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PREDICTIVE NEURAL NETWORK MODELING OF pH AND

ELECTRICAL CONDUCTIVITY IN DEEP–TROUGH HYDROPONICS

K. P. Ferentinos,  L. D. Albright

ABSTRACT. A model is presented that predicts pH and electrical conductivity (EC) changes in the root zone of lettuce (Lactuca
sativa cv. Vivaldi) grown in a deep–trough hydroponic system. A feedforward neural network is the basis of that modeling.
The neural network model has nine inputs (pH, EC, nutrient solution temperature, air temperature, relative humidity, light
intensity, plant age, amount of added acid, and amount of added base) and two outputs (pH and EC at the next time step).
The most suitable and accurate combination of network architecture and training method was one hidden layer with nine
hidden nodes, trained with the quasi–Newton backpropagation algorithm. The model proved capable of predicting pH at the
next 20–minute time step within 0.01 pH units and EC within 5 �Scm–1. Simpler prediction methods, such as linear
extrapolation and the “lazy man” prediction (in which “prediction” is the value of the previous time step), gave comparable
accuracy much of the time. However, they performed poorly in situations where the control actions of the system had been
activated and produced relatively rapid changes in the predicted parameters. In those cases, the neural network model did
not encounter any difficulties predicting the rapid changes. Thus, the developed model successfully identified dynamic
processes in the root zone of the hydroponic system and accurately predicted one–step–ahead values of pH and EC.

Keywords. Neural network modeling, Hydroponics, pH, Electrical conductivity, Backpropagation algorithms.

any research reports describe nutrient uptake by
plants and the dynamics of growth (see, for
example, Barber and Silberbush, 1984; Wild
and Breeze, 1981; Marshall and Porter, 1991;

Lawlor, 1991). Models of certain dynamic processes (such as
average shoot or root concentration, transpiration, nutrient
uptake, etc.) exist, but generally not at the whole–plant level
and seldom in a form useful for environmental control or fault
detection.

Neural networks (NN) have been used to model a variety
of biological and environmental processes (e.g., Bhat et al.,
1990; Seginer et al., 1994; Thompson and Kramer, 1994;
Sridhar et al., 1996; Lacroix et al., 1997; Lin and Jang, 1998;
Altendorf et al., 1999; Hong et al., 2000), but not in the
specific area of plant cultivation. Knowledge of the dynamics
of interacting biological systems within hydroponically
grown plants is limited. Moreover, hydroponic systems can
be monitored with a level of detail that permits one to collect
extensive sets of data about the system. Thus, the NN
approach shows promise as a means to avoid the need to
model internal plant processes and still achieve a prediction
capability suitable for control and fault–detection algo-
rithms.

Hydroponic systems provide an opportunity to monitor
and control the growing process of plants and characterize
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their interactions with their surrounding microenvironments.
Multiple sensors in the root zone make monitoring of nutrient
solution characteristics possible. Information about the shoot
environment is also available from sensors that monitor
environmental  conditions inside the greenhouse. This infor-
mation, in the form of data rather than analytical expressions
and dynamical relationships, provides the NN model the
ability to optimize its parameters (weights and thresholds) in
order to identify and simulate the real process in the best
possible way.

The objective of this work was to develop and validate a
neural network model able to predict pH and EC values in the
nutrient solution of hydroponically grown lettuce. Use of the
model will provide a first step toward solving the greater
problem of using such information to develop fault–detection
methods for greenhouse crops.

MATERIALS AND METHODS
The growing plant of the modeled system was lettuce

(Lactuca sativa cv. Vivaldi), and the growing system was
deep–trough hydroponics in a greenhouse. Information about
the physical process was collected by measuring the most
important parameters that affect the dynamics of nutrient
solution pH and EC (fig. 1). These parameters can be divided
into three categories:
� System variables. These are the measured parameters of

the system: pH, electrical conductivity (EC), and the
temperature of the nutrient solution.

� Indoor environment disturbances. These are measured
environmental  parameters that affect the growing plants:
air temperature and relative humidity, which are measured
above the canopy, and the photosynthetically active
radiation (PAR) integral (over time) at plant level.

M
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Figure 1. The measured parameters of the system: T = air temperature,
RH = relative humidity, Light = light intensity, EC = electrical conductiv-
ity, Ts = temperature of nutrient solution.

� Control signals. These are the signals for adding acid or
base.
A fourth category, plant age, was also included, as

explained later in this article.
Tests were completed in one section of the Kenneth Post

Laboratory (KPL) Greenhouses at Cornell University in
Ithaca, New York. That greenhouse section has a floor area
of approximately 85 m2 and it is fully equipped with a staged
ventilation system, an evaporative cooling system, a supple-
mental lighting system, and a movable shading system. The
deep–trough hydroponic system that was used consisted of
three small growing ponds (tanks). Each pond has an area of
approximately  1.0 m2 and a volume of 0.4 m3 and is
completely independent of the others. In this way, the
systems can be monitored and controlled in parallel, and
three data sets can be obtained simultaneously. Inside each
pond are pipes with small, equally spaced holes that serve two
important functions:
� To circulate nutrient solution so it remains well

oxygenated by dissolved oxygen added through these
pipes by a pump and electronically controlled solenoid
valves.

� To assure that any added acid or base is well distributed in
the nutrient solution so roots are not damaged by direct
contact with pure acid or base solution.
Lettuce plants were germinated in growth chambers and

transplanted into the ponds after ten days. The growing
period in the hydroponic system was 25 days, and the plants
were harvested 35 days after seeding. Plants were respaced
every 10 days after they were transplanted into the ponds. The
initial spacing between plants was 100 mm in a square
pattern, and final spacing was approximately 185 mm.

The monitoring and control system consisted of a personal
computer (PC) running LabVIEW software (available from
National Instruments), a data acquisition board connected to
the computer, and several meters, sensors, and actuators
connected to the board. The operational features of the
greenhouse section that affect the environment are monitored
and controlled by the central greenhouse computer. The
monitored parameters of the hydroponic system were pH,
electrical  conductivity (EC), and the temperature of the
nutrient solution. A metering pump was used for each pond
to control the pH of the nutrient solution by adding acid or
base.

NEURAL NETWORK TRAINING
All parameters in a neural network (weights plus biases)

can be denoted by a vector:

PRWw ⊂∈  (1)

where p is the total number of parameters of the network
(Fine, 1999). Training a neural network involves selecting
the “best” set of network parameters (w) that minimize a
training error estimator (Gallant, 1993; Kosko, 1992). The
error estimator used here was the sum–squared error (SSE).
Preliminary training explored how possible architectures
performed when trained with different training algorithms.
Next, the best combination of network architecture and
training algorithm was selected. Finally, the chosen com-
bination was further tested and trained to obtain the best
generalization  capability. The training methodology used
was the backpropagation training algorithm (Rumelhart et
al., 1986). Three minimization algorithms were used:
steepest descent, quasi–Newton, and the Levenberg–Mar-
quardt algorithm.

In the backpropagation algorithm, the vector of the
network parameters (w) is updated in each epoch (training
step) using:

kkkkk gMww ⋅⋅α−=+1  (2)

where
� = learning rate
g = gradient of the error function
M = approximation of the inverse of the Hessian matrix.
This matrix is positive definite in order to ensure the

descent. All quantities are for the kth iteration.
In the steepest descent algorithm, Mk = I, where I is the

identity matrix, and the search for a minimum takes the
opposite direction of the gradient (–gk). That is, the direction
of the steepest descent of the error function’s “surface.” In the
quasi–Newton algorithm, the positive definite approxima-
tion of the inverse of the Hessian Mk satisfies the relationship:

kkk
qMp ⋅= (3)

where

kkk
wwp −= +1

kkk
ggq −= +1

In the algorithm used in this work, the approximation was
made using the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) method (Fletcher, 1987; Suykens et al., 1996). In the
Levenberg–Marquardt algorithm, the inverse of the Hessian
is approximated by:

[ ]
1−

⋅+⋅ε TJJI (4)

where
� = small quantity
I = identity matrix

J = Jacobian matrix [Jij] with 
i

j
ij w

e
J

∂

∂
= , where ej is the

error (yj – tj) from the target value.
A crucial point in all variations of the backpropagation

algorithm is the choice of the learning rate (�), which
minimizes the error of the next step (epoch). In the large
majority of works in the literature, a fixed–value learning rate
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is used during the training of the NN. Here, an on–line
adjustable learning rate was used, as it seemed to perform
much better than the constant one. More specifically, in the
steepest descent and quasi–Newton algorithms using the
adjustable learning rate, convergence was achieved in
two–thirds of the time needed for convergence using the
constant learning rate. In the Levenberg–Marquardt algo-
rithm, the improvement was slightly better. In the steepest
descent algorithm, the Hessian was used to solve for the
“best” learning rate at each iteration. For the other two
algorithms, the “best” learning rate was calculated with an
approximate line search using a cubic interpolation.

All three training algorithms for both one–hidden–layer
(1–HL) and two–hidden–layer (2–HL) networks, as well as
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) approxi-
mation method and the cubic interpolation used by these
algorithms, were written in Matlab (code is listed in
Ferentinos, 1999.) Inputs and outputs (target values) were
standardized to means of zero and standard deviations of
unity. Furthermore, the two most common techniques of
controlling the complexity of large neural networks (i.e., val-
idation and regularization) were used.

NETWORK DESIGN AND DATA SETS

Data sets used to train and then test the neural network
were collected between May and July of 1999. In all
experiments,  pH, EC, and nutrient solution temperature were
logged, as well as air temperature, relative humidity, and
light intensity of the greenhouse environment. The pH set
point was 5.8. The set points for temperature were 24°C
during the day (6 a.m. to 10 p.m.) and 19°C during the night.
The control zone for relative humidity was from 30% to 70%,
and the light integral was controlled to 17 moles m–2 d–1, with
the algorithm presented in Albright et al. (2000). The EC was
not controlled by the computer, but was adjusted manually to
keep the nutrient solution between 1150 and 1250 �S cm–1 by
adding reverse–osmosis water and solution stocks every two
days. All these measurements, which constituted inputs to the
NN model, were collected every 10 seconds and values
averaged over 20 minutes were logged. In addition, the
control signals of the system were used as inputs to the NN.
The controlled parameter in our case was the pH of the

nutrient solutions, as controlled with metering pumps. The
pH control signal (upH) was continuously variable and was
logged as the total amount of acid or base added to the
solution during each 20–minute period. Actually, the signal
consisted of two signals (upH–A and upH–B), depending on
whether acid or base was added. Of course, when upH–A � 0,
then upH–B = 0, and vice versa. Finally, one more input, the
plant age estimator, was included. The dynamics of the
system change with time because of plant growth, so the
model should take into consideration the age of the plants.
This leads to an adaptive NN, with the plant age estimator
being the adaptation parameter. The plant age was measured
in 12–hour intervals, and the growing period of the lettuce
was 25 days, so plant age estimator values ranged from 1 to
50.

The outputs of the NN were the predicted future pH and
EC values of the nutrient solution averaged over the next
20–minute period (time step). These variables give informa-
tion on the system’s condition and response. Thus, the NN has
nine inputs and two outputs (fig. 2), and each input variable
accrued 1800 values during each 25–day growing period.

The networks that were tested for the model were 1–HL
and 2–HL networks. The activation functions that were used
and tested were either logistic or hyperbolic tangent func-
tions. The output nodes were linear. The number of hidden
nodes in the 1–HL networks that were tested varied from 4 to
10, while in the 2–HL networks several combinations were
tried.

The NN model was trained with experimental data
collected during one growing period of the plants. The
training set consisted of data from two of the ponds of the
hydroponic system. Each column of this set had the values of
all network variables (inputs and outputs) of a specific time
step. Each time step was 20 minutes, and the growing period
was 25 days; thus, the training data set had 1800 columns for
each pond, or a total of 3600 columns. Several ratios of
training data over validation data were tested to find the one
leading to the minimum training errors. The ratio that was
most appropriate had 2600 columns of data for training and
1000 for validation. The general training process is shown in
figure 2 and had two parts. The first part, the preliminary
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Figure 2. Neural network model inputs and outputs and training process: t = current time, t+1 = next time step, upH–A = amount of acid added, upH–B
= amount of base added, Plant Age Estim. = plant age estimator factor, wi:j,k = weights and thresholds of neural network.
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Table 1. Root mean square (RMS) errors of pH and EC predictions for several 1–HL networks trained with three different
backpropagation algorithms: SD = steepest descent, QN = quasi–Newton, LM = Levenberg–Marquardt.

Hidden
pH Prediction’s RMS Errors (pH) EC Prediction’s RMS Errors (µS cm–1)

Hidden
Nodes SD QN LM SD QN LM

4 0.0263 0.0193 0.0300 5.8773 3.5872 8.2644

5 0.0238 0.0150 0.0345 5.4929 3.6924 5.2713
6 0.0245 0.0150 0.0487 4.9394 3.8388 8.9483
7 0.0222 0.0174 0.0461 5.6949 3.5252 6.9018
8 0.0229 0.0150 0.0345 5.4664 3.6011 10.428
9 0.0226 0.0147 0.0461 5.4438 3.4559 10.325

10 0.0237 0.0159 0.0610 5.5588 3.7276 10.288

training process, investigated which network architecture
trained with which algorithm gave the best possible results.
This was achieved by training several candidate network
topologies (both 1–HL and 2–HL architectures) with all three
training algorithms and then comparing the results. The
second part of the training process, the basic training process,
focused on training the network architecture chosen from the
first step with the algorithm that proved best for that specific
architecture.

After the training process, the trained NN model was
tested in new data (testing data set), and its performance and
generalization  capabilities were evaluated. Testing data were
collected from one pond of the hydroponic system during a
separate growing period. The matrix of the testing dataset had
11 rows (9 input and 2 output variables) and 1800 columns;
data were collected every 20 minutes over the growing period
of 25 days.

RESULTS
TRAINING AND COMPARISON OF NETWORKS

In preliminary training, numerous initial conditions and
parameters for each network architecture and training
algorithm were explored. Two hundred iterations (epochs)
were used for these evaluations. From monitoring the error
history during these training experiments, it was clear that
200 epochs sufficed to choose the best architecture and
training algorithm because the error in each case decreased
only slightly after about 180 iterations. Table 1 contains these
results for the 1–HL architectures, trained with all three
algorithms. The best root mean square (RMS) errors
achieved with each algorithm are underlined, for both pH and
EC, and the smallest values are bolded. Minimum RMS
errors for both pH and EC were achieved by a NN with
9 hidden nodes trained with the quasi–Newton algorithm.
These minimum RMS errors are 0.0147 for pH and 3.4559 �S
cm–1 for EC. Thus, from the 1–HL architectures, the best
architecture/algorithm  combination was a 9 hidden nodes
network trained with the quasi–Newton backpropagation
algorithm. A comparable procedure for 2–HL network
architectures  showed that they performed less well. Even the
architecture/algorithm  combination that appeared best
(5 nodes in the first hidden layer and 3 nodes in the second
hidden layer trained with the steepest descent backpropaga-
tion algorithm) had much larger RMS errors for both pH and
EC (0.0241 and 6.2116 �S cm–1, respectively) compared to
the 1–HL NN with 9 nodes trained with the quasi–Newton
algorithm.

After that preliminary training, the basic training was
performed on the selected NN to determine the best possible

Table 2. RMSE for pH and EC predictions of the 1–HL neural network
with 9 hidden nodes, with several values of the algorithm parameter

(�) and different activation functions, trained
with the quasi–Newton algorithm.

pH RMSE (pH) EC RMSE (µS cm–1)

λ Logistic tanh Logistic tanh

0 0.0047 0.0075 3.6004 3.8375

0.001 0.0048 0.0054 3.5163 4.0374
0.01 0.0046 0.0058 3.3750 3.5708
0.1 0.0067 0.0064 3.5076 3.4582

algorithm parameters and activation functions. Many ran-
dom initial network parameters were tested. Numerous
values of the algorithm parameter � (coefficient of the
penalty term added to the error for regularization and varying
by an order of magnitude) were tried. The best results are
shown in table 2. All training explorations had a maximum
of 300 epochs. Results for both logistic and hyperbolic
tangent activation functions (functions of hidden nodes) are
presented. From these results it is seen that the value of �
leading to the minimum RMS errors for both pH and EC was
0.01. In addition, the network with a logistic activation
function performed better than the network with hyperbolic
tangent activation functions.

In summary, the NN model was chosen to have 9 inputs,
one hidden layer with 9 hidden nodes (with logistic activation
functions), and 2 outputs, and trained with the backpropaga-
tion training algorithm using the quasi–Newton multidimen-
sional minimization algorithm, with parameter � = 0.01.

TESTING RESULTS
The testing process consisted of presenting new data to the

trained NN model and comparing its output with the real
system’s outputs. The model gave RMS errors of 0.0072 for
the pH and 3.7268 �S cm–1 for the EC on the testing data. In
figure 3, graphs of the measured pH and EC data and values
predicted by the NN model are presented, representing a
sample of the testing data (time period of about two days;
days 2 and 3 for the pH graph and days 18 and 19 for the EC
graph). The days presented are different for the pH and the EC
only because these specific days gave clearer and more
representative  results. The graphs in figure 4 show absolute
values of prediction errors for pH and EC. In figure 5, the
frequency distribution of absolute prediction errors on the
testing data, as well as its cumulative frequency distributions,
are presented as another way to show the generalization
capabilities  of the NN model, specifically:
� Nearly 90% of prediction errors for pH differed from real

measurements by less than 0.005, 66% by less than 0.003,
and nearly half were between 0.001 and 0.003 pH units.
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Figure 3. Neural network predictions vs. real measurements on part of the testing data set for pH (days 2 and 3) and EC (days 18 and 19).

� Nearly 82% of prediction errors for EC differed from real
measurements by less than 2.0 �S cm–1, and nearly 60%
were within 1.0 �S cm–1.

DISCUSSION
The training process of the NN model with data from two

ponds collected during a growing period of 25 days seemed
to be very successful. The optimal network architecture was
obtained after trying several different topologies of one–hid-
den–layer (1–HL) and two–hidden–layer (2–HL) networks.
The simpler architecture that gave the best results on the
training data was selected as the final NN model architecture,
so that overfitting was avoided and good generalization on

unknown data was achieved. This method of choosing the
optimal network architecture was materialized using infor-
mation on the validation error during training. When the
validation error was reaching a minimum and starting to
increase, the training process was ceased, even though the
training error might still be decreasing. In this way, the
consequences of overfitting, that is, noisy network outputs
with predictions of patterns more complex than the actual
ones, were avoided.

For this specific modeling problem, 2–HL network
architectures  seemed less applicable than 1–HL architec-
tures. This was not unexpected, for 1–HL NN are universal
approximators,  meaning that they can approximate any
nonlinear function. The addition of a second hidden layer in
the network can sometimes improve its performance, but not
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Figure 4. Absolute prediction errors on testing data (25 days) for pH and EC.

necessarily. The preliminary training process showed that the
Levenberg–Marquardt (LM) minimization algorithm per-
formed poorly compared to the other two algorithms. The
LM algorithm is a powerful algorithm that is much more
sophisticated than steepest descent (SD) and quasi–Newton
(QN) algorithms. However, even the SD algorithm per-
formed better than the LM in most cases. This proves the
general rule that there is no generally accepted “best”
minimization algorithm for backpropagation training of
neural networks. The performance of the algorithms depends
on the specific characteristics of the training data set, such as
distributions of values of each variable and specific correla-
tions between variables, as well as correlations between
current and future states of each variable. Thus, it appears
that the characteristics of this hydroponic system do not
particularly favor implementation of the LM algorithm.
Another reason that could explain the unexpectedly good
performance of the SD algorithm is the use of a learning rate
that was continuously adaptive during training. Adaptation
was by calculating and using the Hessian, while in the other
two algorithms an approximate line search using cubic
interpolation was used.

The RMS errors of the NN on the testing data set are
similar to those achieved by linear extrapolation prediction
or even by a “lazy man” prediction scheme. The linear
extrapolation was applied on the testing data set and used a
number of past values of pH and EC to extrapolate for the
following–step values (predictions). The “lazy man” predic-
tion method simply sets pH(t + 1) = pH(t) and EC(t + 1) =
EC(t), i.e., it uses the values of the current time step as
“predictions” of the next time step. Even though these

methods gave errors similar to the NN errors, the real
superiority of the NN model is shown in situations where
control parameters influence, to a large degree, the system’s
response (for example, acid addition that results in rapid pH
drop, such as in the pH graph of fig. 3). In these cases, the NN
model performed extremely well, in contrast with the linear
prediction and the “lazy man” prediction schemes. The latter,
as it can easily be imagined, has unacceptable lags in such
situations, while the former tends to overshoot and lose the
general pattern. These can be observed in figure 6, where a
rapid change of pH due to some acid addition is shown. Such
rapid changes in the system variables are common in a
hydroponic system; therefore, the more sophisticated ap-
proach of neural networks is considered justifiable and
necessary.

Finally, as it can be noticed by the high absolute testing
errors of EC during the beginning of the testing period
(fig. 4), the NN model was unable to predict the EC values
of the first two days of the testing data. It must be made clear
that neural networks can generalize satisfactorily for data
similar to the data that they were trained with. The
experiment that was used for collecting the testing data was
started with lower than normal EC. The NN, for this time of
the experiment (plant age estimator from 1 to 4), was trained
to give much larger values of EC. However, because EC
values of each time step are inputs to the network, its
predictions were not as large as the training data values, but
also not as small as the actual testing values that it had to
predict. This means that the NN has large adaptation and
generalization  capabilities, but if the testing data are not at all
similar to the training ones, then the network cannot have



2013Vol. 45(6): 2007–2015

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

< 0.0005 0.0005–0.001 0.001–0.003 0.003–0.005 > 0.005

pH absolute prediction error

Cumulative frequency
Interval’s frequency

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

< 0.5 0.5 – 1.0 1.0 – 1.5 1.5 – 2.0 > 2.0

EC absolute prediction error (ìS/cm)

Cumulative frequency
Interval’s frequency

Figure 5. Frequency distributions of absolute prediction errors on testing data for pH and EC.

5.78

5.80

5.82

5.84

5.86

5.88

5.90

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

time step (20 min)

p
H

Measurements

NN model

Linear Extrapolation

”Lazy” prediction

Figure 6. Response of different prediction schemes in relatively rapid pH change.



2014 TRANSACTIONS OF THE ASAE

suitable performance. Once the EC was increased back to
normal, the NN model predicted it accurately. It should be
mentioned here that the NN model is supposed to function in
normal conditions of the hydroponic system. However, it can
predict abnormal pH values that arise due to control actions
because it has the pH control signals as inputs. Its incapability
to predict correctly abnormal EC values is also due to the lack
of EC control signals. Thus, it can be concluded that the NN
model predicts EC values satisfactorily only when fluctua-
tions of EC fall within the normal range (that is, the range in
which the network was trained.) If the NN model must predict
abnormal EC values, then the network must be trained with
data of abnormal EC behavior.

CONCLUSIONS
A new predictive method that uses artificial intelligence

to model the pH and EC patterns of the nutrient solution of
deep–trough hydroponic systems was developed. More
specifically, artificial neural networks were applied success-
fully in a model that predicts the values of pH and EC of the
system. These predictions are considered very important
because they can be used by other intelligent systems that
ensure the proper and optimal operation of the hydroponic
system. In addition, this work builds a link between artificial
intelligence  and hydroponic systems and with its encourag-
ing results, opens the way to further development and
investigation of “intelligent” systems in the field of hydro-
ponics, which will lead to more precise and productive
cultivation in hydroponic systems.

From the testing results, it can be concluded that the
constructed NN model successfully identified dynamic
processes in the root zone of the hydroponic system and
accurately predicted values of pH and EC of the nutrient
solution at the next time step. More specifically, the
following conclusions can be drawn:
� Feedforward neural networks are suitable for modeling

pH and EC of hydroponic systems. Once the network is
trained with a satisfactory amount of data, it can
accurately predict the future state of the system one time
step ahead.

� Relatively small network architectures perform better
than large ones for this modeling problem. More
specifically, 1–HL architectures outperformed 2–HL
architectures.  The most suitable architecture proved to be
that with 9 nodes in one hidden layer.

� The quasi–Newton multidimensional minimization
algorithm gives the best training results when used in the
backpropagation training algorithm.

� Predicted pH and EC values are sufficiently accurate that
the NN model could be considered for use in other systems
requiring knowledge of the possible future state of the
system. A good example is a fault–detection system. Such
a system could read the current state of the process, predict
the future state, and compare predictions with the actual
process status to detect a possible malfunction. Another
example is a control system that “looks” not only at the
current status of a process but also into its future state and
adjusts control actions according to the predicted future
state.

� Simpler prediction methods, such as linear extrapolation
or “lazy man” prediction, gave similar RMS errors
through the whole testing set, but they perform poorly in
situations where the control actions of the system produce
relatively rapid changes in the variables to be predicted.
Because predictions can be very useful in on–line systems
such as the hydroponic system described above, good
prediction performance is required. Thus, the NN model
would be preferred.
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