSLA ¼ Lsm þ (Lss � Lsm)$(rLA/Pl) (12)

otherwise:

pSLA ¼ Lsm þ (Lss � Lsm)$[1-(Pool/PoolLimit)] (13)
where Lsm is the minimum specific leaf area, and Lss is the

maximum specific leaf area. It should be noted here that pSLA

does not express the specific leaf area of the crop, but it rather

constitutesacoefficientthatdetermines the increaseof leafarea

per g of drymatter that is added to the leaves. For that reason, it

is presented as pSLA andnot SLA, and it is subject to calibration.

A.2.2. Root growth demands
The rate of increase of root weight depends on the substrate

temperature, which is assumed to be equal to the air tem-

perature, for seedling cultivation in unheated beds. Its esti-

mation is similar to that for leaf area. Another crucial factor

that influences the root growth is water availability, but there

was assumed to be no water limitation, as is usually the case

for seedlings. Thus, the following equation was used,

assuming that there is sufficient amount of sugars:

rRoot ¼ Pr$Tr (14)

where rRoot is the rate of increase of root weight as a per-

centage of existing root weight, Pr is the possible increase rate

of the root as a percentage of existing rootweight, and Tr is the

influence of substrate temperature. The Tr coefficient has

been calculated in the same way as the Tl coefficient, by

Dayan et al. (1993a). The root demand (Droot) is calculated

based on the rate of root growth (rRoot), and the demands for

sugars for the development of root dry matter (ASRroot):

Droot ¼ rRoot$ASRroot (15)

The Pr coefficient, like Pl, is given by an exponential

equation in relation to Nleaves (Pr0 and rgf are empirical

coefficients):

Pr ¼ Pr0$e
Nleaves$rgf (16)

A.2.3. Shoot growth demand
By making the assumption that the shoot is a cylinder and

that its thickness increases linearly with shoot drymatter, the

following empirical equation was used for its estimation,

based on 2422 values from six experimental periods

(R2 ¼ 0.89):

ST ¼ 0.6317$log(DM) þ 5.2358 (17)

where ST is the shoot thickness and DM is the dry matter.

The length of the shoot (SL) is estimated using the following

empirical equation:

SL ¼ 10�7$LA2 þ 0.0031$LA þ 1.6024 (18)

where LA is the leaf area of a single plant. This equationwas

derived from data from three different experimental periods

(R2 ¼ 0.88).

Dryweight per unit shoot length (DWLS) is a linear function

of the accumulated radiation (IabsSum). The following empirical

equation estimates the shoot dry weight per unit length

(R2 ¼ 0.95):
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DWLS ¼ 5$10�5$IabsSum þ 1.1$10�3 (19)

Thus, the dry weight of the shoot can be estimated by

simplymultiplying the shoot length by the dry weight per unit

length.

A.2.4. Dry matter distribution
It was considered that the plant distributes the products of

photosynthesis with priority to the organs that have to be

developed in order to compensate for some specific defi-

ciency. Thus, as light becomes a limiting factor, metabolite

distribution towards the upper part will increase, so that the

plant can increase in height (increase in shoot length) and

increase its leaf area. Similarly, if water is the limiting factor,

then the products of photosynthesis are distributed mainly

towards the root, so that the root is developed to make

possible water uptake from a larger volume of soil. When both

light and water constitute limiting factors, root demands are

initially covered, so that water needs are satisfied, as water is

considered a more vital factor than light. When there is not

any limiting factor present, the distribution is performed ac-

cording to each organ's needs.

The criterion for light sufficiency was the ratio of CH2O

supply to total CH2O demand, while the criterion for water

sufficiency was the ratio of the evapotranspiration of the crop

to the available water in the substrate. In the case where CH2O

quantities were not sufficient, the root assimilate re-

quirements were partially satisfied. Thus, the root dry matter

accumulation (DDMroot) is given by the following equation

(minr is the percentage of available sugars that will be

distributed to the root):

DDMroot ¼ minr$Pool
ASRroot

(20)

The ASRroot coefficient (assimilate requirements of the

roots) is used so that the “transformation cost” of non-

structural dry matter to structural dry matter is taken into

account. Similarly, the accumulation of shoot dry matter

(DDMshoot) is given by the following equation:

DDMshoot ¼
�ð1�minrÞPool

Dtotal
Dshoot

�
ASRshoot (21)

where Dshoot and Dtotal are the demand of the shoot and the

total demand of all organs, respectively, and ASRshoot is the

assimilate requirements of the shoot.

The rest of the “pool” is distributed to the leaves, divided

again by the ASRleaf coefficient (the assimilate requirements of

the leaves). The values proposed by Heuvelink (1995) for the

ASR coefficients are between 1.39 and 1.45, depending on the

organ. However, these values are not tomato-specific. Gijzen

(1994) and Gary, Bot, Frossard, and Andriolo (1998) have pro-

posed significantly lower values (1.02e1.16, depending on the

organ). In the proposed seedlings model, the values given by

Gary et al. (1998) were used, as they relate to young tomato

plants. Thus, ASRleaf ¼ 1.05 and ASRshoot ¼ 1.02, while ASRroot

was arbitrarily set equal to 1.05, as no specific value has been

proposed in the literature.

The increase of leaf area index (DLAI) is calculated by the

following straightforward equation:
DLAI ¼ DDMleaf$pSLA (22)

where DDMleaf is the leaves dry matter accumulation.

A.2.5. Number of leaves
TOMGRO provides a function to estimate the appearance of

new leaves that seemed to be suitable for seedlings too. Based

on that, the rate of the development of new leaves (rN) is

estimated by the following equation:

rN ¼ rM$fT$fasm (23)

where, rM is themaximum rate of development of new leaves,

fT is a coefficient that incorporates the effect of lower than

optimal temperatures (estimated similarly to the Tl and Tr

coefficients, as explained earlier), while the fasm coefficient is

given by:

fasm ¼ Pool
Dtotal

GENFAC (24)

where GENFAC is the coefficient of the effect of sugars avail-

ability on the development of new leaves.
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