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Abstract—We present a multi-objective optimization 

methodology for adaptive wireless sensor network design. The 
proposed approach takes into consideration application-specific 
requirements, connectivity constraints and energy conservation 
characteristics. The current work focuses on the dynamic 
clustering performed by the heuristic design algorithm and 
investigates the sophistication of the optimization methodology 
towards that aspect of network connectivity. 
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I. INTRODUCTION 
NE of the major challenges in the design of Wireless 
Sensor Networks (WSNs) is the fact that energy 

resources are significantly more limited than in wired 
networks [1-2]. Recharging or replacing the battery of the 
sensors in the network may be difficult or even impossible, 
causing severe limitations in the communication and 
processing time between all sensors in the network. Thus, 
optimal energy management in such networks is of major 
importance. Several analyses of energy efficiency of sensor 
networks have been realized [2–5] and several algorithms that 
lead to optimal topologies for power conservation have been 
proposed [6–11]. 

However, another issue of equal importance, which is rather 
neglected in the majority of works in the literature, is the fact 
that some very exact physical characteristics of the network 
have to exist so that the sensing information gathered by the 
WSN is adequate and useful, from a practical point of view. 
These characteristics are defined by specific requirements that 
have to be met by the network, which depend on the exact 
application that the WSN is used into. 

Usually, in environmental applications like the one 
considered in this work, the most important physical 
characteristic of the network is uniformity of measuring 

points. Environmental measurements have to be gathered with 
a certain degree of uniformity throughout the area of interest 
where the WSN is applied. In this way, it is guaranteed that all 
portions of the area are sensed at a similar degree. In addition, 
spatial density of sensing points is another physical 
characteristic that has some specific desired value depending 
on the type of sensing application. 
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We recently presented [12] an algorithm for the dynamic 
design of WSNs for energy conservation of sensors while 
taking into account some of the application-specific 
requirements of the network. In addition, the algorithm also 
takes into account the connectivity issues that arise in a 
wireless network scheme. These issues depend on the specific 
communication capabilities of sensors and the selected 
communication protocol. The most common protocol follows 
the cluster-based architecture, where single-hop 
communication occurs between sensors of a cluster and a 
selected clusterhead sensor that collects all information 
gathered by the other sensors in its cluster. Usually, 
connectivity issues include the number of sensors in each 
cluster, because a clusterhead can handle up to a specific 
number of connected sensors, as well as coverage issues 
related to the ability of each sensor to reach some clusterhead. 

In this work, we investigate the clustering characteristics of 
the adaptive network topologies, as they are dynamically 
designed by the proposed algorithm. In addition, we take into 
account the uniformity of sensing points, energy conservation 
and network connectivity, which all constitute the driving 
forces in network design adaptation. 

 

II. PROBLEM OUTLINE 

A. Optimization Framework 
The design optimization algorithm that was developed in 

[12] dealt with more than one nonlinear objective functions 
that had to be optimized simultaneously. These kinds of 
design problems are the subject of multiobjective optimization 
and can generally be formulated as follows: 
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The individual  objectives, the inequality constraints  

and the equality constraints are dependent on a vector 
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of design variables and a vector of fixed parameters. In this 
case there are n objectives, s design variables, m1 inequality 
constraints and m2 equality constraints. In addition, the design 
variables may be bounded, assuming that

pr

ℜ∈rx . The 
problem is to minimize (or maximize) simultaneously all 
objectives . The s-variable solution vector which satisfies 
all constraints and variable bounds is a feasible solution and 
the set of all such feasible solutions constitute a feasible 
variable domain space S. Obviously, in the above type of 
problems there is no single optimal solution, but rather a set of 
alternative solutions. These solutions are optimal in the wider 
sense that no other solutions in the search space are superior 
to them when all objectives are considered (Pareto optimal 
solutions). The decision vectors that are non-dominated within 
the entire search space are denoted as Pareto optimal and 
constitute the Pareto optimal front. 
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However, even when solving an optimal design problem 
with contradictory criteria, the final solution should be based 
on some quantitative expression of the relative preferences. A 
traditional way of solving the pre-described minimization 
problem is to reduce it to a scalar problem of the form: 
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The weighted sum method parametrically changes the 
weights among objective functions to obtain an appropriate set 
of solutions which may approximate the Pareto front in 
objective space. This method offers a valuable approach in the 
optimal design problem with contradictory objectives, 
particularly in the case of a large-scale multi-objective 
optimization problem in which it is impossible to find all 
Pareto-optimal solutions. Thus, the focus of the problem is 
how to find many near-optimal non-dominated solutions in a 
practically acceptable computational time. There are several 
interesting approaches to tackling such problems, but one of 
the most powerful heuristics, which is also appropriate to 
apply in our multi-objective optimization problem, is based on 
Genetic Algorithms (GAs) [13]. GAs try to imitate natural 
evolution by assigning a fitness value to each candidate 
solution of the problem and by applying the principle of 
survival of the fittest. Their basic components are the 
representation of candidate solutions to the problem in a 
“genetic” form (genotype), the creation of an initial, usually 
random population of solutions, the establishment of a fitness 
function that rates each solution in the population, the 
application of genetic operators of crossover and mutation to 
produce new individuals from existing ones and finally the 
tuning of the algorithm parameters like population size and 
probabilities of performing the pre-mentioned genetic 
operators.  

B. WSN Modeling and Design Objectives 
The sensing area under investigation consists of a square of 

30 by 30 length units. A virtual grid of those dimensions is 
constructed and sensors are placed in all 900 junctions of the 
grid, so that the entire area is covered. A length unit is an 
abstract parameter so that the optimal design algorithm is 
general enough. The length unit is defined as the distance 
between the positions of two neighboring sensor nodes in the 
horizontal or vertical dimension. We consider a cluster-based 
network architecture in which sensors are partitioned into 
several clusters. Each sensor belongs to the cluster of its 
closest clusterhead sensor. All sensors are identical and may 
be either active or inactive. They are capable of transmitting in 
one of three supported signal ranges. Provided that a sensor is 
active, it may operate as a clusterhead transmitting at an 
appropriate signal range (CH sensor) that allows the 
communication with the remote base station (sink), or it may 
operate as a regular sensor transmitting at either high or low 
signal range (HSR/LSR sensor respectively). 

The primary goal of the algorithm is to find the optimal 
operation mode of each sensor so that application-specific 
requirements are met and energy consumption of the network 
is minimized. More specifically, network design is 
investigated in terms of active sensors placement, clustering 
and signal range of sensors, while performance estimation 
includes, together with connectivity and energy-related 
characteristics, some application-specific properties like 
uniformity and spatial density of sensing points. Thus, the 
implementation of the proposed methodology results in an 
optimal design scheme, which specifies the operation mode 
for each sensor. The ultimate objective of this work is to 
investigate the dynamic clustering of the WSN during the 
application of the optimal design algorithm. This is achieved 
by implementing the algorithm repeatedly in order to develop 
a dynamic network design that adapts to new energy-related 
information concerning the status of the network after each 
measuring cycle or at predefined time intervals. 

C. Optimal Design Methodology 
Three sets of parameters which dominate the design and the 

performance of a WSN for the specific environmental sensing 
application were identified. The first set is the application-
specific parameters which include two parameters regarding 
the deployment of sensors for the specific case considered 
here. These are the highest possible uniformity of sensing 
points and some desired spatial density of measuring points. 
The second set is the connectivity parameters which include 
an upper bound on the number of sensors that each 
clusterhead sensor can communicate with, and the fact that all 
sensors must have at least one clusterhead within their signal 
range. Finally, the third set refers to the energy-related 
parameters which include the operational energy consumption 
depending on the types of active sensors, the communication 
energy consumption depending on the distances between 
sensors that communicate with their corresponding 
clusterhead, and finally the battery energy consumption. 



  

The optimization problem is defined by the minimization of 
the energy-related parameters (say, objectives J1, J2 and J3) 
and the maximization of sensing points’ uniformity (objective 
J4), subject to the connectivity constraints (say, constraints C1 
and C2) and the spatial density requirement (constraint C3) 
(see Table I for the exact correspondences). Thus, the 
objectives are: 
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In order to combine all objectives into a single objective 
function (weighted sum approach), the optimization 
parameters are formed in such a way that all of them are 
minimized. Thus, objective J4 is expressed by its dual 
objective, say , which has to be minimized. Further, the 
penalization of the constraints C1, C2 and C3 allows their 
transformation into objectives J5, J6 and J7, respectively, 
which have to be minimized. Thus, a single objective function 
that blends all (obviously conflicting) objectives is of the 
form: 
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This form of objective function is suitable for the 
formulation of a numeric evaluation function [14] (namely a 
“fitness function” in the terminology of GAs), which gives a 
quality measure to each possible solution of the optimization 
problem. 

The measure of uniformity of sensing points was evaluated 
by the spatial mean relative deviation (MRD) of such points. 
The entire area of interest was divided into several 
overlapping sub-areas. Sub-areas are defined by four factors: 
two that define their size (length and width) and two that 
define their overlapping ratio (ratios in the two directions). All 
these factors are expressed in terms of the unit length of each 
direction. The larger the overlapping ratio is, the higher 
precision is achieved in the evaluation of uniformity, but also, 
the slower the algorithm becomes. In order to define MRD, the 
notion of spatial density (ρ) of sensing points was used. More 
specifically, ρSi, the spatial density of sensing points in sub-
area Si, was defined as the number of such points over the area 
of the i-th sub-area, i=1,2,…,N, where N is the number of 
overlapping sub-areas into which the entire area, say S, was 
divided. In addition, ρS, the spatial density of the entire area of 
interest, was defined as the total number of sensing points of 
the network over the total area of interest. Thus, MRD was 
defined as the relative measure of the deviation of the spatial 
density of sensing points in each sub-area from the total 
spatial density of such points in the entire area: 
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Low values of MRD mean high uniformity of sensing 

points. Acceptable values for our application example are of 
MRD below 0.15. 

TABLE I 
CORRESPONDENCES BETWEEN OBJECTIVES AND OPTIMIZATION PARAMETERS  

Objective Optimization parameters Parameter symbols 
in GA methodology 

J1 Operational energy OE 
J2 Communication energy CE 
J3 Battery capacity penalty BCP 
J4 Uniformity of sensing points - 
J4′ Mean relative deviation of 

sensing points 
MRD 

J5 Sensors-per-CH error SCE 
J6 Sensors out of range SORE 
J7 Spatial density error SDE 

In addition to uniformity and spatial density of sensing 
points as well as energy consumption of the WSN (both 
operational and communicational), two network connectivity 
issues were taken into account in the formulation of the fitness 
function: i) A Sensors-per-Clusterhead Error (SCE) parameter 
was included to ensure that each clusterhead did not have 
more than a maximum predefined number of regular sensors 
in its cluster. This number is defined by the physical 
communication capabilities of the sensors as well as their data 
management capabilities in terms of quantity of data that can 
be processed by a clusterhead sensor. It was assumed to be 
equal to 15 for the application considered here. ii) A Sensors-
Out-of-Range Error (SORE) parameter was included to ensure 
that each sensor can communicate with its clusterhead. This of 
course depends on the signal range capability of the sensor. It 
is assumed that HSR-sensors cover a circular area with radius 
equal to 10 length units, while LSR-sensors cover a circular 
area with radius equal to 5 length units. 

Finally, the battery capacities of the sensors were taken into 
account by the introduction of the battery capacity penalty 
(BCP) parameter (more details can be found in [12]). 

Thus, the weighting linear fitness function f of a specific 
WSN design is given by: 

...(1 4321 +⋅+⋅+⋅+⋅= SORESCESDEMRDf αααα  
             )... 765 BCPCEOE ⋅+⋅+⋅+ ααα             (6) 

The significance of each parameter is defined by setting 
appropriate weighting coefficients αi: i=1,2,…,7 in the fitness 
function that will be maximized by the GA. The values of 
these coefficients were determined based on experience about 
the importance of each parameter. First, weighting coefficients 
that resulted, in average the same importance of each 
parameter were determined (first column of Table II) and after 
some rudimental experimentation, the final values that best 
represented the intuition about relevant importance of each 
parameter were set (second column of Table II). As can be 
seen in Table II, the final weights were such that network 
connectivity parameters (weights α3, α4) were treated as 
constraints, in the sense that all sensors should be in range 
with a clusterhead and no clusterhead should be connected to 
more than the predefined maximum number of sensors. 



  

D. Problem Complexity 
By considering the connectivity constraint of the 

optimization problem which upper bounds the number of 
allowed sensors per cluster in the WSN topology (15 sensors 
in our case), the problem is equivalent to finding the 
Minimum Degree Spanning Tree (MDST) over the active 
sensors of the WSN, which is NP-hard [15]. In other words, 
deciding whether there exists a spanning tree whose degree is 
upper-bounded by a number, say D, is equivalent to finding 
the MDST. 

The information on the Euclidean distances of the active 
sensors reduces the problem to a Minimum Weight Spanning 
Tree (MWST). In the case where all nodes are placed on a 
two-dimensional plane and the weights of the edges between 
two nodes correspond to the Euclidean distances, the degree 
of a MWST is upper-bounded by 6 [16]. However, the other 
constraints of our optimization problem (e.g., all active nodes 
other than clusterheads have degree equal to 1, energy 
requirements, etc.), might not allow the construction of a 
connected MWST. Therefore, the problem still needs to be 
solved in the context of the MDST, which as we mentioned 
above, is NP-hard. 

 

III. DYNAMIC OPTIMAL DESIGN ALGORITHM 
The algorithm consisted of two parts: the Optimal Design 

Algorithm (ODA), which basically consists of the GA scheme 
and which is applied to a set of sensors with specific battery 
capacities, and the Dynamic Optimal Design Algorithm 
(DODA), which updates the battery capacities of the sensors 
and reapplies the optimal design algorithm accordingly (Fig. 
1). 

Some of the issues that have to be clarified are the 
following: 
- The measuring cycle is defined as the period of time during 
which a clusterhead sensor consumes 20% of its full battery 
capacity. 
- The steps of “battery capacities update” and “re-application 
of the optimal WSN design algorithm” are performed during 
data collection of the measuring cycle. This is because battery 
capacities at the end of the cycle can be evaluated based on 
the developed model, without having to wait until the actual 
end of the measuring cycle. Thus, at the end of each 
measuring cycle, the next optimal WSN design has already 
been formed and it is then used for the next data measuring 

cycle. 
- The life duration of the network, which is referred to as 
“WSN is alive” in the pseudocode, defines the application 
time of the dynamic algorithm. The network, i.e. the set of 
sensors in the field, is considered to be “alive” if the set of 
sensors with battery capacities above zero is such that some 
operational WSN can be designed and applied to the next 
measuring cycle.   

The number of iterations performed by the algorithm in a 
single measuring cycle are in the order of G·l·M2, where G is 
the number of generations of the GA, l is the bit-string length 
of the GA and M is the population size. If n is the total 
number of available sensors in the WSN design, then 
obviously the computational complexity of the algorithm is 
O(n), as only the l parameter depends on n (l=2·n) [12]. 

 

IV. ADAPTIVE CLUSTERING AND DESIGN PERFORMANCE 
The adaptation capabilities of the algorithm towards energy 

conservation but also towards connectivity sustainability and 
nursing of application-specific requirements were examined, 
with the dynamic application of the algorithm to a sequence of 
15 measuring cycles. Energy conservation results and an 
analysis on the extension of the life duration of the network 
can be found in [12].   

Table III shows the distribution of operating modes of the 
sensors at each of the 15 measuring cycles tested, as well as 
the average number of sensors that each clusterhead 
coordinates respectively (standard deviations in the 
parentheses). It can be seen that the number of active sensors 
remains constant after the first three measuring cycles, and the 
same holds for the allocation of the active nodes into HSR and 
LSR operating modes, while there is a slight decrease in the 
number of CH sensors, which leads to the general increase of 
the average number of active sensors coordinated by each 
clusterhead.  

It is obvious that the less CH sensors in the WSN, the less 
operating energy is consumed by the network. At the same 
time, the average values of sensors per clusterhead shown in 
Table III are much smaller than the actual capability of 
clusterhead sensors (15 sensors). Thus, it seems that less 
clusterheads could be used. These seemingly contradictory 
facts are justified by the fact that the energy conservation of 
the operating cost of such designs (with less clusterheads) 

TABLE  II 
WEIGHTING COEFFICIENTS OF GA FITNESS FUNCTION 

Weighting 
coefficient 

“Equal importance” 
values 

Final values 

α1 102 102 
α2 104 104 
α3 2 106 
α4 103 105 
α5 10 10 
α6 5·10-3 10-2 

 

Apply GA to find Optimal_WSN_design 

while WSN is “alive” 

   Initiate new measuring cycle using current 

Optimal_WSN_design 

   Evaluate battery capacities at the end of current cycle 

   Update battery capacities 

   Re-apply GA to sensors with updated battery capacities 

   Wait until current measuring cycle is completed 

end while 

 
Fig. 1.  Pseudocode of the dynamic optimal WSN design algorithm (DODA) 



  

would have been counterbalanced by the increase in 
communication energy consumption.   

Thus, clustering seems to be managed by the heuristic 
algorithm in such a way that total communication energy 
consumption within single-hop transmissions in all clusters is 
kept as low as possible, while other major issues like optimal 
sensor usage towards life extension of the entire WSN, are 
also taken into account. 

 

V. CONCLUSIONS 
In this paper, we showed that a heuristic algorithm for 

optimal design of WSNs can exhibit sophisticated 
characteristics of adaptive clustering that can lead to energy 
conservation towards the extension of the life duration of the 
network. At the same time, application-specific requirements 
as well as connectivity constraints of the network are met. 
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