
Trends in Food Science & Technology 20 (2009) 557e566
Review
* Corresponding author.

0924-2244/$ - see front matter � 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.tifs.2009.07.002
Metabolomic analysis

in food science:

a review

Juan M. Cevallos-Cevallosa,
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Metabolomics has emerged as an important tool in many

disciplines such as human diseases and nutrition, drug discovery,

plant physiology and others. In food science, metabolomics

has recently risen as a tool for quality, processing and safety

of raw materials and final products. This article discusses the

latest advances in food metabolomics from the discriminative,

predictive, and informative approaches, as well as the typical

methods used at each step of the metabolomic analysis.
Introduction
Metabolomics, the study of ‘‘as-many-small-metabo-

lites-as-possible’’ in a system, has become an important
tool in many research areas. Recent reviews and perspec-
tives in the areas of human diseases (Kaddurah-Daouk &
Krishnan, 2009), drug discovery (Wishart, 2008a), plant
analysis (Hall, Brouwer, & Fitzgerald, 2008), human nutri-
tion (Wishart, 2008b), and others, have shown the broad
impact and rapid growth of metabolomics.
Metabolomic analyses have been generally classified as
targeted or untargeted (Fig. 1). Targeted analyses focus on
a specific group of intended metabolites with most cases
requiring identification and quantification of as many me-
tabolites within the group (Ramautar, Demirci, & Jong,
2006). Targeted analyses are important for assessing the
behavior of a specific group of compounds in the sample
under determined conditions. Targeted metabolomics typi-
cally requires higher level of purification and a selective
extraction of metabolites. In contrast, untargeted (a.k.a.
comprehensive) metabolomics focuses on the detection of
as many groups of metabolites as possible to obtain patterns
or fingerprints without necessarily identifying nor quantify-
ing a specific compound(s) (Monton & Soga, 2007). Untar-
geted analyses have been used in the identification of
possible fingerprints of biological phenomena such as plant
diseases (Cevallos-Cevallos, Rouseff, & Reyes-De-Cor-
cuera, 2009). Based on the specific objective of the analysis
and data manipulation, most metabolomic studies can also
be classified as discriminative, informative, and/or predic-
tive (Fig. 1). Discriminative analyses have been aimed to
find differences between sample populations without neces-
sarily creating statistical models or evaluating possible
pathways that may elucidate such differences. Wine has
been classified by grape variety and production area by me-
tabolomic techniques (Son et al., 2008). Discrimination is
usually achieved by the use of multivariate data analysis
(MVDA) techniques intended to maximize classification,
principal components analysis (PCA) being the most used
tool. PCA and other MVDA tools have been widely
described in other reviews (Kemsley et al., 2007; van der
Werf, Jellema, & Hankemeier, 2005). In contrast, informa-
tive metabolomic analyses have focused on the identifica-
tion and quantification of targeted or untargeted
metabolites to obtain sample intrinsic information. Infor-
mative metabolomics has been used in the development
and continuous update of metabolite databases such as
the human metabolome database (Wishart et al., 2007).
Possible pathways, discovery of novel bioactive com-
pounds, discovery of biomarkers, creation of specialized
metabolite databases, and metabolites functionality studies
can also be carried out by informative metabolomics.
Finally, some metabolomics reports have been predictive.
In this case, statistical models based on metabolite profile
and abundance are created to predict a variable that is dif-
ficult to quantify by other means. Metabolite-based models
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for prediction of green tea sensory quality have been devel-
oped (Ikeda, Kanaya, Yonetani, Kobayashi, & Fukusaki,
2007). These models are usually produced by partial least
square (PLS) regression as discussed in Data treatment sec-
tion of this review.

In food science, metabolomics has the potential for solv-
ing major problems worldwide as it is being applied in food
research programs such as the Metabolomics for Plants,
Health and OutReach (METHA-PHOR) initiative (Hall,
2007). Moreover, metabolomics is considered an efficient
tool for addressing future needs in agriculture (Green, Qur-
eshi, Long, Burfening, & Hamernik, 2007) and human nu-
trition (Green et al., 2007; Hall et al., 2008).

Discriminative, informative, and predictive metabolo-
mics have been recently used in combination for quality,
nutrition, and food components analysis (Wishart, 2008b)
with a significant expansion to other food applications in
the last two years. This paper presents an in depth review
of recent metabolomics studies in food from the perspective
of the extraction, separation, detection, and data treatment,
as well as the application of discriminative, informative,
and predictive metabolomics in the areas of food quality,
safety, regulations, microbiology, and processing.
The process of metabolomic analysis
Metabolomic analyses consist of a sequence of steps in-

cluding sample preparation, metabolite extraction, derivati-
zation, metabolite separation, detection, and data treatment
(Fig. 2). However, not every steps is always needed. Only
detection and data analysis have been essential steps in
all reported metabolomics studies. The selection of the
steps depends on the type of study (untargeted vs. targeted),
kind of sample (e.g. solids vs. liquids), instrumentation to
be used for separation (e.g. GC vs. LC) and detection
method (e.g. MS vs. NMR). Table 1 summarizes recent me-
tabolomics studies used for food analysis.
Sample preparation
Solid samples such as apple peel (Rudell, Mattheis, &

Curry, 2008) and potatoes (Dobson et al., 2008) are typi-
cally ground under liquid nitrogen or after freeze-drying.
Proper grinding enhances the release of metabolites during
extraction. Freeze-drying acts as a concentration step and
minimizes possible differences in metabolites due to dis-
similarities in moisture content between groups of sample.
Other concentrated liquid samples such as honey can be
diluted as a preliminary step (Donarski, Jones, & Charlton,
2008). However, to maximize the amount of information to
be collected, concentration steps are more suitable. For ex-
ample, metabolites in wine (Son et al., 2008) and volatiles
in olive oil (Cavaliere et al., 2007) have been concentrated
by lyophilization and solid phase microextraction (SPME)
respectively.

Extraction
The initial extraction procedure is aimed at maximizing

the amount and concentration of the compounds of interest.
For this reason, extraction is probably the most critical step
in metabolomics. In untargeted metabolomics, the nature of
compounds of interest is mostly unknown. Hence, several
solvents and extraction methods should be tested and com-
pared between the groups of samples. Most reports on un-
targeted food analysis do not describe preliminary
comparisons among extraction solvents tested. However,
the extraction methods used in foods have been similar to
those found optimal in comparable research fields such as
non-food plant metabolomics. For instance, the combina-
tion methanolewaterechloroform (MeOHeH2OeCHCl3)
in different proportions was shown to be superior to other
solvents for untargeted studies in plants such as Arabidop-
sis thaliana (Gullberg, Jonsson, Nordstrom, Sjostrom, &
Moritz, 2004) because of its capacity of extracting both
hydrophilic and hydrophobic compounds. Therefore, the ef-
fectiveness of MeOHeH2OeCHCl3 in green tea (Pongsuwan
et al., 2008), potatoes (Dobson et al., 2008) and other foods
was anticipated. For untargeted analysis, the use of sequen-
tial and selective extractions followed by metabolite analy-
sis of each extract was previously recommended (Dixon



Table 1. Most common metabolomics processes in food analysis.

Sample: Purpose of analysis Type Extraction and preparation Separationedetection Data treatment Reference

Apples: light induced changes in peel Untargeted/discriminative MeOH GCeMS PCA Rudell et al., 2008
Derivatization for GCeMS LCeMS

Berries: polyphenol composition Targeted/informative Acetic acidþwater LCeMS Compound
identification

McDougall et al., 2008
C18 and Sephadex LH 20 columns DIMS

Broccoli, mustard, and brassica:
glucosinolates composition

Targeted/informative Hot water (90 �C)þ sonication LCeMSn Compound
identification

Rochfort et al., 2008

Broccoli: variety differentiation Untargeted/discriminative Freeze dried MeOHþH2O LCeUVeMS PCA, ANOVA Luthria et al., 2008
DIMS

Cheese: Production control Untargeted/informative e IMS Compound
identification

Vautz et al., 2006

E. coli: glycolisis metabolites Targeted/informative Indirect thermal treatment LCeMS Compound
identification

Schaub & Reuss, 2008

Ginseng: variety differentiation Untargeted/discriminative Deuterated MeOHþ buffered water NMR PCA Kang et al., 2008
Green: tea quality Untargeted/predictive Freeze dried MeOHþH2OþCHCl3 UPLCeTOFeMS PCA, PLS Pongsuwan et al., 2008
Honey: origin verification Untargeted/discriminative/

predictive
Buffered water NMR PLSeGP Donarski et al., 2008

Maize: GMO identification Untargeted/discriminative MeOHþwaterþ ultrasonication CEeTOFeMS Student’s t, PCA Levandi et al., 2008
Meat: quality/safety Untargeted/discriminative Neutral desorption EESIeMS PCA Chen et al., 2007
Olive oil: origin differentiation Targeted/discriminative SPME GCeCIeMS LDA KruskaleWallis

and WaldeWolfowitz
tests

Cavaliere et al., 2007

Pine mushrooms: quality
differentiation

Untargeted/discriminative MeOHþH2OþCHCl3 NMR PCA Cho et al., 2007

Potato: GM differentiation Untargeted/discriminative MeOHþH2OþCHCl3 GCeMS PCA Catchpole et al., 2005
Derivatization for GCeMS DIMS

Potato: identification of cultivars Untargeted/discriminative/
informative

Freeze driedþMeOHþwaterþ
chloroformþ derivatization

GCeTOFeMS ANOVA, PCA Dobson et al., 2008

Potato: variety differentiation Untargeted/discriminative/
informative

MeOHþH2OþCHCl3 GCeMS RF Beckmann et al., 2007
Derivatization for GCeMS DIMS

Soybean: GMO differentiation Untargeted/informative MeOHeEtOHeH2O CEeTOFeMS Compound
identification

Garcia-Villalba et al.,
2008

Spinach: E. coli contamination Untargeted/discriminative Neutral desorption EESIeMS PCA Chen et al., 2007
Tomato paste: changes during
production

Targeted to antioxidants/
informative

Targeted: H2OeMeOH and MeOHeCHCl3 LCeantioxidant
detector

ANOVA, PCA Capanoglu et al., 2008

Untargeted/informative Untargeted: Formic acideMeOHeH2O LCeTOFeMS
Tomato: metabolite correlations Untargeted/predictive Volatiles: EDTAeNaOHeH2Oþ SPME GCeMS PCA, LDA, CN Ursem et al., 2008

Sugars and organic acids: MeOHþ derivatization
Tomato: variety differentiation Untargeted/discriminative LyophilizationþMeOHþ sonication LCeTOFeMS PCA Moco et al., 2008

NMR
Tomato: volatiles analysis Targeted/discriminative EDTAeNaOHeH2Oþ SPME GCeMS PCA, HCA Tikunov et al., 2005
Watermelon: quality evaluation Untargeted/predictive Buffered D2O NMR PLSeLDA Tarachiwin et al., 2008
Wine: metabolite characterization Untargeted/discriminative Lyophilizedþ buffered D2O NMR PCA, PLS Son et al., 2008
Yeast: aroma compounds production Targeted/discriminative Diethyl ether GCeFID PCA, PLS Rossouw et al., 2008
Yeast: strain differentiation Untargeted/discriminative Lyophilizationþ derivatization GCeTOFeMS PCA, HCA MacKenzie et al., 2008
Yeast: strain differentiation Untargeted/discriminative e NIR PCA Cozzolino et al., 2006
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Table 2. Examples representative of common number of peaks
reported in food metabolomics.a

Technique Peaks reported Main references

HPLCeUV 40 detected Defernez et al., 2004
UPLCeMS 1560 detected Pongsuwan et al., 2008
GCeMS 91e142 detected Beckmann et al., 2007;

MacKenzie et al., 2008
CEeMS 27e45 detected Garcia-Villalba et al.,

2008; Levandi et al., 2008
NMR 16e20 identified Jahangir, Kim, Choi, &

Verpoorte, 2008;
Son et al., 2008

a Food matrix and extraction methods greatly influence the num-
ber of detected peaks.
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et al., 2006). Usually, an initial hydrophilic extraction (typ-
ically with MeOHeH2O) followed by centrifugation and
hydrophobic extraction (typically with CHCl3) of the pellet
achieves this purpose. Sequential extraction maximized the
amount of metabolites from tomato paste (Capanoglu,
Beekwilder, Boyacioglu, Hall, & De Vos, 2008) finding dis-
criminating compounds in both hydrophilic and hydropho-
bic fractions. Conversely, analysis of other food stuff such
as potato (Dobson et al., 2008) and mushrooms (Cho, Kim,
& Choi, 2007) showed low or no sample discrimination in
the hydrophobic fractions. Similar observations made in
other areas such as analysis in plant leaves (Cevallos-Ceval-
los et al., 2009) suggest a higher suitability of hydrophilic
extracts for discriminative metabolomic analyses. Hydro-
philic extractions in untargeted food analysis such as apple
(Rudell et al., 2008) and broccoli (Luthria et al., 2008) have
usually been carried out by MeOH or MeOHeH2O. Other
extractions based on deuterium oxide (D2O) for NMR anal-
ysis are also common. Novel methods for extraction of me-
tabolites from frozen meat, where a desorption gas hits the
meat surface extracting metabolites further carried to the
ionization and detection chambers, have been reported
(Chen, Wortmann, & Zenobi, 2007). Extraction for targeted
analysis relies on previous knowledge of the analytes na-
ture. Polyphenols have been extracted from berries with
a watereacetic acid combination (McDougall, Martinus-
sen, & Stewart, 2008), and hot water was used for targeted
analysis of glucosinolates in broccoli and mustard seeds
(Rochfort, Trenerry, Imsic, Panozzo, & Jones, 2008). To
maximize the number and amount of metabolites obtained
and to reduce extraction time, disruption methods such as
ultrasonic treatments are usually part of both untargeted
and targeted extractions.

Derivatization
In food metabolomics, derivatization is commonly used

prior to GC analysis in order to increase volatility of analytes.
Derivatization is usually a two-step process starting with
oximation (conversion of aldehydes and ketones to oximes)
of the sample to reduce tautomerism (especially from mono-
saccharide), followed by silylation to increase volatility by
reducing hydrophilicity of functional groups OH, SH or
NH (Gullberg et al., 2004). Several oximation and silylation
reagents have been tested in the past. Gullberg et al. (2004)
reviewed previous comparisons among derivatization re-
agents and reported that methoxiamine hydrochloride in pyr-
idine and N-methyl-N-trimethylsilyltrifluoroacetamide were
the most appropriate reagents for oximation and silylation re-
spectively. In food analyses, these reagents have shown to
improve GC separation of metabolites from potato (Beck-
mann, Enot, Overy, & Draper, 2007) and other products.
Derivatization times and temperatures affect each metabolite
independently with major changes at the beginning of the
reaction (Ma, Wang, Lu, Xu, & Liu, 2008). Therefore, pre-
liminary experiments should be done to determine optimum
derivatization times and temperatures that maximize the
detection of compounds of interest. In food metabolomic
analysis, several silylation reactions have been carried out
at 37 �C for 90 min (Beckmann et al., 2007; Dobson et al.,
2008) with good results.
Separation and detection
Separation and detection of the metabolites have been

considered the key steps in metabolic profiling. Particular
attention has been given to separation techniques such as
liquid chromatography (LC) in its high performance
(HPLC) or ultra performance (UPLC) forms, gas chroma-
tography (GC), capillary electrophoresis (CE), as well as
the coupling of these instruments to detection techniques
such as mass spectrometry (MS), nuclear magnetic reso-
nance (NMR), and near infrared spectrometry (NIR). Work-
ing principle as well as individual and hyphenated
suitability of these techniques in metabolomics have been
broadly discussed (Bedair & Sumner, 2008; Rochfort,
2005; Toyo’oka, 2008; Wishart, 2008b).

In food metabolomics most separation analyses have
been achieved by GC, CE, and LC as seen in Table 1. Com-
parison and suitability of these techniques in food analysis
have been discussed in other reviews (Wishart, 2008b).
Among non-conventional techniques, ion mobility spec-
trometry (IMS), where food metabolites are carried in
a flow of inert gas, ionized, and separated by a drift gas
flowing in the opposite direction, has been applied to me-
tabolomic analysis of cheese, beer, and food packaging ma-
terial (Vautz et al., 2006). Detection methods are mostly
based on UV, NIR, MS, or NMR techniques. In food metab-
olomics MS and NMR have been used the most (Table 1).
A greater amount of data is generally obtained by using MS
accompanied by high throughput separation techniques
such as HPLC or UPLC as shown in Table 2. For instance,
the quality of green tea has been evaluated by NMR (Tara-
chiwin, Ute, Kobayashi, & Fukusakii, 2007) and UPLCe
MS (Pongsuwan et al., 2008) and statistical models from
UPLCeMS yielded a higher prediction coefficient than
models from NMR, probably due to the higher number of
peaks detected by UPLCeMS. However, other factors
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such as sample variability should also be considered. Al-
though not as sensitive as the other detection techniques,
NIR has provided a fast non-destructive fingerprint in sev-
eral metabolomic analyses such as strain differentiation of
wine yeast (Cozzolino, Flood, Bellon, Gishen, & Lopes,
2006). Another technique, direct infusion mass spectrome-
try (DIMS) methods do not require a previous separation
step achieving faster results as applied for broccoli (Luthria
et al., 2008).

Data treatment
Metabolomic data have usually been submitted to com-

pound identification and MVDA. Compound identification
has been mainly achieved by database matching and com-
parison with pure standards ran under same conditions.
Data analysis in food metabolomics is largely carried out
by several chemometrics tools. Typically, metabolomics
data have been aligned before comparison to correct for
instrumental deviations on retention/migration times.
Alignment has been shown to drastically improve the
performance of MVDA techniques (Son et al., 2008).
Examples of alignment software include MetAlign for
LCeMS and GCeMS (Sumner, Urbanczyk-Wochniak, &
Broeckling, 2008) or alignment tools of 32 Karat for CE.
Alignment routines written in MATLAB (The MathWorks
Natick, MA) have been reported. Discriminative metabolo-
mics usually relies on multivariate methods such as PCA
for sample grouping. PCA creates new variables (principal
components) by linear combinations of the metabolites de-
tected while maximizing sample variation. Grouping occurs
when comparing the values of two or more principal com-
ponents of each sample as used for discrimination of broc-
coli varieties (Luthria et al., 2008). On the contrary, PLS is
a MVDA technique that allows sample discrimination by
reduction of dimensionality while maximizing correlation
between variables. PLS has been the main technique used
for predictive metabolomics studies such as the creation
of a metabolite-based model for sensory evaluation of wa-
termelon (Tarachiwin, Masako, & Fukusaki, 2008). Simi-
larly, linear discriminant analysis (LDA) with a priori
classification hypothesis was used for discrimination of ol-
ive oil according to origin (Cavaliere et al., 2007). Reviews
on PCA, PLS, and LD are widely found in the literature
(Kemsley et al., 2007; van der Werf et al., 2005). Also, cor-
relation techniques such as correlation network (CN) anal-
ysis have successfully lead to determining the link between
metabolites and establish possible reactions in several in-
formative metabolomics studies such as genotype differen-
tiation of tomatoes (Ursem, Tikunov, Bovy, van Berloo, &
van Eeuwijk, 2008). Genetic programming (GP) is another
discriminative tool that was utilized to improve the sensitiv-
ity and selectivity of the PLS models for honey origin de-
termination (Donarski et al., 2008). Most of the MVDA
tools such as PCA and PLS reduce dimensionality of the
data by linear combination of the original variables. In con-
trast, random forest (RF) analysis permits multivariate data
comparison without dimensionality reduction. RF has
allowed classification of potato varieties by pairwise com-
parisons with accuracy values greater than 92%. Also cre-
ation of a Mastermix potato model allowed discrimination
of a larger number of potato varieties through RF (Beck-
mann et al., 2007). Table 1 shows that most of the
MVDA in food have relied on PCA, PLS, and other linear
methods. Non-linear structures associated with the data
were not considered. Non-linear methods for dimensional-
ity reduction have been shown to outperform linear MVDA
tools in areas such as gene and protein expression studies
(Lee, Rodriguez, & Madabhushi, 2008). However, to the
best of our knowledge, application of non-linear methods
for metabolomics data analysis has not been reported in
foods. Non-linear PCA, Self Organizing Map (SOM), visu-
alization induced SOM, multidimensional scaling, and
other non-linear tools that have the potential to be applied
to foods have been recently reviewed (Yin, 2007).

Metabolomics in food quality
Targeted metabolomics focused on volatiles has shown

great potential to assess pre-harvest issues that may affect
quality. Pre-harvest fungal diseases in mango (Moalemiyan,
Vikram, & Kushalappa, 2007), post-harvest bacterial con-
tamination of onions (Vikram, Hamzehzarghani, & Kusha-
lappa, 2005) and McIntosh apples (Vikram, Prithiviraj,
Hamzehzarghani, & Kushalappa, 2004), as well as diseases
of stored carrots (Vikram, Lui, Hossain, & Kushalappa,
2006) have been assessed by sampling headspace metabo-
lites followed by GCeMS analysis. In each case, the vola-
tile profile was found to be disease-specific, and several
compounds were tentatively identified by GCeMS data-
bases. Additionally, changes in polyphenolic compounds
during berries breeding (Stewart et al., 2007) have been
characterized by informative metabolomics. Post-harvest
metabolomic analysis has the potential for detection and
understanding food spoilage as reviewed by Kushalappa,
Vikram, and Raghavan (2008).

The development of novel metabolomic techniques such
as IMS has permitted monitoring of quality attributes dur-
ing food processing. Because IMS allows in situ automatic
sampling, it can be used for determining the completion of
certain processes assuring standard quality based in a group
of metabolites. This type of analysis fits the needs of bio-
technological food processes in which metabolites are
changing with time. Targeted informative (concentration
aimed) IMS has been applied for the detection of diacetyl
and 2,3 pentadione compounds in beer to determine the
endpoint of the fermentation (Vautz et al., 2006). Discrim-
inative metabolomics has allowed classification of health
supplements based on their quality and origin (Kooy,
Verpoorte, & Meyer, 2008; Liu, Si, Wan, Lin, & Xu, 2008).

Future trends will involve the use of discriminative and
predictive metabolomics as the ultimate tool for quality
control. The metabolite profile of products meeting mini-
mum standards can be used as a baseline for quality
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acceptance. Individual samples obtained during processing
can be analyzed and compared to the baseline through
MVDA techniques to determine acceptability of the batch
produced. Moreover, accidental adulteration of food (e.g.
allergenic inclusion or microbial contamination) can be de-
tected by appearance of uncommon peaks in the sample’s
metabolic profile. Informative metabolomics can elucidate
the nature of the peaks of interest. In addition, combina-
tions of predictive and informative metabolomics have the
potential to become the single all-parameter analysis tool.
Quality parameters are usually individually measured com-
plicated and costly protocols. Many of these parameters can
be quantified in a single run of informative metabolomics
whereas others (e.g. sensory attributes) can be estimated
by predictive models based on sample metabolite profile,
providing a cost-effective alternative to quality analyses.
Predictive models have been developed to estimate sensory
attributes of green tea (Ikeda et al., 2007; Pongsuwan et al.,
2008; Tarachiwin et al., 2007), watermelon (Tarachiwin
et al., 2008) and mushrooms (Cho et al., 2007). Similarly,
metabolomics has the potential of identifying compounds
that dictate consumer taste preferences. Consumers’ prefer-
ences can be obtained by taste panels while discriminating
compounds can be identified by metabolomics techniques.
Sensory evaluations with various concentrations of the cho-
sen compounds will confirm their impact on consumer pref-
erences (Fig. 3).

Metabolomics in food safety
Many untargeted discriminative tools have been applied

in food safety. Amongst the many techniques, neutral desorp-
tion extractive electrospray-ionization MS (EESI-MS) was
able to discriminate Escherichia coli-contaminated spinach
through the presence of unidentified high molecular weight
Food samples 

Metabolomics
Discriminative and 

informative

Preferences Discriminating
compounds

New formulations

Sensory
confirmation

Sensory analysis 
Taste panel

Fig. 3. Potential application of metabolomics for understanding con-
sumer preferences.
peaks (Chen et al., 2007). Even though no attempt to deter-
mine the limit of detection of E. coli was made, the technique
clearly shows potential for rapid pathogen detection in food.
Additionally, the same technique discriminated spoiled fish
through the presence of putrescine, cadaverine, and hista-
mine, showing a great potential of this type of analysis in
food safety. Informative and predictive metabolomics in
fresh raw fish have been recommended as tools to provide ev-
idence of water contamination, temperature stress, and the
fish health conditions at the moment of the catch (Samuels-
son & Larsson, 2008).

Metabolomics has the potential to assess the safety of
novel pre- and post-harvest technologies. Unintended ef-
fects of genetic modification of foods can been assessed
by untargeted discriminative analyses (Chao & Krewski,
2008; Zdunczyk, 2006). Catchpole et al. (2005) utilized un-
targeted discriminative metabolomics to differentiate genet-
ically modified (GM) potatoes from non-treated ones.
Sample differentiation occurred based on the intended var-
iation of fructans in GM samples. After removal of fructans
derivatives from the model, no discrimination was observed,
suggesting that GM potatoes are similar in composition to
the original ones. Similarly, intended increase in flavonoid
concentration in GM tomatoes have been confirmed
through targeted informative metabolomics (Le Gall, Du-
Pont, et al., 2003) whereas small non-intended variations
were detected by untargeted analysis (Le Gall, Colquhoun,
Davis, Collins, & Verhoeyen, 2003), concluding that no
major unintended changes occurred after genetic modifica-
tion. Future trends would involve the use of informative
metabolomics to assess the safety of new or controversial
processing technologies such as irradiation.

Metabolomics for compliance with food regulations
Differences in food metabolite profile can be due among

other things to genotype and growing conditions (e.g. cli-
mate, soil composition, fertilization, and irrigation). Estab-
lishing baseline regional and varietal variability in
metabolite profiles provides reliable information about the
origin and authenticity of the food. Country of origin regu-
lations was verified by discriminative and predictive metab-
olomics. Origins of honey (Donarski et al., 2008), olive oil
(Cavaliere et al., 2007) and wine (Son et al., 2008), have
been determined by discriminative and predictive metabo-
lomics. Regulations in many countries do not allow
the use of GM foods, and GM verification analyses are
complicated and expensive. Discriminative and predictive
analysis have been used to differentiate genetic modifica-
tion in maize (Levandi, Leon, Kaljurand, Garcia-Canas,
& Cifuentes, 2008), soybean (Garcia-Villalba et al.,
2008), potatoes (Catchpole et al., 2005; Le Gall, Colqu-
houn, et al., 2003), and wheat (Shewry, Baudo, Lovegrove,
& Powers, 2007). Additionally, metabolomics can be used
for compliance verification of labeled ingredients. These
analyses have relied in the use of discriminative metabolo-
mics to differentiate among varieties of several fruits and
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vegetables. For instance, MVDA techniques were used to
differentiate cherry tomato from other varieties such as
beef and round tomatoes by SPMEeGCeMS (Tikunov
et al., 2005), LCeMS and NMR (Moco, Forshed, De
Vos, Bino, & Vervoort, 2008). Variety differentiation has
also been applied to broccoli (Luthria et al., 2008), wines
(Pereira et al., 2007; Son et al., 2008), ginseng (Kang
et al., 2008; Shin et al., 2007), and potatoes (Dobson
et al., 2008; Parr, Mellon, Colquhoun, & Davies, 2005).

Metabolomics in food microbiology
Research aimed at identifying bacterial contamination of

foods has benefited from the use of metabolomics. Bacteria
identification and confirmation is traditionally done by
complex numerous biochemical tests. In contrast, discrim-
inative and predictive analyses have the potential for iden-
tifying and confirming bacterial contamination. These
analyses are mostly MS-based (Ecker et al., 2008). Micro-
organisms are initially grown in culture media, then con-
centrated (typically by centrifugation) and internal
metabolites are extracted through cell disruption processes
such as ultrasound or bead beating processes before separa-
tion or detection occurs. By following this method and the
use of a matrix assisted laser desorption/ionization time of
flight mass spectrometry (MALDIeTOFeMS) to detect
high molecular weight compounds, 12 species of Aspergil-
lus and 5 strains of Aspergillus flavus have been classified
with 95e100% accuracy (Hettick et al., 2008). Similar
methods have been used to classify E. coli and Yersinia
according to growing culture media, species, and strain
(Parisi et al., 2008). Metabolomics can also be used for un-
derstanding microbial metabolism. Dynamics of glycolysis
in E. coli have been assessed under systemic variation of
growth rate and different glucose availability (Schaub &
Reuss, 2008) generating information on how glycolysis is
affected under these conditions.

Wine and baking yeasts have been differentiated from
medical strains by using DIMS and GCeTOFeMS (MacK-
enzie et al., 2008). In addition, exo-metabolites of several
wine yeast strains were analyzed by HPLC and GCeFID
to compare aroma relevant compounds to gene expression
(Rossouw, Nas, & Bauer, 2008) showing the potential of
metabolomics for assessing gene expressions.

Current methods for quantification of bacteria in food
still rely on lengthy techniques such as plate count and
most probable number. Metabolomic analysis coupled to
sensor development can provide critical information for
the detection and quantification of bacteria. Metabolomics
has been successfully used for the discovery of specific bio-
markers in areas such as plant physiology (Glauser et al.,
2008). The discovery of bacteria biomarkers and their mon-
itoring throughout growth phases has the potential to
become a quantitative tool if related to the final bacteria
colony forming units (CFU). Sensors may be developed
to monitor the formation of the biomarker in the culture
broth and the rate of biomarker production can be
incorporated into an algorithm that predicts the CFU.
Metabolomics studies during E. coli growth have shown
the time-related progression of several metabolites (Koek,
Muilwijk, & van der Werf, 2006).

Moreover, metabolomics has the potential to find new
antimicrobial compounds as well as to determine the analy-
tes responsible for the antimicrobial characteristics of cer-
tain plants and foods. Zhi, Yu, and Yi (2008) utilized
discriminative metabolomics based on HPLC to identify
dihydrocucurbitacin F-25-O-acetate as the major antimicro-
bial component of the herb Hemsleya pengxianensis. PCA
data showed that Staphylococcus aureus treated with dihy-
drocucurbitacin F-25-O-acetate clustered with those treated
with the herb extract.

Metabolomics in food processing
Food processing involves the combination of physical and

chemical events that may cause important changes in food
components. These changes can be detected by metabolo-
mics. The production of cheonggukjang (a soybean and rice
straw fermented drink) has been monitored by informative
and discriminative untargeted analysis using NMR (Choi,
Yoon, Kim, & Kwon, 2007). The method showed the
expected time-related reduction of sugars (e.g. sucrose and
fructose) and increase of acetic acid, tyrosine, phenylalanine
and others. Final products were differentiated as a function of
fermentation time by PCA. In addition, Capanoglu et al.
(2008) utilized both targeted and untargeted informative me-
tabolomic analyses to show that several flavonoids such as ru-
tin, naringenin and derivates, as well as some alkaloids
increased significantly after the breaking step (fruit chop-
ping). The appearance of new flavonoids was explained by
the possible activation of pertinent enzymes after wounding.
In addition, reduction of these compounds after the pulping
step was observed because of the high presence of these ana-
lytes in the removed skin and seeds. Metabolomics can also
be used to understand the suitability of certain varieties for
processing. For instance, several potato varieties are preferred
for frying whereas other for baking. To assess differences, po-
tato varieties have been analyzed by flow infusion electro-
spray-ionization MS (FI-ESI-MS) and compound identification
was aided by GCeMS (Beckmann et al., 2007). Cultivars
Salara and Agria were low in tyrosine (major substrate for
polyphenol oxidases) making them suitable for slicing and
frying. Tyrosine is also a precursor of aroma and flavor com-
pounds in boiled potatoes by Strecker degradation. Cultivars
found to be high in tyrosine (Désirée and Granola) are more
suitable for baking (Beckmann et al., 2007). This type of
analysis has shown the potential for providing valuable infor-
mation to food product and process development industry.

Informative metabolomics has the potential to assess un-
intended effects during processing and pre-processing such
as changes in nutrient composition, degradation of health-
related compounds, and formation of new compounds like
toxins. In addition informative and discriminative metabo-
lomics have the potential to study other pre-processing
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scenarios such as organic food production, and denomina-
tions such as ‘‘cage free’’ or ‘‘grade A’’.

Conclusions
Metabolomics has shown to be an important tool for the

progress of the main food science areas such as compliance
of regulations, processing, quality, safety, and microbiol-
ogy. Recent studies suggest that the potential of metabolo-
mics in food science can be expanded to the area of food
product development by determining the compounds re-
sponsible for consumers’ taste preferences.

The development of rapid technologies such as DIMS,
IMS, and EESI has helped the growth of metabolomics in
food science. However, further improvement on these tech-
niques is necessary to overcome sensitivity and compound
identification issues.

Most of the data analyses in food have relied in linear
MVDA tools, not considering possible non-linear aspects
of the samples. Future trends should involve the use of
non-linear tools for dimensionality reduction in food
metabolomics.

Even though metabolomic analyses in food have been
much diversified, most studies can be considered as dis-
criminative (Table 1) with very few compounds identified.
Therefore, the development of a food metabolome data-
base, as suggested by Wishart (2008b) is needed in order
to facilitate compound identification and the development
of informative metabolomics. In addition, most reports
have focused on fruit and vegetables (Table 1) leaving the
meat, seafood, and related areas still underexplored. Be-
cause of some metabolic similarities, identification of
many compounds in red meat can be carried out by using
available human metabolome databases (Wishart, 2008b).

Metabolomics’ successful association to other analytical
areas such as genomics has been demonstrated, showing
the potential of metabolite profiling to be linked to other
areas as well. Metabolomics as a first step for sensor devel-
opment has the potential to introduce a series of new rapid
methods for food analysis. In this area, bacteria biomarkers
can be discovered by metabolomics techniques and sensors
can be developed for rapid detection of the selected bio-
markers. To achieve this purpose, studies on microbial bio-
markers identification involving different levels of bacterial
contamination, accompanying flora, and biomarker response
in food are needed.

The rapid growth of metabolomics in the food science
area suggests the potential of discriminative, predictive,
and informative analyses to solve the most important prob-
lems and provide important information to the food industry.
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