## COMPUTATION & PREPARATION OF NUTRIENT SOLUTIONS

# Principles, properties & preparation of nutrient solutions

## **Nutrient solutions**

 Nutrient solutions are diluted water solutions containing one or more inorganic solutes, which are used to supply the necessary nutrient elements to plants.

• The supply of water soluble fertilizers via the irrigation water in form of a nutrient solution is termed fertigation.

## Nutrient Solution and Soilless Culture

The composition and management of nutrient solution are the main tools to optimize plant nutrition and thus to maximize yield

### **Nutrient solution characteristics**

• Electrical conductivity (EC)

• pH

Macronutrient ratios or concentrations

Micronutrient concentrations

## Nutrient forms in nutrient solutions

| Macronutrient     | Chemical<br>form                                 | Micronutrient   | Chemical<br>form               |
|-------------------|--------------------------------------------------|-----------------|--------------------------------|
| nitrogen (N)      | NO <sub>3</sub> <sup>-</sup> , NH <sub>4</sub> + | Iron (Fe)       | Fe <sup>2+</sup>               |
| Phosphorus (P)    | H <sub>2</sub> PO <sub>4</sub> <sup>-</sup>      | Manganese (Mn)  | Mn <sup>2+</sup>               |
| Sulphur (S)       | SO <sub>4</sub> <sup>2-</sup>                    | Zinc (Zn)       | Zn <sup>2+</sup>               |
| Potassium (K)     | K+                                               | Copper (Cu)     | Cu <sup>2+</sup>               |
| Calcium (Ca)      | Ca <sup>2+</sup>                                 | Boron (B)       | H <sub>3</sub> BO <sub>3</sub> |
| Magnesium<br>(Mg) | Mg <sup>2+</sup>                                 | Molybdenum (Mo) | MoO <sub>4</sub> <sup>2-</sup> |

#### **Typical compositions of nutrient solutions for soilless culture**

| Macro-                               |          | mmol L <sup>-1</sup> |           | Micro-   |          | µmol L <sup>-1</sup> |           |
|--------------------------------------|----------|----------------------|-----------|----------|----------|----------------------|-----------|
| nutrient                             | Hoagland | Sonneveld            | Sonneveld | nutrient | Hoagland | Sonneveld            | Sonneveld |
|                                      | & Arnon  | &Straver,            | &Straver, |          | & Arnon  | &Straver,            | &Straver, |
|                                      |          | cucumber             | roses     |          |          | cucumber             | roses     |
| NO <sub>3</sub>                      | 14.0     | 16.00                | 11.00     | Fe       | 25.00    | 15.00                | 25.00     |
| H <sub>2</sub> PO <sub>4</sub>       | 1.0      | 1.25                 | 1.25      | Mn       | 9.10     | 10.00                | 5.00      |
| <b>SO</b> <sub>4</sub> <sup>2-</sup> | 2.0      | 1.375                | 1.25      | Zn       | 0.75     | 5.00                 | 3.50      |
| $\mathbf{K}^+$                       | 6.0      | 8.00                 | 4.50      | Cu       | 0.30     | 0.75                 | 0.75      |
| $\mathbf{NH_4}^+$                    | 1.0      | 1.25                 | 1.50      | В        | 46.30    | 25.00                | 20.00     |
| Ca <sup>2+</sup>                     | 4.0      | 4.00                 | 3.25      | Мо       | 0.10     | 0.50                 | 0.50      |
| $Mg^{2+}$                            | 2.0      | 1.375                | 1.125     |          |          |                      |           |

## **Stock solutions**

To reduce the frequency of nutrient solution preparation, the required fertilizers are mixed with irrigation water to form concentrated stock solutions.

The concentration factor of the stock solutions with respect to the final solution supplied to the plants is commonly 100 but may range between 100-200.

## **Stock solutions**

The fertilizers used to prepare stock solutions should be distributed over at least two different tanks to separate Ca<sup>2+</sup> from  $H_2PO_4^-$  and  $SO_4^{2-}$ .

The mixture of  $Ca^{2+}$ with  $H_2PO_4^-$  &  $SO_4^{2-}$ results in precipitation of  $CaSO_4$  &  $Ca(H_2PO_4)_2$ because the solubility of these two salts in water is low.



## Preparation and supply of nutrient solution to the crop

➡ To prepare and supply to the crop fresh nutrient solution, the stock solutions are diluted with irrigation water at a ratio corresponding to their concentration factor using suitable equipment.

An acid is also used in form of a separate stock solution (commonly HNO<sub>3</sub>) to adjust the nutrient solution pH.

An installation for automated nutrient solution preparation comprising two stock solutions of fertilizers and one stock solution of an acid.



#### A fully automated installation for nutrient solution preparation and supply with a separated stock solution tank for each fertilizer.



### Constraints governing the establishment of a nutrient solution composition: I. Association between anions and cations

The addition of a macronutrient ion imposes addition of another ion of different charge at an 1 : 1 equivalent ratio

The input of a macronutrient cannot be considered independently of the other macronutrients

| An example: Addition of potassium |               |                                                |  |  |  |
|-----------------------------------|---------------|------------------------------------------------|--|--|--|
| KCI                               | $\rightarrow$ | K <sup>+</sup> + CI <sup>-</sup>               |  |  |  |
| KNO <sub>3</sub>                  | $\rightarrow$ | $K^{+} + NO_{3}^{-}$                           |  |  |  |
| KH <sub>2</sub> PO <sub>4</sub>   | $\rightarrow$ | $K^{+} + H_{2}PO_{4}^{-}$                      |  |  |  |
| K <sub>2</sub> SO <sub>4</sub>    | $\rightarrow$ | K <sup>+</sup> + SO <sub>4</sub> <sup>2-</sup> |  |  |  |

Constraints governing the establishment of a nutrient solution composition: II. Mineral composition of water

- In most cases, the irrigation water contains considerable amounts of some:
  - macronutrients (Ca, Mg,  $S-SO_4^{2-}$ ),
  - micronutrients (Mn<sup>2+</sup>, Zn<sup>2+</sup>, Cu<sup>2+</sup>, B και Cl<sup>-</sup>)
  - other macroelements ( $HCO_3^-$ ,  $Na^+$ ).

In some cases the concentrations of the above elements in the irrigation water may approach or even exceed their target concentrations in the nutrient solution. Constraints governing the establishment of a nutrient solution composition: III. Adjustment of pH

- Due to the presence of HCO<sub>3</sub>-, the pH of the irrigation water is in most cases higher than the optimal range for plant growth (commonly >7).
- To lower the pH of the irrigation water to the optimal range (5.5 5.8) it is necessary to add an acid (H<sup>+</sup>).
- However, the supply of H<sup>+</sup> via an acid is essentially accompanied by the addition of an anion, which should be taken into consideration in the calculations.

#### **Principles of nutrient solution calculation**

To define the composition of a nutrient solution, target values for the following characteristics are needed:

or:

1. Total ionic concentration (EC in dS m<sup>-1</sup>)

2. pH

- 3. Macronutrient ratios (mM): 3.1. K:Ca:Mg 3.2. N:K
  - 3.3.  $NH_4^+/(NH_4^+ + NO_3^-)$

 3. Macronutrient concentrations (mM):
3.1. K, Ca, Mg
3.2. NO<sub>3</sub><sup>-</sup>,
3.3. NH<sub>4</sub><sup>+</sup>.

#### 4. H<sub>2</sub>PO<sub>4</sub><sup>-</sup> concentration (mM)

5. Micronutrient concentrations (mM)

## **The pH of nutrient solution**

• Desired values in the root environment: 5.5-6.5

• Acceptable range in the root environment: 5-7.

• To maintain the pH in the root zone in the desired range, the pH of the nutrient solution delivered to the crop should range between 5.5-5.8.

 This is attained by adding an acid (H<sup>+</sup>), which reacts with the HCO<sub>3</sub><sup>-</sup> contained in the irrigation water.

| INPUT DATA                               |                                      |                   |          |                                                |                  |                                             |                                  |       |        |
|------------------------------------------|--------------------------------------|-------------------|----------|------------------------------------------------|------------------|---------------------------------------------|----------------------------------|-------|--------|
| Stock solutions                          |                                      | V, m <sup>3</sup> | Α        | Target character                               | ristics o        | f N.S.                                      | Water                            | compo | sition |
| Stock solution A                         |                                      | 0,5               | 100      | E <sub>t</sub> *                               | 2,80             | dS/m                                        | E.C.                             | 0,32  | dS/m   |
| Stock solution B                         |                                      | 0,5               | 100      | pH opt.                                        | 5,6              |                                             | рН                               | 7,3   |        |
| Stock solution C                         | (Acid)                               | 0,2               | 200      | х: (К)                                         | 6,000            |                                             | Ca <sup>2+</sup>                 | 0,90  | mmol/l |
| Selection of phos                        | phorus fertilizer:                   |                   |          | Y: (Ca)                                        | 5,000            |                                             | Mg <sup>2+</sup>                 | 0,30  | mmol/l |
| Select 1 for mono                        | potassium<br>or phosphoric           | 1                 |          | Z: (Mg)                                        | 2,500            |                                             | к+                               | 0,00  | mmol/l |
| acid                                     | or phosphoric                        |                   |          | R (totN/K)                                     | 2,500            |                                             | NH₄ <sup>+</sup>                 | 0,00  | mmol/l |
| Selection of boro                        | n fertilizer: Select                 |                   |          | Nr (NH4/totN)                                  | 0,100            |                                             | Na⁺                              | 0,40  | mmol/l |
| i tor boric acid, 2<br>tetraborate (bora | z for sodium<br>ax), or 3 for sodium | 1                 | 1        | [H <sub>2</sub> PO <sub>4</sub> <sup>-</sup> ] | 1,250            | mmol/l                                      | SO42-                            | 0,20  | mmol/l |
| octaborate (solul                        | bor)                                 |                   |          | [Fe]t                                          | 12,00            | µmol/l                                      | NO3-                             | 0,00  | mmol/l |
| Selection of moly                        | /bdenum                              |                   |          | [Mn] <sub>t</sub>                              | 10,00            | µmol/l                                      | H <sub>2</sub> PO <sub>4</sub> - | 0,00  | mmol/l |
| fertilizer: Select                       | 1 for ammonium                       | 2                 |          | [Zn] <sub>t</sub>                              | 4,00             | µmol/l                                      | HCO3-                            | 2,00  | mmol/l |
| neptamolybdate,<br>molybdate             | or 2 for sodium                      |                   |          |                                                | 0,75             | umol/l                                      | CI-                              | 0,40  | mmol/  |
| Target values for                        | K, Ca, Mg: Select                    |                   |          | [B]+                                           | 20,00            | umol/l                                      | Fe                               | 0,00  | umol/l |
| 1 for a target K:C                       | a:Mg ratio                           | 1                 | 1        | [Mo]+                                          | 0,50             | umol/l                                      | Mn++                             | 0.00  | umol/  |
| concentrations (r                        | nmol/L)                              |                   |          | ISA                                            | 0,00             | mmol/l                                      | Zn++                             | 2,15  | umol/l |
| Select 1 to introd                       | luce a total-N/K                     |                   |          | % pure                                         | fertilize        | r                                           | C++                              | 0.00  | umol/  |
| ratio (mmol/mmo                          | ol) or 2 to                          | 1                 | 1        |                                                | 68               | (9) and and                                 |                                  | 0.00  |        |
| concentration (m                         | mol/L)                               |                   |          |                                                | 85               | (% W/W)                                     | Mo                               | 0.00  |        |
| elect 1 to introd                        | luce a target                        |                   |          | Fe in Fe-chelate                               | 6                | (% W/W)                                     | MO<br>6:                         | 0.00  | ртом   |
| ammonium to tot                          | tal-nitrogen ratio,                  | 4                 | 1        | INH 1/017-2 023-1 0                            | 20-142           | (% W/W)                                     | 51                               | 0,00  | mmoi/i |
| or 2 for a target a                      | ammonium                             | 1                 |          | Fortilizero (kalto                             | 20-11(2)         | 1,50                                        | 2.cat <sub>w</sub>               | 2,80  | meq/l  |
| ,oncentration                            |                                      |                   | <u> </u> | rerunzers (kg/ta                               | iiik)            | 60,75                                       | Σan <sub>w</sub>                 | 2,80  | meq/l  |
|                                          |                                      |                   |          | ULATIONS                                       |                  |                                             | -                                |       | -      |
| Cation/Anion                             | C.C.S                                | C.C.W.            | C.A.F.   | \$04 <sup>2-</sup>                             | NO3 <sup>-</sup> | H <sub>2</sub> PO <sub>4</sub> <sup>-</sup> | HCO3 <sup>-</sup>                | Cl    | Si     |
| C.A.S.                                   | 26,03                                |                   |          | <mark>8,6</mark> 4                             | 15,38            | 1,25                                        | 0,37                             | 0,40  | 0,00   |
| C.A.W.                                   |                                      | 2,80              |          | 0,40                                           | 0,00             | 0,00                                        | 2,00                             | 0,40  | 0,00   |
| A.A.F.                                   |                                      |                   | 24,86    | 8,24                                           | 15,38            | 1,25                                        | 0,00                             | 0,00  | 0,00   |
| Ca <sup>2+</sup>                         | 11,39                                | 1,80              | 9,59     | 0,00                                           | 9,59             | 0,00                                        | 0,00                             | 0,00  | 0,00   |
| Mg <sup>2+</sup>                         | 5,70                                 | 0,60              | 5,10     | 5,10                                           | 0,00             | 0,00                                        | 0,00                             | 0,00  | 0,00   |
| K+                                       | 6,83                                 | 0,00              | 6,83     | 3,14                                           | 2,44             | 1,25                                        | 0,00                             | 0,00  | 0,00   |
| NH4 <sup>+</sup>                         | 1,71                                 | 0,00              | 1,71     | 0,00                                           | 1,71             | 0,00                                        | 0,00                             | 0,00  | 0,00   |
| Na <sup>+</sup>                          | 0,40                                 | 0,40              | 0,00     | 0,00                                           | 0,00             | 0,00                                        | 0,00                             | 0,00  | 0,00   |
| +                                        | 0.00                                 | 0.00              | 1.63     | 0.00                                           | 1.63             | 0.00                                        | 0.00                             | 0.00  | 0.00   |

| Grower:                                                                                             |             |                                |  |  |  |
|-----------------------------------------------------------------------------------------------------|-------------|--------------------------------|--|--|--|
| Crop species:                                                                                       |             |                                |  |  |  |
| Type of recipe:                                                                                     |             |                                |  |  |  |
| Date:                                                                                               |             |                                |  |  |  |
| NUTRIENT SOLUTIO                                                                                    | N RECIPE    |                                |  |  |  |
| E.C.                                                                                                | 2,80        | dS/m                           |  |  |  |
| рН                                                                                                  | 5,60        |                                |  |  |  |
| Stock solution A                                                                                    | 500 LITRES  |                                |  |  |  |
| 1 Calcium nitrate                                                                                   | 51,819      | Kg                             |  |  |  |
| 2 Potassium nitrate                                                                                 | 5,368       | Kg                             |  |  |  |
| 3 Ammonium nitrate                                                                                  | 3,000       | Kg                             |  |  |  |
| 4 Fe-chelate                                                                                        | 0,559       | Kg                             |  |  |  |
| Stock solution B                                                                                    | 500         | LITRES                         |  |  |  |
| 1 Potassium nitrate                                                                                 | 6,990       | Kg                             |  |  |  |
| 2 Magnesium sulphate                                                                                | 31,378      | Kg                             |  |  |  |
| 3 Magnesium nitrate                                                                                 | 0,000       | Kg                             |  |  |  |
| 4 Monopotassium phosphate                                                                           | 8,506       | Kg                             |  |  |  |
| 5 Potassium sulphate                                                                                | 13,684      | Kg                             |  |  |  |
| 6 Phosphoric acid                                                                                   | 0,000       | Litres                         |  |  |  |
| 7 Manganese sulphate                                                                                | 84,50       | g                              |  |  |  |
| 8 Zinc sulphate                                                                                     | 26,59       | g                              |  |  |  |
| 9 Copper sulphate                                                                                   | 9,36        | g                              |  |  |  |
| 10 Boric acid                                                                                       | 61,80       | g                              |  |  |  |
| 11 Borax                                                                                            | 0,00        | g                              |  |  |  |
| 12 Solubor                                                                                          | 0,00        | g                              |  |  |  |
| 13 Ammonium heptamolybdate                                                                          | 0,00        | g                              |  |  |  |
| 14 Sodium molybdate                                                                                 | 6,05        | g                              |  |  |  |
| Stock solution C (Acid)                                                                             | 200         | LITRES                         |  |  |  |
| 1 Nitric acid                                                                                       | 4,264       | Litres                         |  |  |  |
| Calculations (C <sub>b</sub> ) related to acid addition                                             |             |                                |  |  |  |
| [H <sub>3</sub> O <sup>+</sup> ] <sub>w</sub>                                                       | 5,011872336 | C <sub>t</sub> (C17=1)         |  |  |  |
| B <sub>w</sub>                                                                                      | 11,01       | 26,03                          |  |  |  |
| [CO <sub>3</sub> <sup>2-</sup> ]+[HCO <sub>3</sub> <sup>-</sup> ]+[H <sub>2</sub> CO <sub>3</sub> ] | 0,002202    | <i>[K]<sub>t</sub></i> (C17=1, |  |  |  |
| [H <sub>3</sub> O <sup>+</sup> ] <sub>(n.s.)</sub>                                                  | 0,000002511 | C20=1, C23=1)                  |  |  |  |

Accession of the computer program used to calculate nutrient solutions for soilless culture

#### www.ekk.aua.gr/excel/index\_en.htm

Savvas and Adamidis, 1999. J. Plant Nutr. 22.

## CONTROL OF THE TOTAL SALT CONCENTRATION IN THE ROOT ZONE

#### Relationship between yield and total salt concentration in the root zone of soilless grown crops



#### Relationship between yield and total salt concentration in the root zone of an eggplant crop

(Savvas, Διδ. Διατρ. 1992)



Mean EC values from a tomato crop grown in rockwool (Sonneveld 1981, Acta Hort. 126)

| EC in the solution supplied<br>to the crop<br>dS m <sup>-1</sup> | EC in the root environment<br>(dS m <sup>-1</sup> ) |
|------------------------------------------------------------------|-----------------------------------------------------|
| 1,4                                                              | 1,6                                                 |
| 1,8                                                              | 2,2                                                 |
| 2,1                                                              | 3,1                                                 |
| 2,6                                                              | 4,0                                                 |

### Control of EC in the root zone

- Water of good quality (low NaCl, Ca, Mg, SO<sub>4</sub>-S)
- Balanced composition of the supplied nutrient solution (EC, nutrient ratios)
- Proper irrigation scheduling (irrigation frequency in accordance with the energy input, i.e. solar radiation and heating)
- Irrigation water should not be used to wash out salts from substrates, unless it is rainwater.

## Adjustment of pH in the root zone

- Desired pH range in the root zone: 5.5 6.5
- Acceptable pH in the root zone: 5 7.
- In most cases the pH tends to increase in the root zone

#### Increase of pH due to cation to anion imbalance



#### Decrease of pH due to cation to anion imbalance



Changes of pH in the root zone Impact of nitrification

#### Nitrification of ammonium

Nitrosomonas sp.:  $2NH_3 + 3O_2 \longrightarrow 2NO_2^- + 2H^+ + 2H_2O$ 

Nitrobacter sp.:  $2NO_2^- + O_2 \longrightarrow 2NO_3^-$ 

## Maintenance of pH within the desired range in the root zone

Supply of irrigation solution with a pH ranging between 5.5 and 5.7.

- Part of nitrogen should be supplied in form of ammonium ( $N_r = 0.06 - 0.15$ )