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a b s t r a c t

We present a memetic algorithm that dynamically optimizes the design of a wireless sensor network
towards energy conservation and extension of the life span of the network, taking into consideration
application-specific requirements, communication constraints and energy consumption of operation
and communication tasks of the sensors. The memetic algorithm modifies an already successful genetic
algorithm design system and manages to improve its performance. The obtained optimal sensor network
designs satisfy all application-specific requirements, fulfill the existing connectivity constraints and
incorporate energy conservation characteristics stronger than those of the original genetic algorithm sys-
tem. Energy management is optimized to guarantee maximum life span of the network without lack of
the network characteristics that are required by the specific sensing application.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Energy conservation probably constitutes the most important
challenge in the design of wireless sensor networks (WSNs). These
networks generally consist of a large number of low-power sensor
nodes that communicate over short distances, and their energy re-
sources are significantly more limited than in wired networks
[1,25]. Their design should take into consideration these limitation
and incorporate some operation scheduling so that sensor energy
saving is optimized and the network’s life span is maximized.

Another issue in WSN design is the connectivity of the network
according to some specific communication protocol [25,19]. Clus-
ter-based architectures with single-hop communication between
sensors of a cluster are the most commonly used. In these cases,
a selected clusterhead sensor collects all gathered information by
the sensors in its cluster and sends it to a remote base-station
(sink). Usually, connectivity issues include the number of sensors
in each cluster (a clusterhead can handle up to a specific number
of connected sensors) as well as coverage issues related to the abil-
ity of each sensor to reach a clusterhead.

Finally, some issues that have to do with the physical character-
istics of the network according to the relevant requirements of the
specific application of the WSN have recently been included as ma-
jor parameters in the design process of WSNs [7,8]. The purpose of
the sensor network, which is the collection and possibly the man-
agement of measured data for some particular application, must
not be neglected. This collection must meet some specific require-
ments, depending on the type of data that are collected. These
ll rights reserved.
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requirements are turned into specific design properties of the
WSN and play an important role in the design optimization of
the WSN.

Most algorithms that lead to optimal topologies of WSNs to-
wards power conservation, do not take into account the principles,
characteristics and requirements of application-specific WSNs
[9,21,11,4,6,29,22]. When these factors are considered, then the
problem of optimal design and management of WSNs becomes
much more complex [12,8,27,28].

It is clear that the problem of WSN design optimization that
takes into account all the before-mentioned parameters, is a mul-
ti-objective optimization problem. There are several interesting
approaches for tackling such problems. One of the most powerful
heuristics that could be applied to our multi-objective optimiza-
tion problem is based on Genetic Algorithms (GAs) [14]. The suc-
cessful application of GAs in a sensor network design in Sen et al.
[24] led to the development of several other GA-based applica-
tion-specific approaches in WSN design. Most of these approaches
used a single fitness function [26,13,15,2,3], but some of them con-
sidered Pareto optimality in the evaluation of fitness values [16], or
even the use of memetic algorithms [17,23] or specifically de-
signed evolutionary algorithms [18] and simulated annealing [5].
However, in most of these approaches, either very limited network
characteristics are considered, or several application-specific
requirements are not incorporated into the performance measure
of the algorithm.

In our previous work [8], we considered an integrated GA ap-
proach, both in the direction of degrees of freedom of network
characteristics and of application-specific requirements repre-
sented in the performance metric of the GA. The primary goal
was to find the optimal operation mode of each sensor such that
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application-specific requirements are met and the energy con-
sumption of the network is minimized. More specifically, network
design was investigated in terms of active sensors placement, clus-
tering and signal range of sensors, while performance estimation
included, together with connectivity and energy-related character-
istics, some application-specific properties like uniformity and spa-
tial density of sensing points. Thus, the implementation of the
proposed methodology resulted in a near-optimal design scheme,
which specified the operation mode for each sensor.

More specifically, the optimization problem was defined by the
minimization of the energy-related parameters and the maximiza-
tion of sensing points’ uniformity, subject to the connectivity con-
straints and the spatial density requirement. In order to combine
all objectives into a single objective function (weighted sum ap-
proach), the optimization parameters were formed in such a way
that all of them were minimized. In addition, the constraints were
transformed into minimization objectives with the assignment of
corresponding high value weights in the objective function. This
led to the development of a single objective function that blended
all objectives, as analyzed later in Section 3.

The original GA-based algorithm was applied dynamically to
obtain a dynamic sequence of operating modes for each sensor,
i.e. a sequence of WSN designs, which leads to maximization of
network lifetime in terms of number of data collection (measuring)
cycles. This was achieved by implementing the algorithm repeat-
edly in order to develop a dynamic network design that adapted
to new energy-related information concerning the status of the
network after each measuring cycle or at predefined time intervals.

Memetic algorithms [20] introduce local search techniques at
specific parts of a GA optimization process, with a goal to improve
its performance. In this work, we develop and parameterize a
memetic algorithm (MA) which hybridizes the GA system devel-
oped in Ferentinos and Tsiligiridis [8], the goal being to improve
its performance by guiding the population formulation of the GA
towards more intelligent decisions.

In the following Section we describe the WSN modeling ap-
proach and the parameters involved in the design problem. In Sec-
tion 3, we briefly describe the GA approach that was originally
used to develop the WSN design algorithm and the most important
features of that algorithm are pointed out. In Section 4, we present
the characteristics of the novel memetic algorithm approach and
the initial experimentation towards the parameter-tuning of the
algorithm. In Section 5, the design properties of the algorithm
and its energy conservation capabilities are compared with those
of the original GA-based design algorithm. Finally, in Section 7,
some overall conclusions are drawn.
2. WSN design properties

2.1. WSN modeling

The WSN considered in this application is intended to cover a 30
by 30 length units sensing area. A length unit is an abstract param-
eter so that the optimal design algorithm is general enough. Sen-
sors are placed on the junctions of a virtual grid that covers the
entire area and has a grid step size of one length unit, thus there
are 900 sensors all together. A cluster-based network architecture
is used where sensors are partitioned into several clusters. Each
sensor belongs to the cluster of its closest clusterhead sensor. All
sensors are identical and may be either active or inactive. They
are capable of transmitting in one of three supported signal ranges.
Provided that a sensor is active, it may operate as a clusterhead
transmitting at an appropriate signal range (CH sensor) that allows
the communication with the remote base station (sink), or it may
operate as a regular sensor transmitting at either high or low signal
range (HSR/LSR sensor, respectively).

2.2. Design parameters

An evolutionary algorithm, like the one proposed here, requires
the proper definition of some optimization criteria. In a design prob-
lem, these criteria constitute the design parameters that need to be
optimized. In order for the optimization to be possible, it is required
that these design parameters are explicitly defined and expressed
mathematically. For the problem to be modeled properly in the opti-
mization process, the actual inclusion of the appropriate parameters
is as crucial as the correct mathematical formulation of the design
parameters. In many studies, especially in WSN design, parameters
that have to do with physical, application-specific characteristics of
the WSN that is designed, are not included in the optimization pro-
cess. In this way, the design procedure is limited to parameters that
solely refer to communication restrictions and energy conservation.

In this work, in addition to connectivity and energy related
parameters, we incorporate design parameters that have to do
with the physical characteristics of the WSN, as these are related
to the requirements of the network according to the real-life appli-
cation that it is applied to. Therefore, three major sets of parame-
ters that influence the performance of a specific design of a WSN
that is used in some particular application are defined: the applica-
tion-specific parameters, the connectivity parameters and the en-
ergy-related parameters. A more detailed description of the
parameters of each set follows.

2.2.1. Application specific parameters
The main goal of WSNs for a wide variety of applications is the

collection of uniform measurements over some specific area of
interest, so that an overall and uniform picture of the conditions
of the area is realized. The satisfaction or not of the demand on uni-
formity of measuring points has been taken into consideration
using two design parameters: (a) the spatial mean relative devia-
tion (MRD) of sensing points, representing the uniformity of those
points, and (b) the desired spatial density of measuring points.
Obviously, the MRD of sensing points has to be minimized (mean-
ing that the uniformity is maximized), while the spatial density of
sensing points has to be as close as possible to the desired value.
For the MRD estimation, the entire area of interest was divided into
several overlapping sub-areas. Sub-areas are defined by four fac-
tors: two that define their size (length and width) and two that de-
fine their overlapping ratio (ratios in the two directions). All these
factors are expressed in terms of the unit length of each direction.
The larger the overlapping ratio is, the higher precision is achieved
in the evaluation of uniformity, but also, the slower the algorithm
becomes. In order to define MRD, the notion of spatial density ðqÞ
of sensing points was used. More specifically, qSi

, the spatial den-
sity of sensing points in sub-area Si, was defined as the number
of such points over the area of the ith sub-area, i ¼ 1;2; . . . ;N,
where N is the number of overlapping sub-areas into which the en-
tire area, say S, was divided. In addition, qS, the spatial density of
the entire area of interest, was defined as the total number of sens-
ing points of the network over the total area of interest. Thus, MRD
was defined as the relative measure of the deviation of the spatial
density of sensing points in each sub-area from the total spatial
density of such points in the entire area:

MRD ¼
PN

i¼1jqSi
� qSj

N � qS
ð1Þ

Low values of MRD correspond to high uniformity of sensing points.
Acceptable values for our application example are of MRD up to
0.15-0.17 [7,8].
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For the desired spatial density of measuring points, a penalty
factor namely the Spatial Density Error (SDE) was introduced to
penalize network designs that did not meet the minimum required
spatial density of measurement points that would suffice adequate
monitoring of the measured variables in the area of interest. The
desired spatial density qd was set equal to 0.2 measurement points
per square length unit and the SDE factor was evaluated by:

SDE ¼
qd�qs

qd
if qs < qd

0 otherwise

(
ð2Þ
2.2.2. Connectivity parameters
This set of design parameters includes two factors that try to

ensure that the designed WSN satisfies two crucial connectivity is-
sues: first, that each clusterhead does not have more than a max-
imum predefined number of sensors in its cluster, and second,
that each sensor of the network can communicate with its cluster-
head. The former issue is incorporated by the Sensors-per-Cluster-
head Error (SCE) parameter, while the latter is incorporated by the
Sensors-Out-of-Range Error (SORE) parameter. These parameters
are penalizing factors. For the estimation of SCE, it was assumed
that each clusterhead cannot be connected to more than 15 sen-
sors. If nfull is the number of clusterheads that have more than 15
active sensors in their clusters and ni is the number of sensors in
the ith of those clusters, then:

SCE ¼

Pnfull
i¼1

ni

nfull
if nfull > 0

0 otherwise

8<
: ð3Þ

For the estimation of SORE, the exact signal range capability of each
sensor has to be defined. It was assumed that HSR-sensors covered
a circular area with radius equal to 10 length units, while LSR-sen-
sors covered a circular area with radius equal to 5 length units. If
nout is the number of active sensors that cannot communicate with
their clusterhead and n is the total number of active sensors in the
network, then:

SORE ¼ nout

n
ð4Þ
2.2.3. Energy related parameters
This set of design parameters can be divided into two sub-cat-

egories. The first includes the parameters that are related to the en-
ergy consumption of the network, which are the operational
energy ðOEÞ consumption parameter and the communicational en-
ergy ðCEÞ consumption parameter. The first one ðOEÞ refers to the
energy that a sensor consumes during some specific time of oper-
ation. It basically depends on the operation mode of the sensor,
that is, whether it operates as a CH, a HSR or a LSR sensor, or
whether it is inactive. The corresponding relevance factors for
the energy consumption of the three active operating modes of
the sensors are taken proportional to 20:2:1, respectively, and zero
for inactive. These relevant factors were used to simplify the anal-
ysis and did not necessarily represent accurately the real energy
relations between the available operation modes of the sensors.
Their exact values depend on electromechanical characteristics of
the sensors and were not further considered in the analysis pre-
sented here. Thus, the OE consumption parameter was given by:

OE ¼ 20 � nCH

n
þ 2 � nHS

n
þ nLS

n
ð5Þ

The second parameter ðCEÞ refers to the energy consumption due to
communication between sensors in regular operating modes and
clusterheads. It mainly depends on the distances between these
sensors and their corresponding clusterhead, as defined in Ghiasi
et al. [9]. It is depicted by:
CE ¼
Xc

i¼1

Xni

j¼1

l � dk
ji ð6Þ

where, c is the number of clusters in the network, ni is the number
of sensors in the ith cluster, dji is the Euclidean distance from sensor
j to its clusterhead (of cluster i) and l and k are constants, charac-
teristic of the topology and application site of the WSN. The values
of l = 1 and k = 3 were chosen for the current application.

The second sub-category includes a design parameter that takes
into account the actual life span of the WSN based on the remain-
ing battery capacities of the sensors. The maximization of the life
duration of the network depends mainly on the remaining battery
capacities of the sensors. The simple optimization of the opera-
tional and communicational energy consumption cannot ensure
that operational load is spread evenly throughout the network.
Thus, this energy conservation process must be regulated by taking
into account complex relations of remaining battery capacities and
operational modes of the sensors of the network. This was realized
with the introduction of a Battery Capacity Penalty (BCP) parame-
ter. Since the operation mode of each sensor is known, its Battery
Capacity ðBCÞ can be evaluated at each time. Thus, when the design
optimization algorithm is applied at a specific time t (measuring
cycle), the BCP parameter is given by:

BCP½t� ¼
Xngrid

i¼1

PF ½t�i �
1

BC½t�t

� 1

 !
; t ¼ 1;2; . . . ð7Þ

Note that BCi is updated according to the operation mode (CH, HSR
or LSR) of each sensor i, during the previous measuring cycle t � 1 of
the network:

BC½t�i ¼ BC½t�1�
i � BRR½t�1�

i ð8Þ

In the above:

� BCP½t� is the Battery Capacity Penalty of the WSN at measuring
cycle t. It is used to penalize the use of sensors with low battery
capacities, giving at the same time larger penalty values to oper-
ating modes that consume more energy (especially CH mode).

� ngrid is the total number of available sensor nodes.
� PF ½t�i is the Penalty Factor assigned to sensor i. The values it takes

are given according to the operation mode of sensor i. The values
used here are proportional to the relevant battery consumptions
of the sensor modes, namely, 20:2:1 for active sensor modes
(CH, HSR and LSR, respectively) and 0 for inactive. They provide
different penalties according to the specific modes of the sensors
in the WSN of the following measuring cycle.

� BC½t�i and BC ½t�1�
i are the Battery Capacities of sensor i at measur-

ing cycles t and t � 1, respectively, taking values between 0 and
1, with 1 corresponding to full battery capacity and 0 to no
capacity at all.

� BRR½t�1�
i is the Battery Reduction Rate that depends on the oper-

ation mode of sensor i during the measuring cycle t � 1 and
reduces its current battery capacity accordingly, using the per-
centage of the relevance factors for the energy consumption of
the operating modes of the sensor as follows: 0.2 for CH, 0.02
for HSR 0.01 for LSR operation modes and 0 for inactive sensors.

Thus, the overall energy scheme that was developed here, is
basically modeled by Eqs. (5)–(7). The inclusion of Eq. (7) gives
the ability to the optimization process to perform sophisticated en-
ergy conservation towards the expansion of life duration of the
network, rather than simple minimization of the energy consump-
tion of the sensors. In this way, re-usage of sensors with low bat-
tery capacities is penalized, proportionally to their lack of battery
and according to their intended operating mode.
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3. Original GA-based algorithm

In this section we briefly present the basic characteristics of the
GA-based optimal design algorithm originally developed in Feren-
tinos and Tsiligiridis [8]. Initially, the key elements of the GA ap-
proach are described, and then the dynamic optimization
algorithm is presented.

3.1. Methodology of GA

The three main steps in the development of a GA are: (i) the
problem representation, i.e. the encoding mechanism of the prob-
lems phenotypes into genotypes that GA manipulate and evolve,
(ii) the formulation of an appropriate fitness function that gives a
quantitative quality measure of each possible solution, and (iii)
the choice of the genetic operators and the selection mechanism
used.

The parameters of each WSN design that needs to be encoded in
the representation scheme of the GA are the following: (i) the
placement of the active sensors of the network, (ii) the operation
mode of each active sensor, that is, whether it is a clusterhead or
a ‘‘regular sensor”, and (iii) in the case of a ‘‘regular sensor”, the
range of its signal (high or low). All these parameters can be distin-
guished by four states and thus can be encoded in a binary repre-
sentation scheme by two bits for each sensor position. If there are x
sensors in the WSN, each string in the GA population has a length
of 2x. As explained earlier, the sensors are on a grid deployment of
size r � c, thus the length of the GA strings are 2r � c.

The fitness function incorporates all the parameters that influ-
ence the performance of the WSN design, which were described
in the previous section. It is a weighting sum of all these parame-
ters, with the values of the weighting coefficients ai i ¼ 1;2; . . . ;7
determining the relevant significance of each parameter:

f ¼ 1=ða1 �MRDþ a2 � SDEþ a3 � SCEþ a4 � SOREþ a5 � OE

þ a6 � CEþ a7 � BCPÞ ð9Þ

The values of these coefficients were determined based on experi-
ence about the importance of each parameter. This means that
the designer has to initially decide on the relevant importance of
these factors according to the specific WSN application. Here, the
coefficient values of the original GA system were used [8]. The val-
ues of coefficients a3 and a4 were considerably high because the
connectivity parameters were treated as constraints. The approach
of Pareto optimality, as opposed to the weighted-sum single objec-
tive approach, was not considered because the system is supposed
to run dynamically, thus at each measuring cycle a single optimal
design has to be reached. Based on that optimal design, the follow-
ing design is evaluated through the repetition of the MA optimiza-
tion process. Based on the values of the weight coefficients, the
designer of the fitness function decides on the way the optimal de-
sign at each measuring cycle is obtained.

Two types of the classical crossover operator defined in Gold-
berg [10] were tested, the one-point and the two-point crossover.
The mutation type that was used was the classical one for binary
representation, that is, the swapping of the bits of each string (0
becomes 1 and vice versa) with some specific low probability.
Crossover is also applied with some specific probability. Both these
probabilities are tuned after proper experimentation. The adopted
selection mechanism was the roulette wheel selection scheme. The
probability of selecting some individual to become a parent for the
formation of the next generation was proportional to its fitness va-
lue. In addition, in order to assure that the best individual of each
generation was not destroyed by the crossover and mutation oper-
ators during the evolution process, ‘‘elitism” was incorporated in
the algorithm, meaning that the current best individual at each
generation of the algorithm always survived to the next
generation.

3.2. GA-based dynamic optimal design algorithm

The GA system is initially applied to sensors with full battery
capacities and then it is re-applied in an online operating mode.
The process is the following: After obtaining an initial optimal
WSN design, that design is applied to the sensors for an entire
measuring cycle. Then, the battery capacities are updated and the
GA is re-applied taking into account the updated battery values. A
measuring cycle is defined as the time period during which a CH
sensor looses 20% of its full battery capacity, while HSR and LSR
sensors loose 2% and 1%, respectively. It is assumed that inactive
sensors do not consume any battery. The battery update and the
re-application of the GA in each measuring cycle are performed
during data collection of that measuring cycle. So, even though
the algorithm is quite time-consuming, it has plenty of time to
optimize the WSN of the next measuring cycle during the data col-
lection period. This is because battery capacities at the end of the
cycle can be evaluated based on the developed model, without
having to wait until the actual end of the measuring cycle. Thus,
at the end of each measuring cycle, the next optimal WSN design
has already been formed and it is then used for the next data mea-
suring cycle.
4. Memetic algorithm approach

The MA approach is incorporated into the dynamic optimal de-
sign algorithm, described in the previous sub-section, thus, it is ap-
plied online to dynamically re-design the WSN. The initial optimal
WSN design (assuming full battery capacities for all sensors) is ob-
tained by the original GA-based algorithm, as previously described.
Beginning from the second measuring cycle in the dynamic appli-
cation of the design algorithm, the MA-based system conducts the
optimal design of the WSN.

The concept of the memetic algorithm is based on the introduc-
tion of some battery level threshold values for each operating
mode of the sensors (denoted as TCH for CH mode, THSR for HSR
mode and TLSR for LSR mode). The intention of these threshold val-
ues is to put specific constraints in the operation modes of each
sensor, throughout the dynamic design of the network. The idea
is, at each measuring cycle to allow a sensor i to operate at some
specific mode if and only if its battery level at the time is above
the threshold value for that operating mode. Threshold values
are adapted at each measuring cycle, as explained in more details
later on. Thus, the MA approach is materialized through two sepa-
rate processes: (i) the local search, which consists of the checking
of the battery level of each sensor against the corresponding
threshold value and the ‘‘lowering” of its operating mode if neces-
sary, and (ii) the appropriate update of the threshold values for
each operating mode, according to some specific reduction scheme.
The general block diagram of the MA-based dynamic design algo-
rithm is shown in Fig. 1.

4.1. Local search

The main part of the MA is the local search that is performed in
the generation of the population of the original GA. The term ‘‘local
search” is used in its general context, concerning the optimization
that is performed in each individual of the GA population in the fol-
lowing way.

First of all, some initial threshold values of battery levels for
each of the three possible operating modes of the sensors are de-
fined. During the design optimization process, when each individ-



Fig. 1. Flow chart of the MA-based dynamic optimal WSN design algorithm.
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ual of the population is generated, the operating mode of each sen-
sor is checked according to the corresponding (based on its se-
lected operating mode) threshold. If its battery level is below
that threshold, its operating mode is changed to the lower mode
(CH to HSR, HSR to LSR, LSR to inactive) until its corresponding
threshold value becomes lower than (or equal to) its battery level.
It should be noted that this local search procedure takes place not
only in the generation of the initial population of the GA, but also
in the generation of the population at each iteration of the GA. Its
operation is shown in the pseudo-code presented in Fig. 2.

Three facts are evident about the proposed modification. First,
that it is applied to the phenotype of the design problem and not
the genotype of the optimization process of the GA. Second, that
the investigation on the appropriate level of reduction of the oper-
ating mode of the modified sensors resembles some kind of search
operation. Third, that the modification always leads towards the
direction of a local improvement, without any assurance that this
would result into a generally better solution. These two principles
justify the ‘‘local search” characterization of the proposed hybrid-
ization of the original GA, leading to the development of a memetic
algorithm.

4.2. Threshold update schemes

Threshold values of battery levels for each of the three possible
operating modes of the sensors ðTCH; THSR and TLSRÞ are initialized
at the beginning of the design optimization process. These initial
values are used for the local search part of the MA during the first
measuring cycle of the WSN. After that, and at each measuring cy-
cle, threshold values are updated according to some specific reduc-
tion scheme. The purpose of this reduction is to make threshold
values less rigorous as time passes by and as battery levels of the
sensors get lower.

There are three parameters that determine the reduction
scheme of each threshold: the initial value at the beginning of
the optimization process, the reduction formula and the reduction
rate. The developed optimization algorithm incorporates the abil-
ity to use a different reduction scheme for the thresholds of each
operating mode during the optimization process. However, this
could lead to the requirement of extensive parameter exploration
during algorithm tuning, thus it should be used only in cases where
the same reduction scheme for all three thresholds does not lead to
satisfactory design optimization results. Fig. 3 depicts this general
aspect of thresholds reduction by showing the general reduction of
the local search effect on the operation modes of sensors through
time. Obviously, sensors with battery levels above the upper area
of the graph are not affected by the MA, as they keep their original
operating modes.

Thus, the three threshold values ðTCH; THSR and TLSRÞ can be up-
dated with one of the following ways:

(i) geometric reduction:

T ½tþ1� ¼ ð1� RRÞ � T ½t� ð10Þ

where T represents any of the three types of threshold and t is some
specific measuring cycle. The constant RR is the reduction rate
parameter, which together with the initial value of each threshold
constitute the parameters of exploration during the tuning of the MA.

(ii) linear reduction:

T ½tþ1� ¼ T ½t� � RR ð11Þ

and (iii) no update, where thresholds are kept constant over time.
5. Results

The performance of the MA approach to the dynamic optimiza-
tion of WSN designs was compared to that of the original GA-based
system, during 15 consecutive measuring cycles of the WSN. The
fine-tuned parameters of the GA system (after extended experi-
mentation) were kept the same in the MA. Thus, the probability
of crossover was equal to 0.8 and the probability of mutation equal
to 0.001, while the population size was equal to 300 individuals.
The additional parameters that were expected to influence the per-
formance of the MA system were, as explained in the previous sec-
tion, the initial values of the three battery-level thresholds and
their reduction scheme (reduction formula and reduction rate).
Several experiments were performed with different combinations
of these three tuning parameters of the MA. The exploration ranges
for the initial values of the thresholds and the reduction rates, for
each operating mode, are shown on Table 1. All three reduction for-
mulas were explored in each testing case. The differently tuned



Fig. 2. Pseudocode of the MA used in the dynamic optimal design algorithm (bold box in Fig. 1).

Fig. 3. Thresholds update through time and corresponding local search results
(changes in operating modes of sensors). On the x-axis are the consecutive
measuring cycles (MC).
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memetic algorithms were compared to each other against several
performance metrics and tests. The MA parameters that gave the
best results were the following: initial threshold values of
TCH ¼ 0:8; THSR ¼ 0:6 and TLSR ¼ 0:4 with geometric reduction for-
mula, using reduction rates of 0.2, 0.1 and 0.1 for CH, HSR and
LSR operating modes, respectively. These parameter values were
used in the MA that was eventually compared to the original GA
system. What follows in the rest of this section is the comparison
of the MA with these parameter values, with the original GA ap-
proach for WSN dynamic design optimization.

5.1. Network characteristics

The first comparison concerns the network characteristics that
have to do with the application-specific requirements. It is very
Table 1
Ranges of MA parameters during algorithm tuning.

Parameter Minimum Maximum Step

TCH 0.6 0.9 0.1
THSR 0.4 0.7 0.1
TLSR 0.2 0.5 0.1
RRCH 0.1 0.2 0.05
RRHSR 0.05 0.15 0.05
RRLSR 0.05 0.15 0.05
important that the values of these characteristics are kept within
certain acceptable limits. Fig. 4 shows the progress of the values
of uniformity level (MRD), operation energy consumption and
communication energy consumption, for both the GA system and
the MA system, during the examined 15 measuring cycles. In both
cases, the adaptive WSN designs kept the MRD values quite low
during all measuring cycles. In general, the MRD values of the
WSNs designed by the MA system are a little higher (lower unifor-
mity), but they are constantly kept below 0.17, which is a very rea-
sonable value. The general trend of increase in the values of MRD is
reasonable as more and more energy limitations are introduced
into the network as time passes by. The GA system is more energy
efficient in terms of operational energy consumption and the MA
system in terms of communication energy consumption. It should
be noted that spatial density of sensing points was not presented in
these graphs because the required value was constantly met
throughout the entire testing period. In addition, no communica-
tion faults occurred throughout the adaptive design processes of
both the GA- and MA-systems. In general, it is evident that appli-
cation-specific characteristics of the WSNs designed by both ap-
proaches are similar.
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Fig. 4. Basic network characteristics of WSN designs during 15 measuring cycles for
both system (GA and MA).
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5.2. Energy conservation

Another important feature of the dynamic application of the
optimal design algorithms is the energy saving characteristics of
the designs, which lead to the extension of the life span of the net-
works. Fig. 5 shows the percentage of sensors (over the entire grid
of 900 sensors) with battery capacities below certain percentage-
levels after each measuring cycle, based on the assumption that
all sensors had 100% battery capacity at the beginning of the first
measuring cycle, for the designs produced by both GA- and MA-
systems. It is clear that the MA system performs better than the
GA system in energy conservation of sensor power resources, as
at specific measuring cycles, fewer sensors have battery capacities
below certain values in the case of MA-designed WSNs. Something
similar can be seen in Fig. 6, where percentages of sensors with
battery capacities above certain levels are shown. Again, in most
cases, the MA-designed networks have more sensors with battery
capacities above certain levels, even though in very high capacities,
the performances of both systems are quite similar.
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Fig. 6. Percentages of sensors with battery capacities above 98%, 95%, 90% and 70%
of full battery capacity at the end of each measuring cycle, for both design
optimization systems.
An indication of the ability of a design algorithm towards en-
ergy saving and intelligent scheduling of the operating modes of
sensors during dynamic network design, can be seen in the degree
of re-usage of each sensor at some specific operating mode. Figs. 7
and 8 show the number of sensors that were used at each measur-
ing cycle in CH and HSR operating modes, respectively, for some
specific number of times (or not used at all). In the case of CH
usage, it is clear that in the case of the MA-designed networks,
more sensors were used once as CHs while less were used twice
or three times, making the MA-based algorithm more ‘‘intelligent”
than the GA-based one (Fig. 7). Similar but not so strong results are
shown in the HSR usage (Fig. 8). This behavior also explains the
better energy conservation achieved by the MA-based design algo-
rithm that was shown before.

Finally, Fig. 9 shows the average battery levels of sensors oper-
ating at specific modes during each measuring cycle. Again, the
superiority of the MA approach is obvious in all cases, where aver-
age battery levels are higher than those of the GA-based system’s
designs, especially as time progresses in the testing period of the
15 measuring cycles.
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Fig. 8. Number of sensors that were used in HSR mode for specific times (or not
used) over the testing period of the dynamic design at each measuring cycle, for
both GA- and MA-systems.
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6. Discussion

The presented results show that the hybridization of the origi-
nal GA with the local search operation using the suggested thresh-
olds, brought some improvement in the performance of the WSN
design process, mainly in the energy conservation aspect of the de-
sign. This implies that the original GA was probably consuming re-
sources in several ‘‘bad” candidate solutions that assigned high-
demand operating modes to sensors with relatively low battery
capacities. These candidate solutions were modified by the MA,
making the overall fitness of the population of each generation
higher in average, giving an extra assistance to the optimization
process. Thus, some degree of ‘‘intelligence” was incorporated into
the genetic optimization process, leading to the presented perfor-
mance improvement.

An additional advantage is that the performance improvement
was achieved without any major increase in the computational
complexity of the algorithm. The additional computations are not
time consuming; they do not involve any additional fitness func-
tion evaluations and they just increase the iterations of the algo-
rithm by some multiple of the number of active sensors in the
WSN, keeping the computational complexity of the MA in the
OðnÞ, like the original GA (n being the number of sensors in the
WSN design). Finally, the MA achieved similar to the GA conver-
gence time. Thus, the main difference was in the quality of the re-
sults and not in the speed that these results were obtained.
7. Conclusions

A memetic algorithm for the dynamic optimal design of WSNs is
proposed. A fixed wireless network of sensors of different operat-
ing modes was considered on a grid deployment and the MA sys-
tem decided which sensors should be active, which ones should
operate as clusterheads and whether each of the remaining active
nodes should have high or low signal range. During optimization,
parameters of network connectivity, energy conservation as well
as application requirements were taken into account. Extended
experimentation with the tuning parameters of the MA was per-
formed so that the best parameter values were obtained. The per-
formance of the WSNs designed by the tuned MA system was
compared to that of networks designed by a genetic algorithm sys-
tem that has been previously developed. The MA system showed
considerable improvement in energy conservation of the network
resources over the already successful performance of the GA sys-
tem, while the application-specific characteristics of the sensor
networks were kept close to optimal values.

The satisfactory performance of the algorithm during the dy-
namic network design process makes it a valuable tool for design
optimization towards maximization of the life span of WSNs, espe-
cially in cases where satisfaction of some application-specific
requirements is a necessity. In addition, it was shown that appro-
priate manipulation of the population of the GA (something that
was introduced by the proposed local search scheme) can lead to
performance improvement. The investigation of this approach
and its possible use in other (similar or not) applications of genetic
algorithms, needs further research and can lead to the develop-
ment of more advanced memetic algorithms.
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