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Metabonomics and its many pseudonyms (metabolomics, met-

abolic profiling, etc.) have exploded onto the scientific scene in the

past 2 to 3 years. Nowhere has the impact been more profound

than within the toxicology community. Within this community

there exists a great deal of uncertainty about whether metabo-

nomics is something to count on or just the most recent

technological flash in the pan. Much of the uncertainty is due to

unfamiliarity with analytical and chemometric facets of the

technology and the attendant fear of any ‘‘black-box.’’ With those

fears in mind, metabonomics technology is reviewed with partic-

ular emphasis on toxicologic applications in preclinical drug

development. The jargon, logistics, and applications of the

technology are covered in some detail with emphasis on recent

work in the field.

Key Words: metabonomics; metabolomics; biomarkers;

mechanisms.

I. THE NATURE OF THIS REVIEW

Metabonomics and metabolomics have been the subject of
numerous reviews in recent years (Bino et al., 2004; Fernie
et al., 2004; Fiehn, 2002; Goodacre et al., 2004; Lindon
et al., 2003a, 2004b,c; Nicholson et al., 1999; Nicholson and
Wilson, 2003; Reo, 2002; Weckwerth, 2003), and a volume on
metabolic profiling was published in 2003 (Harrigan and
Goodacre, 2003). Even within the specific arena of the
toxicological applications of metabonomics a great deal has
been written (Griffin, 2003; Lindon, 2003b, 2004d; Nicholson
et al., 2002; Robertson et al., 2002; Shockcor and Holmes,
2002). So what is different about this review? This review will
focus on toxicology applications of metabonomics technology,
as written by a practicing toxicologist for practicing toxicol-
ogists. The particular focus is on those who may be considering
utilization of the technology either in-house or via purchase of
contract research organizations (CRO) services. Specifically,
the review spotlights the application of the technology within

the pharmaceutical industry, as that is where the technology has
had its greatest impact (from a toxicology perspective). The
hope is that such a focused review will lend clarity to the
discussion and make obvious those issues of greatest concern
to the toxicologist.

II. METABONOMICS OR METABOLOMICS?

Before any discussion of metabonomics is initiated, some
explanation (though unfortunately not resolution) of a signifi-
cant source of confusion must be attempted. What is the
difference between metabonomics and metabolomics, and
when is the use of either term appropriate? The answer,
unfortunately, is that, depending on whom you read or talk to,
both terms may be appropriate in most cases, and the
distinctions are more a matter of historical usage than
meaningful scientific definition. As the reader may divine by
the use of the word ‘‘metabonomics’’ in the title of this
review—the author has his own bias. However, it is based on
the fact that metabonomics was coined and defined by its Greek
roots, rather than by simple concatenation. Metabonomics
is defined as ‘‘the quantitative measurement of the time-
related multi-parametric metabolic response of living
systems to pathophysiological stimuli or genetic modification’’
(Nicholson et al., 1999). The actual term was devised by
Jeremy Nicholson, Elaine Holmes, and John Lindon of
Imperial College (London) from the Greek roots ‘‘meta’’
(change) and ‘‘nomos’’ (rules or laws) in reference to chemo-
metric models that have the ability to classify changes in
metabolism (Lindon et al., 2004a). The origin of the word
metabolomics is a bit murky. While the concept of the
metabolome has been in existence for some time as part of
metabolic control theory and flux analysis (Cornish-Bowden,
1989; Derr, 1985), it was not routinely used in publications
until the late 1990s (Tweeddale et al., 1998). While not
expressly defined, the term metabolomics was indicated by
Fiehn (2001) to be the ‘‘comprehensive and quantitative
analysis of all metabolites. . . .’’ It will be left to the reader to
divine the difference between those definitions. Compounding
the naming convention problem is the fact that metabonomics
and metabolomics have been described as subsets of each other
(Fiehn, 2001; Lindon et al., 2003a). As of now, appropriate
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omic term choice is a bit like the Betamax/VHS argument, both
have legitimate claims of superiority but the user community
will ultimately decide—at least until the metabonomic equiv-
alent of the DVD comes along, anyway. The term ‘‘metabo-
nomics’’ will be employed in this review, with the realization
that either term may be acceptable.

III. WHY OMICS?

Perhaps forgotten in our rush to generate novel omics terms
is that the progenitor omics—genomics—was derived from the
term genome which was derived from a combination of the
words gene and chromosome to indicate the complete set of
chromosomes and the genes contained in them. What may be
surprising was that the term was coined in the 1920s—well
before the structure of DNA was even understood (McKusick,
1997). The use of genomics as a term followed much later in
the mid-1980s and was, at the time, the subject of much debate.
In that light, transcriptome and proteome (and the derivative
omics) may be of dubious etymological origins, but they are in
common usage. An omics technology has come to mean an
approach capable of generating a comprehensive data set of
whatever is being measured, be it transcripts (transcriptomics),
proteins (proteomics), or metabolites (metabonomics). Why
should toxicologists care what terms we use? The understand-
ing one brings to the terms impacts the perception and
expectations of the technology. When considering omics in
general, an obvious question is when does measurement of
a few parameters within a molecular family graduate to the
omic level. Biofluid nuclear magnetic resonance spectroscopy
(NMR) has been around for about as long as NMR instrumen-
tation has been around (Gadian, 1982; Lindon, 1999). What
differentiates metabonomics or metabolomics from biofluid
NMR (or biofluid mass spectrometry (MS) for that matter)?
The difference lies in what is known about the parameters
being measured and the expectation of what the data will
reveal. Biofluid NMR analysis is typically done with a priori
knowledge of what a parameter is and what it reflects. It brings
with it the expectation that a measurement or combination of
several measurements reveals something about a specific
target. In an omic technology, one need not know what every
parameter is (think expressed sequence tags (ESTs), surface-
enhanced laser desorption-ionization (SELDI) peaks, or NMR
resonances) or what it indicates to obtain useful information
(not that such parameters aren’t important!). The expectation is
that the response pattern of numerous analytes is reflective of
a change in physiology indicative of efficacy, toxicity, disease,
or physiological change, and the comprehensive nature of the
data set enables an in toto evaluation of systemic response. This
pattern may be (and should be) searchable for specific analyte
information to provide mechanistic relevance, but the pattern
itself is useful. In other words, the omics are tools for studying
and understanding systems biology (Goodacre et al., 2004).

A systems response would be difficult, if not impossible, to
decipher from the results of any one analyte measurement.
These distinctions are important for toxicologists attempting to
manage expectations as to what can be learned from metabo-
nomics. If one has a specific analyte or a specific target organ in
mind, metabonomics is probably not the best approach. On the
other hand, if biomarker discovery (not necessarily validation)
or hypothesis generation is an endpoint, metabonomics may be
an excellent choice.

IV. WHICH PLATFORM?

A mistake the uninitiated frequently make is to assume
metabonomics deals primarily with NMR-derived data, while
metabolomics most appropriately describes mass spectrometry
(MS)-derived data. As can be gleaned from the definitions
given above, this is not the case. This misunderstanding is most
likely attributable to the history of the terms, as metabolomics
was historically used by plant scientists using MS platforms
and metabonomics was used by the Imperial College group and
adherents who almost exclusively used NMR for most of their
early work. This is currently changing as ‘‘metabonomic
studies’’ based on the MS platform and ‘‘metabolomic studies’’
based on NMR are both present in the literature (Plumb et al.,
2002; Reo, 2002). Indeed, specific platforms are not a pre-
requisite for metabonomic investigations, so in theory, any
technique capable of generating comprehensive metabolite
measurements can be used for metabonomics. However, while
other technologies are now being utilized, mass spectrometry (MS)
in its various hyphenated derivations (liquid chromatography-
MS, gas chromatography-MS, etc.) and NMR platforms
dominate the metabonomic literature. So of these two plat-
forms, which platform is better for metabonomics applications
in toxicology? The answer, in true Solomonic fashion, is ‘‘it
depends.’’ Table 1 provides a comparison of the two analytical
platforms toxicologists may find useful when considering their
potential for metabonomics analyses. Preparation of such
a table is always a risky enterprise, as proponents of a particular
technology will dispute every point. Indeed, depending on the
specific NMR or MS configuration, almost every line on the
table is debatable. However, the intent of the table is not to steer
the reader in one direction or another, but rather to guide the
discussions toxicologists may have with their local MS or
NMR support groups, who will undoubtedly argue the undeni-
able superiority of their platform. The truth of the matter is,
most groups who are seriously pursuing metabonomics are
currently or soon will be using both platforms. The sensitivity
advantage of MS is undeniable and makes it indispensable for
some work, particularly if novel biomarkers are being sought
out. On the other hand, the nonselectivity, lack of sample bias,
and cross-laboratory/cross-platform reproducibility of NMR
(Keun et al., 2002) is extremely important for toxicologists
considering screening applications.
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V. MAGIC ANGLE SPINNING (MAS)

A clear advantage of the NMR platform is that it enables the
potential for intact tissue metabonomics. Magic angle spinning
(MAS) is an NMR technique in which a small quantity of intact
tissue can be placed in the spectrometer and analyzed. It was
not included in Table 1 as an advantage for the NMR platform,
because it requires specialized equipment and expertise to be
conducted and, hence, has received much less attention than
traditional biofluid NMR for metabonomics studies. Extracts of
tissues can and have been routinely studied using biofluid NMR
techniques. However, with any extraction procedure, questions
remain about how representative the extract is of the original
sample and the potential for secondary (nonbiological) reac-
tions induced by the extraction procedure. MAS spectroscopy

provides a path around these limitations. The term ‘‘Magic
Angle’’ is derived from the fact that, when samples are spun
rapidly at 54.7� relative to the applied magnetic field (the so-
called ‘‘magic angle’’), line-broadening effects that would
ordinarily obfuscate a proton spectra of a solid sample, can
be reduced (Shockcor and Holmes, 2002). In practice, the
technique is carried out by placement of a few milligrams of
intact tissue into a specially designed rotor, which is spun at
high speed within the bore of the magnet. While MAS will not
be a rapid-throughput procedure in the near future, it can and is
serving as a tool for linking biofluid changes to mechanism of
action in target tissues. This is particularly important when
products of intermediate metabolism dominate observed
changes in biofluids and are difficult if not impossible to link
to any specific target organ. Several nice examples of the
application of MAS technology integrated with more tradi-
tional biofluid metabonomics have been recently published
(Coen et al., 2003, 2004; Garrod et al., 2001; Waters et al.,
2000, 2001, 2002). It is clear from these examples that the use
of MAS is synergistic with biofluid metabonomics with regard
to identifying and understanding basic mechanisms of toxicity.

VI. CHEMOMETRICS

No review of metabonomics technology can be complete
without at least some mention of chemometrics. Any toxicol-
ogist considering metabonomics needs to give adequate
thought to chemometrics support. It is a frequently overlooked
resource requirement for those just starting out in the
technology. Chemometrics support is second only to analytical
support for the toxicologist when considering what resources
he or she needs to initiate research in metabonomics. Fre-
quently chemometrics support is most available in analytical
chemistry groups, because that is where the field is derived
from. This review can only touch on the subject, because the
arcana of neural networks, k-nearest neighbor clustering, and
the like is a surefire cure for insomnia. As with many aspects of
the omic sciences, we must first dispense with some terminol-
ogy. What is the difference between chemometrics and
bioinformatics? Chemometrics can be broadly thought of as
the application of mathematical and statistical methods to
chemistry (Deming, 1986; Lavine and Workman, 2004). In the
context of NMR- or MS-based metabonomics, it would include
any mathematical or statistical tool used for spectral process-
ing, peak alignment, outlier detection, normalization, etc.
(Duran et al., 2003; Farrant et al., 1992). The science of
bioinformatics, on the other hand, involves the storage,
retrieval, and analysis of computer-stored information in
biological research (Bains, 1996). This has come to include
everything from molecular biologists who can interpret the
meaningfulness of basic local alignment search tool (BLAST)
searches to code writers developing search algorithms (Gershon
et al., 1997). There is of course some overlap, particularly

TABLE 1

Comparison of NMR Versus Mass Spectrometry for

Metabonomics Applications

NMR Mass Spec

Logistics

Capital cost no advantage

Routine operating costs no advantage

Maintenance advantage

Per sample cost no advantage

Footprint no advantage

Required technical skilla advantage

Instrument ‘‘up-time’’ advantage

Instrument life-span no advantage

Analytical considerations

Sensitivity big advantage

Reproducibility

(within lab)

advantage

Reproducibility (across labs) big advantage

Quantitation big advantage

Average run speed no advantage

Capacity (samples/day) no advantage

Sample preparation

requirements

advantage

Sample analysis automation advantage

Versatilityb advantage

Selectivityc advantage

Nonselectivityc advantage

Metabonomics

Resolvable metabolites big advantage

Identification of unknowns advantage

Potential for sample biasd big advantage

Data analysis automation advantage

aPool of qualified analysts is much smaller for NMR than MS.
bGenerally any NMR instrument can be configured for most applications

while different MS instrumentation may be required for specific applications.
cMS excels at selective identification of a molecular entity, while NMR

excels at identification of all proton containing species in a sample. Therefore,

selectivity can be an advantage or disadvantage depending on the nature of the

application.
dPotential for misleading, incomplete or nonreproducible data set due to

bias inherent to the technology (e.g., ion suppression in MS).
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when databases are being generated from processed spectra
rather than annotated metabolite lists. Much of the early
chemometric work within metabonomics was done with the
goal of doing just that—using the entire spectrum as a data
source rather than limiting analysis to just those peaks that
could be positively identified (Anthony et al., 1995b; Holmes
and Antti, 2002; Holmes et al., 1992a,b, 1994, 1998, 2000;
Lenz et al., 2004b; Spraul et al., 1994; Stoyanova et al., 2004).
This work uses and expands on well-known pattern recognition
techniques, greatly amplifying the power of the individual
spectrum, since the entire data spectrum can be utilized and is
not limited to only those small areas of the spectrum that are
readily annotated (Ebbels et al., 2003; el-Deredy, 1997; Keun
et al., 2004). It is this pattern recognition approach that drove
the establishment of the COMET consortium (Lindon et al.,
2003b). The beauty of the approach is that individual
metabolite identification is not sacrificed to pursue patterns.
Like other omic data, the patterns provide one level of
information, but the spectra can be drilled down into to obtain
component identification, which, in most cases, if done in
sufficient detail, will be as important as, or more important than
the pattern data. However, the cost of those identifications can
be large in terms of instrument time and man-hours. A survey
of all multivariate statistical methods that have been used in
metabonomics studies could be the subject of a review all by
itself. Therefore, individual approaches will not be discussed in
detail with one exception. Principal component analysis (PCA)
has become a routine statistical method for use in many types
of omic data, and hence a brief description is warranted.

A typical NMR metabonomics study can generate hundreds
of biofluid samples and, hence, hundreds of NMR spectra.
Examining each spectrum individually can be a daunting
exercise even for the trained spectroscopist. Tools have been
developed or borrowed from other fields for assessing large
numbers of NMR spectra in a relatively rapid fashion. PCA is
one such tool that has been borrowed for metabonomics to such
a point that PCA cluster plots, also known as ‘‘scores plots,’’
have become iconic of the metabonomics publication or
presentation. Masses of spectral data, such as that generated
by NMR, can be thought of in terms of a multivariate statistical
problem. The true variables are the metabolite concentrations.
In practice, pseudo-variables are generated by integrating the
spectral data into discrete regions about the width of spectral
peaks associated with metabolites. The integrated area under
the curve of each of these regions (referred to as ‘‘bins’’ or
‘‘buckets’’) is calculated, and these values serve as variables.
A 0.04 ppm-wide region is a typical bin width which will pro-
duce 200 to 250 ‘‘buckets’’ of data from the typical 10 PPM
NMR spectrum. Certain regions of the spectrum, such as those
containing water and urea resonances (for urine), are typically
excluded from the binning process. In the case of NMR spectra
of biofluids, it can be expected that subsets of variables will be
highly correlated with each other, because molecules may have
more than one spectral peak and, hence, contribute to more

than one bucket or variable. Principal component analysis
(PCA) is a statistical method that reduces a great number of
variables (usually correlated) into a smaller number of un-
correlated variables, which are called principal components. In
short, PCA is a decomposition of the raw data into ‘‘scores’’
that indicate the relationship between samples and ‘‘loadings,’’
which indicates the relationships (correlations) between the
variables. The first principal component explains the greatest
variability in the data, the second principal component is
independent of (orthogonal to) the first component and second
best explains the variability of the data and so on. The goal of
the exercise is dimensional reduction, while sacrificing as little
accuracy as possible. The analysis itself can be conducted
using commercial multivariate statistical software available
from several vendors. As used in a typical metabonomics study,
a 200- to 250-variable set representing one spectrum is reduced
to two or three variables, which can be represented as a single
point in two- or three-dimensional plots, respectively. It is these
plots that one typically sees in publications or presentations of
metabonomics data. Whether the preceding paragraph is clear
or not, the important point for the toxicologist to remember is
that each point on a metabonomics PCA scores plot represents
all the data contained in one spectrum. Sample points that
cluster together have more similar spectra (and hence more
similar biochemical makeup) than things that cluster apart.
PCA plots are extremely powerful for rapid identification of
inherent clusters in the data (which may be suggestive of
a common effect or mechanism), assessment of dose-related
and time-related changes, and the identification of individual
outliers. However, by themselves, the scores plots add little to
biomarker identification, provide little mechanistic insight on
a molecular basis, and say nothing about the toxicological
significance of the clusters. However, the PCA data can be
examined in more detail by examining the loadings to find out
which variable relationships are responsible for the loadings.
After identifying the variables that are primarily responsible for
separation, spectral regions can be identified and specific
molecules postulated. PCA is only one of many statistical
tools that can be used for metabonomics study. The scope and
nature of these tools is beyond the extent of this review, and
the reader is referred to any of the above-cited references for
guidance on these techniques.

VII. OTHER APPLICATIONS OF METABONOMICS

While this review will focus on the preclinical application
of metabonomics, it would do the technology a great disservice
to ignore all applications outside the preclinical arena. In
particular, three broad application areas need be mentioned:
(A) environmental applications, (B) clinical applications,
and (C) biomedical applications (other than clinical and toxic-
ologic applications).
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A. Environmental Applications

Some of the most significant efforts in the area of metabolic
profiling have been made in the area of the botanical sciences
(Fiehn et al., 2000a,b, 2001; Fiehn and Weckwerth, 2003;
Roberts, 2000; Roberts and Jardetzky, 1981; Roberts and Xia,
1995; Trethewey et al., 1999; Weckwerth et al., 2004). Though
this may seem an odd literature for toxicologists to spend
their time perusing, the tools and techniques used by these
researchers are quite powerful and applicable to any biological
investigation. Of particular note are the efforts of these
investigators to bring metabolic control and flux analysis into
their experimental design and interpretation. Their experiments
serve as a harbinger of where mammalian metabonomics
efforts will soon be headed.
Beyond plants, metabonomics technology has made signif-

icant inroads into the environmental research community. The
environmental applications of metabonomics have been re-
cently briefly reviewed (Viant et al., 2003), and the diversity of
work is fascinating. Some of the most interesting work in this
area has been conducted in earthworms, where metabonomics
has been shown to be useful for speciating worms by
phenotype, a typically difficult task (Bundy et al., 2002c),
and for monitoring exposure to environmental chemicals or
other physiologic disruption (Bundy et al., 2002a,b, 2001,
2002c, 2003; Warne et al., 1999).
In the marine world, metabonomics has been shown to

differentiate between normal, stunted, and diseased abalone
(Viant et al., 2003) and the embryonic stages of the Japanese
Medaka (Viant, 2003). Mammals other than laboratory species
have not been ignored. Renal MAS and urine biofluid
assessment of wood mouse, white-toothed shrew, and bank
vole have been recently compared to the laboratory rat and
inferences made with regard to the findings and varied
metabolic processes between the species (Griffin et al., 2000).

B. Clinical Applications

For the toxicologist, clinical application of metabonomic
technology may be as important as, if not more important than
any preclinical work in which he or she may become involved.
After all, the human population is the intended target for almost
all their efforts (we can’t forget about the veterinary market!).
Ideally, techniques developed to identify safety concerns
preclinically, would be readily transferable to the clinic. One
of the great strengths of metabonomics technology is that
the use of urine as a primary sample enables noninvasive
monitoring of both efficacy and toxicity endpoints.
Clinical application of NMR technology has a long and

storied history (Andrew, 1984). Lindon (Lindon et al., 1999)
reviews a series of approximately 40 human inborn errors of
metabolism that have been studied using NMR techniques over
the past 20 years. To some extent, the questions raised earlier
now become apparent. Is there a difference between biofluid

NMR and metabonomics, and when does the former graduate
to the latter? Lindon et al. (1999) reports on work conducted
by Foxall (Foxall et al., 1993) and Le Moyec (Le Moyec et al.,
1993) on an interesting case that may serve as a transition
between traditional clinical NMR and clearly ascribed clinical
metabonomics applications (of course, it is debatable whether
any clinical application of NMR can be called traditional,
but that is another story). A significant clinical problem with
transplant patients is differentiating between patients undergo-
ing graft rejection and those suffering from cyclosporin
toxicity. Cyclosporin is an immunosuppressive drug frequently
given to transplant patients, and the clinical presentation of the
toxicity can look very similar to graft rejection. To address this
problem, urine was collected from patients undergoing kidney
transplants that were given cyclosporin and monitored by NMR
spectroscopy. The use of NMR coupled with pattern recogni-
tion techniques and trajectory analysis could clearly differen-
tiate when a patient was undergoing graft rejection versus
succumbing to cyclosporin. This may be considered a true
clinical metabonomic application, because the spectral pattern
and trajectory change were what was used to differentiate the
toxicity, not any specific biochemical marker. This is not to say
that, had a unique biomolecule been associated with either graft
rejection or cyclosporin toxicity, it couldn’t be used in
isolation, but that isolation and identification of such a unique
biomarker was not necessary to gain important and clinically
relevant information.

Several recent publications demonstrate quite convincingly
the power of clinical metabonomics. While earlier studies on
inborn errors of metabolism focused on molecular identifica-
tion of the relevant metabolic pathways (Holmes et al., 1997),
a more recent effort details methods for rapid identification of
inborn errors of metabolism using pattern recognition tech-
niques (Constantinou et al., 2004). Even more compelling was
recent work demonstrating that metabonomics could be used to
rapidly and noninvasively assess the severity of coronary heart
disease in a clinical population (Brindle et al., 2002). The same
group demonstrated a relationship between serum metabolic
profiles and hypertension (Brindle et al., 2003). Metabonomic
patterns have also been shown to be useful in the diagnosis of
interstitial cystitis (IC), having the ability to differentiate IC
from bacterial cystitis in a clinical population with a success
rate of approximately 84% (Van et al., 2003). Beyond disease
diagnoses, metabonomics has also been shown to be an
effective tool for assessing lifestyle markers of health, partic-
ularly related to nutritional variation (German et al., 2003a,b;
Noguchi et al., 2003; Teague et al., 2004).

An oft-raised concern about the use of metabonomics in
clinical trials is the inherent variability of the clinical
population. Given that metabonomics can identify even the
slightest variation in animal studies, what might we expect
from the clinical population where genetic and environmental
factors (including dietary) can only be minimally controlled?
An answer to that question was recently published by Lenz
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et al. (2003), who demonstrated that both urine and plasma
could be reliably collected for metabonomic analyses in well-
controlled clinical studies.

It can be anticipated that the rate of expansion of clinical
applications of metabonomic technology will probably in-
crease at an even greater pace than preclinical applications.
The costs and difficulties associated with conducting clinical
studies demand that more efficient, comprehensive tools be
made available, so that greater levels of information can be
gained from costly clinical trials without increasing the level of
discomfort to the patient or decreasing the practicality to the
physician. Metabonomics can meet both those requirements.

C. Biomedical Applications

There are a number of biomedical metabonomic applications
that fall outside the realm of clinical and toxicology applica-
tions. For example, a recent review documents the significance
of metabolic profiles of cancer cells as a tool for understanding
tumor development and progression (Griffin and Shockcor,
2004). Since metabonomics, by definition, will describe a bio-
chemical phenotype of whatever living system is being
evaluated, an obvious application of the technology is gen-
erating strain phenotypes from either experimentally altered
genotypes (e.g., transgenic models) or those derived by
selective breeding (congenic, coisogenic, consomic, etc.).
Early work demonstrated the biochemical differences of two
albino rat strains commonly used in the pharmaceutical
industry, the Han Wistar and Sprague–Dawley rat (Holmes
et al., 2001). The technology also answered the age-old
question of how you tell a white mouse (AlpK:ApfCD) from
a black mouse (C57BL/10J). So important was the question
that it was answered using both NMR (Gavaghan et al., 2000)
and MS (Plumb et al., 2003) based platforms. More recent
work demonstrated that metabonomic assessment of brain
extracts was able to distinguish phenotypic differences in
a transgenic mouse model of spinocerebellar ataxia as com-
pared to the background C57BL/6J strain (Griffin et al., 2004).

The role of the gut microflora in metabolism and toxicity,
though well recognized (Boxenbaum et al., 1979; Coates, 1975;
Eyssen, 1973; Gibson, 1998; Gonthier et al., 2003;
Rowland, 1981, 1988; Upreti et al., 2004; van der Waaij, 1991)
has not been seriously evaluated at the omic level. Recently
Nicholson and Wilson emphasized the role of the gut
microflora in understanding systemic response to drug or
toxins at both the level of metabolism and pathophysiology
(Nicholson and Wilson, 2003). This is particularly true for
anyone trying to understand a metabolic response via
metabonomic technology. An interesting amplification of this
concept was conducted by Nicholls et al., who followed the
urinary metabolic profiles as axenic rats adapted to
normal gut microflora in the laboratory environment
(Nicholls et al., 2003).

Other recently reported applications of metabonomics in-
clude the identification of a unique biomolecular signature
associate with a parasite infection in mice (Wang et al., 2004)
and metabonomic assessment of adrenal lipids in the hypoxic
neonatal rat (Bruder et al., 2004).

VIII. METABONOMICS AND TOXICOLOGY

To date, metabonomics has had perhaps its greatest impact in
the area of toxicology, particularly in preclinical toxicology.
This is not to say that will always be the case. As indicated
above, use of the technology for clinical endpoints is rapidly
expanding and may eventually surpass preclinical applications
in overall impact. The visibility of toxicological applications
should not be surprising. As has been noticed by other omics
practitioners, toxicity studies typically generate clearly defin-
able endpoints (mortality, clinical signs, clinical chemistry
abnormalities, and/or histopathology) that are usually quite
obvious and readily understood. Additionally, in many sit-
uations (but certainly not all) these endpoints can be arrived at
fairly quickly (7 days or less) using available techniques and
equipment. This makes them ideal for the correlative work
attempting to associate metabolites (or genes and proteins, for
that matter) with endpoints. From these correlations, hypoth-
eses can be generated and, in some cases, be fairly easily tested.
In contrast, in vivo pharmacology models (for efficacy) seldom
have as many robust (and dramatic) endpoints for correlation,
are frequently long term (2 weeks or more), and in most cases,
require some additional pharmacologic or surgical modifica-
tions that would cloud any interpretation of omic data. This is
not to say omic technologies are being any less utilized by
pharmacologists, but that, in many people’s eyes, toxicity
studies are easier for demonstrating impact.

The disadvantage of toxicity models is that toxicities seldom
are as ‘‘clean’’ as some literature may suggest. Classical target
organ toxins frequently are only classic because most of the
literature has focused on one target organ (e.g., CCl4 and
hepatic toxicity). While the literature usually correctly identi-
fies the primary target of a toxin (i.e., dose-limiting toxicity),
what are frequently missed are all the other systemic effects
that are produced by the compound. The omic technologies,
and metabonomics is no exception, will not let you forget about
other targets. Too often we attempt to associate omic findings
with what we know of a compound, which may or may not be
indicative of all that is happening. For example if we know
a compound is hepatotoxic, we make inferences that the gene,
protein or metabolite changes we are seeing must in some way
be reflective of the hepatic effect. However, what if the drug
is also producing inappetence? As mentioned earlier, that
effect may be more profound from an omic standpoint (number
of genes, proteins and metabolites affected) than is the
hepatic toxicity.
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A. Logistical Considerations

A schematic representation of the logistical steps necessary
for conducting metabonomics studies is given in Figure 1. It is
beyond the scope of this review to detail the physical and
logistical requirements for the analytical instrumentation and
support necessary for metabonomics technology. It is hoped
that the toxicologist will seek out appropriate support and
expertise for these functions, because trying to start them
from scratch would be a daunting and expensive proposition.
A summary of the NMR requirements for metabonomic studies
can be found in several places (Lindon et al., 2004a,d;
Robertson et al., 2002). Regardless of the specific details,
three general requirements, common to both the MS and NMR
platforms that any toxicologist needs to keep in mind when
pursuing metabonomic technology are (1) capital cost (if
existing equipment can not be utilized), (2) space (these are
not small instruments and require significant space), and (3)
trained personnel (the most critical requirement). Fortunately,
for most large industrial and academic institutions, appropriate
instrumentation, space, and personnel are typically already
available. The biggest need then becomes instrument time and
the time of the trained personnel.
Though far less complex and expensive, those exploring the

biology side of metabonomics technology also have to keep in
mind several logistical considerations. These also have been
previously reviewed (Robertson et al., 2002), so will only be
dealt with briefly. Two key principles should be kept in mind
when considering animal studies. Firstly, metabonomics is
exquisitely sensitive to any environmental or physiologic
change the animal may undergo during the course of the study,
regardless of whether it is part of the protocol design or not.
Correspondingly, even minor details within a protocol, like
vehicle selection, can have a dramatic effect on metabonomic
studies. For example, it was noted early on that even a 4-week
difference in age (8 week old vs. 13 weeks old) can have
a marked effect on metabonomic profile (Robertson et al.,
2000). This should not be terribly surprising, as the older rats

are roughly 50% heavier than their younger counterparts.
Diurnal and estrus cycles also cause measurable difference in
urine NMR spectral profiles (Bollard et al., 2001). Vehicles
used to deliver test compound can have a profound effect on
metabonomic profiles, not only because they may present as
interfering signals in urine or serum NMR spectra, but they
frequently have physiologic effects suggesting they may not be
as innocuous as we would like to believe (Beckwith-Hall et al.,
2002; Robertson et al., 2000). Even anticoagulants such as
ethylenediaminetetraacetic acid (EDTA) can have an adverse
effect on serum NMR spectra, markedly complicating them.
An interesting example of how protocol details can complicate
metabonomic data analysis in unexpected ways is presented in
Figure 2. An overdose of barbiturate, followed by exsanguina-
tion is a common method for euthanizing animals. In this case,
guinea pigs were sacrificed by exsanguination immediately
after succumbing to an overdose of pentobarbital. What may
not be obvious is that many barbiturate formulations contain
high concentrations of propylene glycol, which produces
prominent resonance peaks in the serum NMR spectra obtained
from animals exsanguinated immediately after succumbing to
the barbiturate (Fig. 2). Even more surprising (and confound-
ing) is that urine obtained from these animals also contains
widely varying concentrations propylene glycol (millimolar in
some cases) even though the time from barbiturate injection to
exsanguination may be only a few minutes (unpublished
observations). This finding highlights not only the caution
one must exercise when conducting metabonomics studies, but
also the power the analysis has for identifying factors that
might otherwise be missed. It seems likely that these

FIG. 1. Schematic diagram of typical metabonomics set—up for pre-

clinical toxicity studies in rats.

FIG. 2. Comparative 600 MHz 1H-NMR spectra from serum samples from

guinea pigs anesthetized with isoflurane (bottom trace) or parenteral pento-

barbital containing 40% propylene glycol by volume (top trace). Note the

numerous resonances attributable to the propylene glycol in the injected

anesthetic.
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millimolar concentrations of propylene glycol have con-
founded more than one type of analytical assay without the
investigator ever understanding the cause of the problem.

B. Toxicology Applications

Metabonomics has potential applications across the spec-
trum of pharmaceutical development (Fig. 3). Of particular
interest to this review are those applications that directly relate
to safety assessment of candidate therapeutic agents. Within
preclinical toxicology there are three broad areas in which
metabonomics is having and will continue to have significant
impact. Those areas are screening, biomarkers of safety, and
mechanism of action.

1. Screening. The ultimate safety screen has long been the
Holy Grail for preclinical toxicologists. Ideally, it would be
fast, require minimal compound, and be absolutely reflective of
potential human effects. Unfortunately, the search for such
a screen has been about as successful as the search for the
aforementioned chalice. In vitro approaches have been heavily
researched because they typically meet the first two require-
ments. It may seem that human cells would be more reflective
of human effects, but immortalized cell lines (of any species)
frequently respond quite differently from primary cells, and
primary cells are frequently difficult to obtain (particularly
human), culture, and maintain (in their differentiated state) for
any reasonable period of time. The bottom line is that the
majority of preclinical toxicologists view in vitro approaches
as extremely useful when the in vivo target link has been
established; however they fall well short as a generic safety
screen. It might seem that metabonomics would also aid
evaluation and interpretation of in vitro toxicity data. However
the literature in this area is limited (Anthony et al., 1995a;
Bailey et al., 2003; Griffin et al., 2003; Hassel et al., 1994),
probably because of the sample requirements and sensitivity
limitations for NMR analyses. As MS-based metabonomics

becomes more prevalent, it can be anticipated that in vitro
metabonomics applications will increase

For the foreseeable future, in vivo assessment in animal
models will remain the primary method for identifying safety
issues. With this in mind, one of the early hopes was that
metabonomics would provide a generic safety screen for rapid
throughput toxicity assessment (Robertson et al., 2000). While
that hope has not been abandoned, it has been tempered by the
reality of systemic responses to toxins and the complexity of
differentiating ‘‘off-target’’ effects from target-organ-specific
effects. However, generic screens are not the only type of
screening for which metabonomics has application. In some
instances, early identification and characterization of a known
or presumed toxicity within a pharmacological or chemical
class is extremely valuable, particularly when there are no
available peripheral biomarkers of that toxicity. Drug-induced
vascular injury (vasculitis) is one such application, where there
is a lack of definitive peripheral biomarkers, and histopathol-
ogy of affected tissues is still required to make the diag-
nosis. Metabonomics has been shown to be quite useful for
noninvasive detection of the lesion in rats (Robertson
et al., 2001).

2. Biomarkers. It has been recognized for some time that
metabonomics had enormous potential to identify novel
biomarkers of toxicity, with early work focused primarily on
biomarkers of renal and hepatic toxicity (Anthony et al.,
1994a,b; Holmes et al., 1992a,b, 1995, 1996; Nicholls et al.,
2001; Robertson et al., 2000). This work was eye opening with
regard to systemic response to hepatic and renal toxins that has
been overlooked for years. However, one need only run a quick
comparison of these papers and others like them to recognize
one of the most oft-cited criticisms of metabonomics as a tool
in toxicology. That is the problem of ‘‘usual suspects.’’ Table 2
is a list of urine metabolites that frequently change in response
to toxicant administration, regardless of the nature of the
toxicant, its mechanism of action, or its target. Importantly, not

TABLE 2

The ‘‘Usual Suspects’’a

2-oxoglutarate

acetate

citrate

creatine

creatinine

glucose

hippurate

lactate

succinate

taurine

trimethyl amine/trimethyl amine oxide (TMA/TMAO)

aThis is not intended to be a comprehensive list and there are several other

metabolites that are often seen changing in metabonomic studies but not often

enough to consider them ‘‘usual suspects.’’

FIG. 3. Schematic of typical drug-development timeline overlaid with

points of entry and applications ofmetabonomics technology. Relative availabil-

ity of bulk drug is indicated by mass designations (mg, g, or kg quantities).
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all these molecules change in response to every toxicant, nor do
they necessarily follow the same trajectory (temporal re-
sponse), but changes in some or most of them frequently drive
pattern separation using unsupervised pattern recognition
techniques like the now ubiquitous PCA (Beckwith-Hall
et al., 1998; Gartland et al., 1991; Jansen et al., 2004; Scholz
et al., 2004; Waters et al., 2001). This has led to a jaded view
of the technology by some observers, with one toxicologist
wag calling a high-field magnet nothing more than a big
‘‘citrate-ometer,’’ emphasizing the fact that citrate changes are
a frequent response to toxicant administration. A comprehen-
sive evaluation of this phenomenon attributed changes to many
of the usual suspects to altered diet and/or bodyweight changes
which are a frequent consequence of toxicity (Connor et al.,
2004), As the authors observe though, even among the usual
suspects the magnitude, direction, and temporal response of the
changes may still be useful in providing mechanistic or
biomarker data, as long as the changes are evaluated in the
context of the systemic effect. It is important to note that
metabolites driving pattern separations within PCA does not
mean that these are the only metabolites changing within an
NMR (or MS) spectrum, nor does it imply that the molecules
are necessarily the most interesting, from a biomarker or
mechanistic perspective. Weight loss is a quite profound
physiological disruption (at least from the animal’s perspec-
tive), so it should not be surprising that it is responsible for
acute biochemical perturbations that dominate the systemic
biochemistry. The trick, of course, is separating specific
biomarkers of the target of interest from the numerous changes
caused by diet and other secondary factors. Rather than
fulminate over metabonomics-derived usual suspects, it might
be better to ask ‘‘where are the usual suspects for the other
omic technologies?’’ After all, no one is suggesting that these
components are in any way artifactual; therefore they must
be derived from the actions of proteins and the genes that
code them.
Despite these perceived limitations, metabonomics-derived

biomarkers are not restricted to the usual suspects. Early
metabonomic work suggested the potential of urinary D-b-
hydroxybutyrate, in the absence of other ketone bodies
(proximal tubules), or trimethylamine (TMA) and dimethyl-
amine (renal papilla) as potential region-specific biomarkers of
nephrotoxicity (Anthony et al., 1994b; Gartland et al., 1989a).
Phenyl-acetyl glycine was identified as a candidate biomarker
for drug-induced phospholipidosis (Nicholls et al., 2000), and
2-aminoadipate was proposed as a mechanism-associated
biomarker of hydrazine-induced neurotoxicity (Nicholls
et al., 2001). Recently, urinary dicarboxylic aciduria was
implicated as a mechanistic marker of impaired fatty acid
metabolism in rats (Mortishire-Smith et al., 2004).
Depending on how you define a biomarker, these bio-

molecular components may or may not fit the bill. Certainly
most, if not all, of these biomarkers are unlikely to be specific
only to the target of interest. While lack of specificity may

hamper use of these markers in the general population, many
will probably be adequate for preclinical safety studies or even
controlled clinical trials where absence of an effect is of most
critical interest.

3. Mechanisms of toxicity. Arguably, the most important
endpoint for an omics investigation would be in elucidating
a mechanism of toxicity. An understood mechanism of toxicity
will always deliver a biomarker (whether that biomarker is
analytically feasible or practical is another story). While
biomarkers can be identified without an understood mecha-
nism, there would be little argument that a mechanistically
linked biomarker is far more saleable. Metabonomics has
proven to be a powerful tool for gaining insights on mecha-
nisms of toxicity. The fact that the usual suspects are usual, by
itself, is an interesting mechanistic finding. Most mechanistic
metabonomic work has focused on renal and hepatic toxins,
associating temporal biofluid biochemical correlations with
toxicity endpoints. In most cases, these data were accompanied
by speculative inferences of the biological significance of
the various metabolic changes (Anthony et al., 1992, 1994b,
1995b; Gartland et al., 1989a,b; Halligan et al., 1995;
Holmes et al., 1992b, 1995, 1996, 1998; Lenz et al., 2004a,b;
Lindon et al., 2004d; Nicholson et al., 2002; Robertson et al.,
2000; Shockcor and Holmes, 2002; Warne et al., 1999; Waters
et al., 2001).

Beyond these studies, a few notable metabonomic inves-
tigations stand out with regard to their mechanistic insights. In
2001 Nicholls et al. published data on hydrazine toxicity that
mechanistically linked the neurotoxic effects of hydrazine to
markedly increased levels of 2-aminoadipate (2AA), which is
known to affect kynurenic acid levels in the brain, thus
providing a plausible hypothesis for the heretofore unexplained
neurotoxic effects of the compound (Nicholls et al., 2001).
Slim et al., demonstrated that the urinary metabolite changes
induced by Type 4 phosphodiesterase (PDE4) inhibitors were
not the indirect result of concurrent inflammation but were
directly associated with vascular pathology (Slim et al., 2002).
Clayton et al., mechanistically linked the ‘‘usual suspect’’
creatine to hepatotoxicity via effects on cysteine synthesis.
They later related elevated creatine levels in serum and urine
with hepatotoxicity and nutritional effects (Clayton et al.,
2003, 2004). Mortishire-Smith linked urinary dicarboxylic
aciduria to impaired fatty acid metabolism, which may be
common to some hepatotoxic mechanisms (Mortishire-Smith
et al., 2004).

While these reports highlight individual mechanisms, novel
approaches to metabonomic studies have also served to
enhance the utility of the technology for mechanistic purposes.
Integrated metabonomics makes use of combined serum and
urine biofluid metabonomics coupled with tissue MAS to
present a much more comprehensive mechanistic picture of
toxicity. These efforts have been successfully employed
looking at cadmium, a-naphthlyisothiocyanate (ANIT), and
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acetaminophen toxicity (Coen et al., 2003; Griffin et al., 2001;
Waters et al., 2001). Even more exciting are recent efforts to
combine metabonomics with other omic technologies, in-
cluding proteomics and transcriptomics (Coen et al., 2004;
Kleno, 2004; Verhoeckx et al., 2004).

IX. STATE OF THE TECHNOLOGY

Where is metabonomics now, and where is it going?
Metabonomics has moved beyond the status of emerging
technology. It is now in that critical realm of value de-
termination. It would be an overstatement to say that metabo-
nomics has reached the point of standard practice in toxicology.
The reasons for this are numerous, and many of them are not
unique to metabonomics. Because toxicological applications
have largely been reported using the NMR platform, there is
a built-in discomfort level, as most toxicologists are unfamiliar
with NMR, and hence the technique has a bit of a ‘‘black box’’
feel. MS has wider utilization within the tox community, and as
MS-supported tox applications grow in acceptance, it can be
hoped that some of this fear will dissipate. Beyond this
perceived problem, there are the real problems of poor NMR
sensitivity, which once again MS will help alleviate. Other
issues currently facing metabonomics have a great deal in
common with problems facing the other omic technologies.
Standardization (or lack thereof), concerns about regulatory
implications of metabonomics data, and the all-too-frequent
conclusion to ‘‘let someone else see if it works before we waste
any money on it’’ are all challenges metabonomics faces.
Perhaps the greatest challenge for metabonomics, though again
the same challenge is facing the other omics, is that our ability
to generate masses of data far outstrips are capacity to
understand it. A real need is to have bioinformatics tools that
will be able to link genes, proteins, and metabolites. This
means more than an annotated pathway chart. An interactive
tool that indicates what up-regulation or down-regulation of
a gene or protein means to the upstream or downstream
metabolites in those pathways would be very helpful, partic-
ularly if we could link the secondary effects of up- and down-
regulation of those metabolites back on the genes and proteins.
Clearly, much of that biochemical information is not currently
known, but we have to start somewhere. Many companies and
vendors are attempting to attack this bioinformatics issue.
However, the current frenetic pace of development of statistical
and bioinformatics approaches has only compounded the
problem for the toxicologist as he or she is faced with a mind
numbing number of ways to look at information, all employing
different techniques and criteria and presentation formats.
While these approaches can make for impressively glitzy
presentations, we all too frequently are left asking the same
question—‘‘but what does it mean’’?

What to do? While significant challenges face metabo-
nomics, the technology clearly has much promise, and none of
the problems are insoluble. Success breeds acceptance. In-

creased presentation and publication of clear demonstrations
of impact on real world toxicology issues (not CCl4 or
bromoethylamine examples!) will go a long way in moving
the technology forward. The catch, of course, is that the biggest
success stories are probably the most valuable from an
intellectual property perspective, diminishing the likelihood
that they will appear in the literature anytime soon. Still, when
possible, the metabonomics community needs to push these
examples out to the toxicology community, or the technology
may never get the acceptance it deserves.

How will metabonomics be employed in toxicology depart-
ments 10 years from now? Who knows? However, if properly
researched and developed, metabonomics can take its place as
a standard tool in experimental toxicology. The ability to assess
samples noninvasively makes it ideal for deployment in early
discovery studies at the time sufficient bulk compound
becomes available for in vivo studies. Metabonomics can
easily be piggybacked on existing in vivo studies, requiring
little or no additional technical resources to gather the data.
One can envision safety endpoints being moved very early into
the discovery process, enabling early attrition of toxicologic-
ally problematic compounds. Moreover, the search for bio-
markers of efficacy and safety can start with the first dose in
whole animals, and derived putative biomarkers will be readily
transferable to the clinical setting. The ability to gather
comprehensive metabolic profiles will prove invaluable for
elucidating mechanisms of action not readily apparent using
traditional endpoints such as histology and clinical pathology.
Metabonomics clearly has a lot of promise, but just as clearly
still a long way to go.

X. CONCLUSION

Like most technologies, metabonomics will probably not
live up to all expectations, but it will certainly add value in
many areas of biology. In particular, the technology has shown
significant promise in numerous applications in toxicologic
sciences. Unlike many technologies, metabonomics has been
most readily adopted by industry, with the academic commu-
nity just now starting to catch up. It can be anticipated that
metabonomics will be extremely useful in completing the
omics circle from gene (genomics) to protein (proteomics) to
metabolite (metabonomics). Given that the phenotype is an
endpoint, in many cases it will be easier to work backwards
from the phenotype to the genotype than to try and guess the
significance of thousands of changes in transcript expression.
Clearly, the technology has already demonstrated significant
potential, and now that potential needs to be realized. Only
when the value added can be measured in terms of decreased
morbidity and mortality or dollars-and-cents impact will the
technology be proven. We are close in some applications, but
not yet there. It should be an exciting ride.
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