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0. Abstract 
 
In this work, a survey of queuing models is presented with aim to estimate the most important 

measures such as the cell loss probability and the queue length distribution, resulting from the 

statistical multiplexing of an ATM switch. In most practical cases the resulting models are 

complex to implement and require significant amount of CPU time to execute. As it appears, a 

further research is necessary with aim of getting better idea of the accuracy of the complementary 

virtual waiting time distribution. 

 
 
1. Introduction 
 
Asynchronous Transfer Mode (ATM) is the most promising proposed standard for Broadband 

Integrated Services Digital Networks (B-ISDN). It is designed to transport all types of traffic 

streams (voice, video, data) with various traffic characteristics and different performance 

requirements. Adaptation types and quality of service (QoS) parameters are designed to suit a 

broad range of user requirements for service, involving multiple media. Thus, a source of traffic 

(or a user) negotiates at connection set-up a traffic contract, which includes traffic characteristics 

and requested QoS. The network is obligated to serve the client via specific Virtual Path / Channel 

Connections (VPC/VCC), guaranteeing a specific service scheme, that when the user follows, do 

not have cell losses.  

The current tendency has led scientists to consider a certain number of transfer capabilities, so as 

to define the traffic parameters which are to be declared by a connection, the type of QoS 

guarantees provided, and a conformance definition. Four ATM service classes have been 

proposed: Deterministic Bit Rate (DBR), Statistical Bit Rate (SBR), Available Bit Rate (ABR), 

and Unspecified Bit Rate (UBR). In DBR capability resources are allocated on the basis of the 

declared Peak Cell Rate (PCR) and strict QoS guarantees are given, e.g. the Constant Bit Rate 

(CBR) sources like 64 Kbps telephone voice transfer. SBR capability is based on a statistical 

multiplexing capability with QoS guarantees used by Variable Bit Rate (VBR) sources like video 
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image transfer. The resources are allocated on the basis of an estimate of the peak and mean cell 

rate and a maximum burst size. The ABR capability is intended for data sources (e-mail, file 

transfer, etc.) with relatively loose delay constraints, providing no guaranteed bandwidth to the 

user. However through ABR service the network provides a 'Best Effort' service, in the sense that 

no hard QoS guarantees are given, but the network does its best to minimize cell loss and delay. A 

minimum cell rate is guaranteed under the condition that the connection respond to congestion 

feedback indications from the network. Finally the UBR capability is designed for those data 

applications that want to use any left-over capacity and are not sensitive to cell loss, or delay. Such 

connections are not rejected in the basis of bandwidth shortage (no traffic contract); their sources 

are not expected to reduce their cell rate, and their cells during congestion are lost (e.g. e-mail, 

news feed, etc.).  

The problem of traffic control in ATM networks, namely the capability to monitor and regulate 

traffic flows, has been widely recognized for a long time. Over the past two years a consensus on 

the basic principles of traffic control has slowly emerged within the industry. ITU-T 

Recommendation I.371, was an attempt to formulate a general outline of traffic control principles 

and functions. Work is continuing on the details of specific control mechanisms and procedures. 

In this respect, traffic characteristics are currently defined using the Generic Cell Rate Algorithm 

(GCRA), also called Continuous State Leaky-Bucket, or Virtual Scheduling Algorithm (VSA), 

that has been proposed by the ATM Forum as a reference model to define certain parameters of a 

cell stream.  

In this work we only consider at traffic parameters that are negotiated at call set-up, that are not 

negotiated during the connection life-time and that are controlled at the ingress of the ATM 

network. These parameters define the so called open-loop control, which correspond to either the 

DBR or the SBR transfer capabilities. Thus, using GCRA terminology, DBR connections are 

described in terns of GCRA(T, ô), with 1/T the PCR and ô the Cell Delay Variation Tolerance 

(CDVT). It relates a time period value, namely, the inverse of a cell rate value, with a tolerance 

value that quantifies the maximal deviation of the considered cell stream from a purely periodic 

behavior. For SBR connections a further mechanism is necessary, namely the GCRA(TSCR , ôIBT), 

where ÔSBR is the VC sustainable cell rate and ôIBT is the Intrinsic Burst Tolerance (IBT). These 

two mechanisms will operate in a coordinated fashion. 

Many traffic parameters are compatible with a rule-based descriptor of given parameters. A 

straightforward and safe approach is to allocate resources based on the so called Worst Case  of 

Traffic (WCT) corresponding to the traffic descriptor parameters submitted by the VC. Therefore 
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we focus on the resource allocation policy based on deterministic traffic patterns that are used as 

worst case sources at the output of the conformance mechanism. The paper is organized as 

follows. In section 2 we describe the traffic characterization, while in the section 3 we discuss the 

Beneš results for the WCT of the DBR connections. Further, in section 4, we examine the 

problem of DBR sources with CDVT.  Finally, in section 5 we summarize the results.  

 
 
2 . Traffic Characterization 

The GCRA has been proposed as a reference model to define certain parameters of a cell stream, 

that are useful for connection set-up. The algorithm involves two parameters (an increment T and 

a limit τ), and it is denoted by GCRA(T, τ). It can be explained by either of two equivalent 

versions; a VSA and a continuous state leaky bucket algorithm. However, in the following we 

limit our interest in the first version, the second has been discussed in [7] and [8]. 

In the VSA the actual arrival time of the kth cell, say tak , is compared with its theoretical arrival 

time, say TATk  , which is the expected arrival time under the assumption that cells are all spaced 

equally in the time with distance T. The algorithm is intended to ensure that the cell rate is not 

greater than 1/T on the average, with some tolerance dependent on τ; that is cells will not arrive too 

much earlier than their theoretical arrival times. More precisely, the kth cell is conforming the pair 

(T, τ) if and only if tak > TATk - τ; otherwise, it is non conforming (too early). The theoretical 

arrival time for the next cell, TATk+1, is calculated as a function of tak . If the kth cell is conforming 

and tak < TATk , then the next theoretical arrival time is set to TATk+1 = TATk+T . If the cell is 

conforming and  tak  ≥  TATk , then the next theoretical arrival time is set to TATk+1 = tak + T . 

Note that non conforming cells are not counted in the update of the theoretical arrival times. 

Therefore, TATk+1 is described as a function of  tak , as follows: 
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The definition of cell conformance given above has a close relationship to a single server queue 

model with deterministic service time (see table 1). For example, the set of actual arrival times    

tak ; k ≥ 0, define a general arrival process to a virtual deterministic queue whose service duration 

is T. Further, the set of theoretical times TATk ; k ≥ 0, that are computed recursively, represent the 

virtual departure times from the virtual simple server queue. Clearly, TATk represents the 
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departure time of cell k-1 from the so defined virtual G/D/1 queue. In the G/D/1 model, if the 

virtual waiting time Wk= TATk - tak  is negative, the user corresponding to cell k initiates a busy 

period in G/D/1 queue and tak - TATk is the duration of the idle period that is terminated by the 

arrival of cell k. If Wk is non-negative, it represents the waiting time of the customer corresponding 

to cell k in the G/D/1 model.  

A given cell is considered as conforming, namely the user in the corresponding queuing model is 

not rejected, if and only if  the virtual waiting time in the G/D/1 model, (Wk = TATk - tak  ≤ τ ) is 

limited by τ. If τ is an  integer multiple of T, the corresponding G/D/1 queue is finite of capacity 

τ/T. Thus, the maximum number of conforming cells accessing the conformance procedure at link 

rate is  ( )B Tc = + −1 τ 1 , where T and τ are expressed in cell unit times (a cell unit time is the 

time needed to transmit a cell at link rate), and assuming that only one cell access the conformance 

procedure per cell unit time.  

 
 
3. Beneš results for G/D/1 systems 
 
The QoS measures we are interested in, are in particular the stationary cell loss probability and/or 

the queue length distribution. In a Connection Acceptance Control (CAC) context, we are 

ultimately interested in assessing the maximum acceptable number of sources for a given cell loss 

probability (Ploss), namely the proportion of cells finding a full buffer upon arrival. The analysis 

considered here is based on systems with constant service time and infinite buffer size namely the 

proportion of cells finding a full buffer upon arrival. Thus, the classical Beneš  result applied to 

G/D/1 systems and given by ( ) { }Q x A n Wn x t xn x
= = ∧− −>

=∑ Pr 0 , may be applied. In the 

above it is assumed that the system is observed at time 0, At is the number of cell arrivals in (-t, 0), 

and Q(x) = Pr{Wt > x} denotes the complementary distribution of the unfinished work (virtual 

waiting time). This result is very general and allows in theory, the computation of the unfinished 

work Wt. However, an exact analysis is quite difficult and so approximations are necessary. Note 

that, if Xt presents the number of cells in the system, then Xt =  Wt , and thus  Q(x) = Pr{Wt > x} 

= Pr{Xt > x}, where x is an integer. In discrete time systems with finite buffer capacity equal to K 

cells, the cell loss probability is related with the tail distribution Q(x) = Pr{Wt > K}  through the 

relation ( )P Q K ρloss ≤  [14]. Another bound is provided by [10], where it is stated that: 
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{ } { }{ }P X K X Kloss t
K
t

≤ ≥ − =Pr Pr ρ , where { }Pr W K
t

K = is the congestion 

probability and ρ is the link utilization factor. Note that, in general, the tail approximation Ploss ≈ 

Pr{Xt  > K}, strongly depends on the load. Thus, the relation  Pr{Xt  > K} > Ploss is true only for 

ρ>0.5,  while at small load the tail approximation underestimates the Ploss . Further, under heavy 

load the tail approximation considerably overestimates the buffer size necessary to achieve a given 

Ploss. For the systems under study the approximation ( )P ρloss )ρ Q K≈ −1 ( , has been proposed 

([2]). However the validity of the approximation has to be demonstrated for more general cases 

and in particular when extending order relations from infinite to finite buffer systems. 

In the following we review the∑ queuing system and its variations for which no 

exact analytical model exists. The sources are assumed independent to emit a cell every D

N D Dii i∗ / /1

i time 

units. All the randomness in these models is contained in the phases of the different sources which 

phases are assumed to be uniformly distributed over the source period.  

 

 

3.1 The homogeneous N*D/D/1 infinite buffer model. 
 
In the homogeneous N*D/D/1 model ([11], [12]) there are N independent sources, each one of 

which  emit one cell per D time units. The parameter D corresponds to the traffic descriptor T, 

normalized by the service time of the ATM cell. The parameter τ is not considered in the model 

since CDV tolerance is assumed to be small. This model is appropriate to study the multiplexing 

of N homogeneous sources which conform strictly to their PCR. Under the assumption that the 

system is observed at time 0 and that N<D, namely the system is empty at some instant at (-D, 0), 

the Beneš  result may be applied to the N*D/D/1 model, giving the following exact formula for 

the function Q(x):  
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Note that Q(x) has the same distribution as if the arrival process were just N arrivals uniformly 

distributed over (-D, 0). The above result can be readily implemented on in a computer. However, 

for a large number of sources the calculations may require considerable CPU time, because Q(x) 

has complexity  O(N2). 
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3.2 The homogeneous finite buffer case N*D/D/1/K, queuing analysis. 
 
The results for this system have been summarized in [11]. Depending on the overload situation 

different algorithmic approaches are applied. Thus, in case N<D  the loss probability can be 

calculated by means of the following recursive relation [1]: 
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is the probability that the queue length is k at slot D. In the overload case N>D, ([5], [6]), a simpler 

expression is given for Ploss in terms of ö, namely, the probability that the server is idle. Thus,      

Ploss = (ñ-1+ö)/ñ, where ñ is again the load factor N/D. This yields Ploss=(N-D+PN,D-1(0) 

qN,D(0))/D an expression which is not very useful for calculating small values for Ploss, because a 

very high accuracy of φ = PN,D-1(0) qN,D(0) is required. In the overload case and when buffer is 

small the Ploss remains fixed at Ploss=(ρ - 1)/ρ, since φ=0.  

 

 GCRA(T, τ) G/D/1 queue 
 T: Cell interemission time Duration of service time 
 tak: Arrival time of cell k Arrival time of the kth customer 
TATk: Theoretical arrival time for cell k Departure time for (k-1)th customer 
Cell k conforming and 0 ≤ TATk - tak ≤ τ  Wk=TATk - tak; waiting time for cell k 
Cell k conforming and TATk - tak < 0 kth arrival initiates a busy period 
Cell k non-conforming TATk - tak > τ   kth customer rejected 

 Number of cells in buffer at time tak 
 

TAT ta
T
k k−
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Table 1. Relationships between GCRA(T, τ) algorithm and G/D/1 queue model 

 

3.3 The ∑  system. N D Dii i∗ / /

This system is a special case of the system and due to its complexity very few exact 

analytical models exist . Therefor one must rely only on approximations. However, an exact 

solution for Q(x) may be obtained in the case N<D, where D = min{ D

D Dii∑ / /1

i } is the shortest of the 
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periods in the superposition. An accurate expression for the complementary distribution Q(x) is 

given by ([12]):  
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However simple, upper and lower virtual waiting time bounds can be found. These bounds are 

moderately accurate and their complexity is in ( )( )Ο Ni∑ 3
. 

A WCT for the  model, is obtained by, the homogeneous N*D/D/1 system, with N D Dii i∑ ∗ / /1

(ρ= ∑ Ni )Di  and D=max{ Di }, as it has already been described in subsections 3.1 and 3.2 

above. 

 
 
4. PCR allocation for DBR sources with CDV 
 
In this casewe will consider models for which sources declare a CDV tolerance τ >T-1 yielding a 

WCT. The simplest case is the homogeneous N*WCT/D/1 model for which each source emits a 

periodic cell stream of period D, first emitting a burst of b back-to-back cells at the multiplex rate 

of length equal to the Maximum Burst Size ( ) BS T= = + −1 τb M  slots and followed by a 

silence of SL = D - b slots. The time slot at which a source 'awakes' is uniformly distributed over 

the period, while for stability it is assumed N*b/D<1 . Approximate methods to solve the above 

system may be found in [3]. However, an analytical solution giving a closed form expression for 

the Q(x) is provided by  [4]. A review of this method follows. 

1

Let  Nt denotes the number of cell arrivals during (-t, 0),  ö(t) = Nt - t  defines the excess work and 

Wt is the virtual waiting time at time -t. Further let us define by ãt the number of active sources at 

time -t, ât is the number of sources becoming active in (-t, 0). Then by conditioning on having no 

active sources at time -t and i sources becoming active in (-t, 0), we obtain: 

{ } ( ){ } ( ) ( ){ }Pr Pr , , Pr , , ,W x t x i u x t u D t x i
i

N

t

D

0
11

0 0> = = = = ⋅ < < ≤ = = =
==
∑∑ φ  γ  β φ     φ  γ  βt t t t  

Note that a simple closed form for the above joint probability is provided in [9].  

Thus   can be expressed as: ( ){ }Pr , ,φ  γ  βt tt x i= = =0
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As it appears, the complexity of the analytical solution for the N*WCT/D/1 model increases in the 

heterogeneous case. For this model only the special case of two source types with bursts of 

different length and common period D has been solved [4]. Further the link between Q(x) in the 

N*WCT/D/1 system and Ploss in the corresponding finite model has not been investigated so far. 

 
 
5. Conclusions 
 
In this paper we have provided a survey of some queuing models used to estimate the Ploss in an 

ATM network having a single switch, with multiple VPC/VCC, that carry DBR traffic. Our intent 

was to study the complexity. It appeared that more work has to be done in order to produce 

tractable analytical models in terms of computational complexity and CPU time required 

particularly when the number of links is large. 
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