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Abstract 

In this work we propose a general method for the solution of some basic delayed feedback schemes used in long haul, high speed 
data transport. In such cases, simple batch Poisson models do not describe packet delays well, while the propagation delay is now 
becoming a major factor. Two basic virtual circuit networks of balanced form are examined; the single-hop network which aggregates 
many virtual circuits in parallel, and the multi-hop virtual circuit network having M nodes in tandem. Using well known adaptive 
algorithms to dynamically adjust the window size, the above networks are presented as linear systems of some delay differential 
equations in which the rate of transmission and the queue occupancy are modelled as fluids. Although these systems are locally 
unstable (in a Liapounov sense), we identify the appropriate scale for the parameters so that the systems will perform near their 
optimal theoretical values for a wide range of speeds. In addition, we propose a general method for their numerical solution which in 
reality are large and complex. The approach is based on parallel block methods that are used to solve the systems of the ordinary 
differential equations in which the original systems of the delay differential equations have been transformed. The basic theory 
underlying the parallel block methods is developed and numerical stability of low order is deduced. 
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1. Introduction 

It is well known that the ATM (Asynchronous Traffic 
Mode), an internationally standardised basis for B- 
ISDN (Broadband-Integrated Services Digital Network), 
is a technique best suited to satisfy the requirements of 
integrated broadband networks. It is the first switching 
technique capable of supporting both the circuit switch- 
ing and packet switching approaches within a single inte- 
grated switching mechanism. Obviously, any attempt to 
introduce ATM for data communication must take into 
consideration existing communication protocols which 
have been implemented in a wide variety of existing sys- 
tems. Furthermore, it must also be ensured that the exist- 
ing data networks are capable of operating as an access 
to ATM networks. This applies especially to LANs along 
with their inter working units, such as bridges, routers 
and gateways. However, these devices will soon be able 
to convert LAN protocols directly to ATM in order that 
ATM-based user-network interfaces can be used. 

ATM is a switching and multiplexing technique that 
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uses constant length packets (cells) as the basic data 
units. An ATM cell, as defined by ITU (formerly 
CCITT) recommendation 1.361, contains 48 bytes of 
user information and 5 bytes of control information. 
The control part, or ‘header’, consists primarily of 
VPI/VCI (Virtual Path/Channel Identifiers). An ATM 
virtual channel, as it is available to a user, is uniquely 
defined by a combination of VP1 and VCI in every trans- 
mission system along the path taken by all cells belong- 
ing to the same connection. Groups of virtual channels 
with the same VP1 value can be transferred as a virtual 
path without taking the VCI into consideration. ATM 
can scale from small multiplexers to very large switches 
in both an aggregate capacity and in the number of 
access ports. It can accommodate access ports from 
low speeds (1.5 Mbps and 6 Mbps) to very high speeds 
(2.4Gbps). It is designed to handle multimedia traffic 
and will be deployed in the public network as the future 
B-ISDN. Obviously, besides the protocols controlling 
the data transfer traffic control functions, supporting 
statistical multiplexing plays a key role in exploiting 
the potential of ATM networks. 

Typical data applications that are currently supported 
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by existing networks, together with a number of future 
applications that will most likely gain in importance with 
the introduction of high speed data networks, include 
real-time video (MPEG), low rate interactive date appli- 
cations, electronic mail, browsing in graphics databases, 
animation of graphics, software download, etc. Thus, 
traffic is often bursty or belongs to multiple classes, 
such as packetised voice, short data messages, bulk 
files, etc. However, since the traffic characteristics are 
unknown, the vast majority of these data applications 
are incapable of predicting their own bandwidth require- 
ments. Moreover, many of these data applications are 
relatively tolerant against delays causing quite opposite 
effects on sojourn time, namely the time a customer 
spends in the system. 

To prevent or reduce overload situations in ATM net- 
works, and to optimise network resources, it has been 
proposed to use a closed loop feedback control mechan- 
ism that allows the network to control the cell emission 
process at each source. Each virtual connection must 
have an independent control loop, since each connection 
may follow a different path through the network. Using 
feedback control, sending terminals contributing to 
congestions can be forced to reduce the speed at which 
they are sending. Two classes of feedback schemes have 
been proposed. The first is a credit based, link-by-link, 
per connection window flow control mechanism, while 
the second is a rate based, end-to-end load control 
mechanism. Credit based mechanisms are similar to 
existing data networks (e.g. the sliding window proce- 
dures used in X.25 networks). With rate based mechan- 
isms, the maximum rate at which a source may send can 
be dynamically adapted, depending on network load 
conditions. 

ITU recommendation I.371 provided the possibility to 
support a rate based reactive load control mechanism by 
means of EFCI (Explicit Forward Congestion Indica- 
tion). Congested nodes may set a congestion indication 
in the cell header of cells that pass congested nodes. The 
receiving terminal will then relay the congestion informa- 
tion to the sending terminal using a higher layer proto- 
col. It has also been proposed that the receiving terminal 
could use resource management cells for this purpose. 
Resource management cells indicating congestion could 
also be sent directly from congested nodes to the ter- 
minal, thus providing BECI (Backward Explicit Conges- 
tion Indication). 

The major problem of reactive close loop control in 
high speed wide area networks is the large amount of 
data (equal to the delay-bandwidth-product) that may 
be under way in the network. In wide area high-speed 
networks, the fibres used for transmission become large 
buffers that cannot be easily controlled. Note that a 
multiplexer may be fed by a number of high speed 
links, each of which can store a large amount of data. 
For example, 0.28 Mbytes of data can be on its way in a 

fibre of 3000 km in length operating at 150 Mbps. Under 
unfavourable conditions, a congested multiplexer indi- 
cating congestion may have to buffer many Mbytes 
before the congestion indication will show any effect. 
On the other hand, the load situation may have changed 
by the time the control mechanism has taken effect. In 
particular, this is a problem when round trip delays are 
large. Thus, with the ever increasing speeds in data trans- 
mission the round trip propagation delay is now becom- 
ing a major factor. A further example in long haul, high 
speed data transport is the case of a virtual circuit net- 
work in which the service is always available, and in 
which sequenced delivery of packets in either direction 
between the two end users is ensured. Assuming the pro- 
pagation delay is neglected, the sliding window mechan- 
ism to control the congestion may be applied [1,2]. 
However, if the propagation delay cannot be neglected, 
new design procedures have to be established. Much 
work to date on flow control in high-speed networks 
may be found elsewhere [3-81. 

Propagation delays do exist in geographically dis- 
persed long haul data networks. For example, in US 
the round trip propagation delay through a fibre link is 
approximately 47-ms (one round trip propagation delay 
is approximately the distance across the continental US 
divided by the speed of light). With a transmission rate of 
45 Mbits/s and packet size of 1 Kbyte a representative 
service rate p of 264 for the various nodes is obtained. 
At the other end, with the optical transmission rate of 
1.7 Gbits/s, and keeping the other two parameters con- 
stant, p is about 9989. Clearly, high transmission rates 
and non-scalable propagation delays give rise to large p. 
An interesting asymptotic analysis has been developed 
[9] to face the problem of scaling. As it appears, keeping 
delay and packet loss within acceptable levels, high effi- 
ciency cannot be provided using only static (non adap- 
tive to the variations of traffic) control schemes. Thus, 
dynamic schemes that adaptively conform to the traffic 
environment are always used. In such schemes the large 
propagation delays and the high speeds must be included 
in the analysis. Several dynamic algorithms for conges- 
tion control/avoidance already exist in the literature [lo- 
161, but the following is of interest here. 

Fendic et al. [lo] studied the stability properties of a 
large class of dynamic control algorithms with delayed 
feedback, as well as how parameters should scale with 
the speed. The analysis was restricted to a single session 
and a single bottleneck node to avoid complexities (see 
Fig. 1). The network has been presented as a system of 
DDEs (Delay Differential Equations) in which the rate 
of transmission and the queue occupancy are modelled 
as fluids. It is assumed that the acknowledgements carry 
information about the state of the queue at the bottle- 
neck node, and that this information is used to control 
the transmission rate through a control function which 
may not be linear. Note that, in general, the standard 
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Fig. 1. Single-hop, virtual circuit, fluid communication model with 
propagation delay. 

theory of DDEs does not treat the class of systems result- 
ing from the above modelling. 

Fendick et al. used the recursive relation proposed by 
Mitra and Seery [l 11, resulting in a linear control func- 
tion The queue size is estimated through measurements 
on packet acknowledgement times. Thus, using linear 
approximation (indirect Liapounov theorem), the system 
is proved locally unstable in the neighbourhood of the 
desired operating point. However, with the appropriate 
scaling of the parameters associated with the model, the 
system performs near the optimal theoretical value for a 
wide range of speeds. Note that, although the above 
results are quite interesting in terms of model stability, 
a solution method for the resulting systems of DDEs has 
not yet been proposed. This is particularly important in 
real situations where the networks are large and more 
complex. 

In this work we extend the above results of stability in 
the two representative cases of tandem (Fig. 2) and par- 
allel (Fig. 3) networks. Thus, using the recursive scheme 
of Mitra and Serry, the above systems are proved locally 
unstable (in a Liapounov sense) near their desired oper- 
ating point. Note that in these particular schemes, one 
may use the analysis proposed by Fendic et al. [lo] to 
identify the appropriate scaling for the parameters and to 
make each of the above systems perform near their opti- 
mal theoretical values for a wide range of speeds. How- 
ever, in general cases, where the resulting DDE systems 
are more complex and large, stability in a Liapounov 
sense is difficult to prove. In addition, a solution method 
of such DDE systems has not been investigated so far. 
For this reason, we propose a general method to derive an 
approximate numerical solution. The approach is based 
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Fig. 3. Multiple virtual circuits with various propagation delays and 
individual windows over a single hop. The propagation delay and 
window of the jth virtual circuit are Kj and q. The cross traffic path 
is shown by the dotted lines. 

on the so-called ‘theory of parallel blocks’ [ 17-211, and it 
is fully discussed. This method is used to solve the system 
of ODES (Ordinary Differential Equations), in which the 
original system of DDEs can be transformed. The basic 
theory underlying the parallel block methods for the 
numerical solution of the system of ODES is also 
developed. Finally, numerical stability is examined by 
deducing two and three dimensional, A-stable parallel 
block methods of second, third and fourth orders. 

The paper is organised as follows. In section 2 we 
brietly review the single node model (Fig. 1) which is 
based on a set of DDEs. This helps in understanding 
the formulation of the extended models. We provide 
the specific equations that approximate the adaptive 
recursive schemes of Mitra and Seery [l l] as continuous 
deterministic models. We then conclude that the 
balanced networks proposed in Figs. 2 and 3 can be 
modelled in a similar way as a set of DDEs, and we 
derive the specific equations that approximate the 
above adaptive recursive schemes. It may be observed 
that both models have strong similarities in their repre- 
sentation as fluid models and in this sense we study 
their Liapounov stability behaviour. The parallel 
block method for solving the resulting systems of 
ODES is introduced and discussed in section 3. Numer- 
ical stability is also presented in this section, where the 

Fig. 2. Model of a multi-hop virtual circuit with propagation delays and sliding window control. The route of the virtual circuit is shown by the solid 
line. M is the number of hops and K is the window size. The dotted lines represent cross traffic streams. 
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construction of A-stable parallel block methods of a low 
order of consistency are developed. Lastly, in section 4 we 
state our conclusions and discuss the prospects of this 
research. 

2. The models 

2.1. The basic model 

The basic model we consider is presented in Fig. 1. 
This is a virtual network consisting of a single session 
between a source and a destination. It has a single bottle- 
neck node, where x(t) denotes the amount of data in 
queue, and p denotes the constant rate of service at the 
queue. Data experiences some propagation delay r1 
before it reaches a bottleneck queue, and acknowledge- 
ments experience some propagation delay r2 before 
returning to the source (T = 7-i + ~~2). We assume that 
the source has an infinite amount of data to send, and 
that it transmits at a rate x(t) during the life of a session. 
With this assumption in mind, we isolate the issue of an 
adaptive control mechanism and may derive the corre- 
sponding results for large but finite amounts of data 
based on the transient and long run behaviour of the 
system for a source with infinite amounts of data. Note 
that this model does not cover all the types of traffic, but 
is restricted only to large file transfers. However, large 
transfers represent a significant fraction of traffic on a 
network, which also has different effects on network 
performance than the other types of transfer, interactive 
traffic, for example. Clearly, the objective is to determine 
x(t) such that the source gets as much throughput from 
the network as possible without causing excessive 
congestion. 

For this simple model, the rate of transmission x(t) at 
the source and the occupancy x(t) have been modelled as 
fluids. Acknowledgements carry information about the 
state of the queue at the bottleneck node, and this infor- 
mation is used to control the rate A(t) through a control 
function P(x( t), A). The mathematical equations that 
govern the system are the following: 

$x(t) = 

( 

x(t-7,)-p ifX(t-rl)-->O 

or x(t) > 0 (1) 

0 otherwise 

$X(t) = 
{ 

F(x(t - TV), A(t))x(t - T) if x(t - 7-*) = 0 

F(x(t - 72),X(4)P otherwise. 

(2) 

The above traffic model best suits an environment where 
the time to transmit a packet is small compared to the 
total transfer time, and does not vary significantly from 
packet to packet (e.g. ATM networks, or large transfers 

through typical data transport protocols like TCP). Note 
that Eq. (1) describes the changes at the node, while Eq. 
(2) describes the adaptation strategy used by the source. 
Based on the latest feedback information, the transmis- 
sion rate changes accordingly and the adaptation func- 
tion F(x(l - TV), x(t)) determines the sign and the 
magnitude of change to x(t). Feedback information on 
x(t - ~~2) is received through acknowledgement packets. 
Thus, an estimate of x(t - TV) is obtained through 
measuring the round-trip times, or through an EFCI bit 
set by the bottleneck node on a packet that experiences 
congestion and then copies into a BECI bit of an 
acknowledgement packet. Provided that acknowledge- 
ment packets do not experience queueing, acknowledge- 
ments are received at the same rate as they were sent. 
Otherwise, acknowledgements are received at the queue 
service rate CL. Thus, the faster the acknowledgements are 
received, the faster the system adapts. 

However, to solve the above system for x(t) and x(t), 
it is necessary to provide the control function 
F(x( t - TV), A(t)). Since the standard theory of DDEs 
does not treat the above form of systems, Fendic et al. 
[lo] developed some analytical tools showing that the 
solutions to systems (1) and (2) are uniformly bounded 
for a large class of initial conditions. Note that for such a 
system the solution path is not defined as a single point 
but as a function defined over a time interval of length T. 
They also derive tight bounds for a region in terms of the 
adaptation strategy used, the propagation delays and the 
bandwidth at the bottleneck node. However, they did not 
provide mumerical solutions of such systems. As we will 
see, this is a very important issue, particularly in real 
situations where the networks are much more complex, 
and our contribution is to provide a general method for 
the numerical solution of such systems. 

For example, one may model the adaptive scheme of 
Mitra and Seery [ 1 l] given by the recursive relation: 

K n+i =&-A[(&+1)&-b] (3) 

in terms of Eqs. (1) and (2). In the above, K, is the 
size of the window, namely, the amount of outstanding 
unacknowledged data at the nth acknowledgement, R, is 
the round trip delay of the nth packet, b = a, where M 
is the number of nodes in the network (here M = 1) and 
A is a calibrating parameter obtained by simulation. 
Since the propagation delays dominate the round-trip 
delay for high speed networks, we may ignore the queue- 
ing delay when calculating the window throughput. 
Thus, by approximating the rate of transmission at the 
source by the throughput of the widowing system, 
namely A(&,) = KJR, = KJT, we may approximate 
the adaptation strategy by: 

AA &+I-& -$(t)=at= = _ A[(&/r - l)a - 11 
TAt -rat 
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where 

1 

At = A(t - ,rl - ~~‘2) 
if x(t - ~a) = 0 

otherwise. 

Therefore, by setting t = 1 and y = -A we may obtain 
the following DDE system: 

Setting: z,(t) = A(q(t)), zz(t) = x(az(t)) and z3(t) = 
A(a,(t)) with: al(t) = t - ~~,az(t) = t - 72 and q(t) = 
t - q - r2 = t - 1, the resulting system is transformed 
to the following ODES system: 

$x(t) = 
zl(t) -p if zl(t) -p > 0 or x(t) > 0 

0 otherwise 
(8) 

$x(t) = 

X(t-7i)--p ifX(t-7i)--->O 

$X(t) = 
Y ($m-- l)z,(t) if z2(t) = 0 

or x(t) > 0 (4) 
(9) 0 otherwise Y r$ m - 1)) p otherwise. 

I 
7 

$X(t) = 

x(t ; 72) Jqq - 1) A( t - 7-l - 72)) 

if x(t - 72) = 0 

Y X(t /I 72) m - 1) ,u otherwise. 

(5) 
Note that the queueing delay may be obtained through 
the round-trip delay measurements as R, - 7 = 

x(t - Tl )/CL. 
The above system may be simplified further by assum- 

ing X = p + O(@). In this case we obtain: 

$x(t) = 

X(t-7,)-p ifX(t-3-i)--->> 

or x(t) > 0 (6) 

0 otherwise 

-&A(t) = I ifx(t-7*)=0 (7) 

y otherwise. 

Remark 1 
For the above scheme it can be proved [lo], that the 

points (0,O) and (,/i&p) are equilibrium points. Note 
that a point is defined as an equilibrium point for a 
system of DDEs if the solutions remain forever at that 
point after having been there for at least an amount of 
time 7 = 1. Thus, for all well behaved initial conditions, 
the solution path must enter a neighbourhood of the 
equilibrium point and can never leave. However, using 
linear approximation, the equilibrium point (fi, p) is 
locally unstable in the neighbourhood of the desired 
operating point. In addition, y N l/& and X converges 
to a region bounded by p f 0( &). Note that similar 
results hold when y is general, and the control function 
F(x) has the linear form F(x) = $(x/d - l), where 
f(x) is monotone decreasing and 1 I x 5 co. 

In order to solve the above systems (4) and (5), one has 
to numerically represent the system of DDEs to an 
equivalent system of ODES. The procedure is as follows. 

In this case, the resulting system is simple and can be 
solved using well known serial methods. 

2.2. The tandem model 

We now consider a more general case presented by the 
network in Fig. 2. This is a multi-hop virtual circuit 
system having M nodes in tandem. We assume that the 
network is balanced, namely: 

x = pi - vi = & - v2 = . . . = PM - I/M, (10) 

where pi is the service rate and Vi is the exogenous cross 
traffic rate at node i. Here the parameter X is the so-called 
reduced nodal processing rate. xi(t) represents the 
amount of data at node i, Ti is the propagation delay 
from the corresponding source to the bottleneck 
node i and 7. is the propagation delay from the last 
bottleneck node M to the receiver and back to the 
source at the beginning (70 + 71 + . . . + TM = 7). 
Thus,forj= 1,2 ,..., M 

%Xj(t) = 

i 

X( t - q) - & if X( t - 7j) - pj > 0 

or xj(t) > 0 (11) 

0 otherwise 

$x(t) = 

i 

F(xM(t - TO), x(t))x(t - T, 

ifxM(t-To)=0 

P(xM(t - To), ii(t))p, otherwise. 

(12) 

Mitra [9] has examined the basic mechanism of sliding 
windows for congestion control of a virtual circuit 
applied in such high-speed balanced networks using the 
same recursive algorithm to estimate the queue size. In 
this balanced network, the difference between the service 
rate pi and the rate of exogenous, cross traffic rate Vi in 
each node i, equals X. Note that M is the number of hops 
in the network while K is the window size. The balanced 
network usually results from an original network by 
deleting all but the slowest bottleneck nodes. Thus, all 
the ‘reduced nodal processing rates are almost equal. 
Mitra formulated and solved the problem of the optimal 
design of windows and obtained formulas for basic 
quantities, such as the throughput, delay and moments 



544 T. Tsiligirides/Computer Communications 19 (1996) 539-552 

of packet queues. He showed that the optimum window 
size if X + O(a). All his results are asymptotic and are 
based on a design equation which relates the mean 
response to the window size. This equation is used to 
adjust the window based on measurements. It is interest- 
ing to note that the asymptotic theory developed can be 
extended to non-balanced networks as well. 

Again, one may model the adaptive scheme of Mitra 
and Serry [l l] in terms of Eqs. (11) and (12). The recur- 
sive relation is now given by: 

K n+l =Kn -A[(R&- I)&- @I, (13) 

where K,,, R, and A have been defined previously. From 
the above it is clear that the rate of acknowledgements 
will also dictate the rate of adaptation. Thus, when packets 
find all the queues empty, acknowledgements return at 
the same rate as the packets that are being acknowledged 
when transmitted. 

Alternatively, when packets find any of the queues 
non-empty, it is assumed that acknowledgements return 
at the rate at which packets are served at the Mth queue. 
Note that, since the propagation delays dominate the 
round trip delay, the queueing delays at various nodes 
may be ignored when calculating the window through- 
put. Therefore, A(&) = KJR, = K,/T. However, the 
queueing delays may be obtained through the round 
trip delay measurements at each node; namely at the 
Mth node: R,, -7 = xM(t - ~)/p~. 

Thus, we can approximate the adaptation strategy by: 

Ax &+I-Kn t&(t) E-&= 
= -A[(R&- 1)x& - fll 

TAt 7At 

where the time between adaptations is determined by: 

At= 

1 

1 

x(t - 71 - 3-2 - . . . - 7, - T()) 

ifx&t-rO) =0 

l/W otherwise. 

Taking into account Eq. (10) and setting t = 1 and 
y= -A for allj= 1,2,... , M, we obtain the following 
DDEs system: 

-$(t) = 

X(t_7j)-/lj ifA(t-7j)--j>O 

or Xj(t) > 0 (14) 

0 otherwise 

’ Y 

iA(t) = < 

xX(t - 71 - . . . - 7-M - To)) 

ifx,(t-To)=0 

Y x~;;Q@-&+& 

\ otherwise. (15) 

The above system has M + 1 equations and A4 + 1 
unknowns, namely, the A(t) and Xj(t); i = 1,. . . , M. It 
may be simplified further by assuming that pj are all 
equal with CL, a representative service rate, and 
X = p+ O(G). In this case we obtain: 

[ A(t - 7j) - p if x(t - 7j) - p > 0 

~Xj(t) = 

1 

or Xj(t) > 0 (16) 

l0 otherwise 

I Y ( XY(& 70) _ a) 

$(t) = 

xA(t - 7-l - . . . - 7-M - To)) 

ifx,(t-To)=0 

I otherwise. 

Remark 2 

(17) 

For the above scheme one may show, using linear 
approximation (indirect Liapounov theorem), that the 
equilibrium point: 

e’=: (X,Xi,XZ )“.) x&l)== (PL,@G>&G...,~)T 

is locally unstable in the neighbourhood of the desired 
operating point. In addition, y N l/JTi and X converges 
to a region bounded by ,u & O(G). Note that similar 
results hold when y is general and the control function 
is of the linear form: F(x~) = yf(xM/fi - &@), where 
f(~~) is monotone decreasing and 1 5 xM 5 00. 

To solve the above system (14) and (15), one has to 
numerically represent the system of DDEs to an equiva- 
lent system of ODES. The procedure is as follows: 

iXj(t) = 

Zj(t) - pj if Zj(t) - /..lj > 0 

OrXj(t)>OVj=l,2,...,M 

0 otherwise 

(18) y 
ix(t) = if z*(t) = 0 

Y y m - d%)pM otherwise, 

(1% 
where Zj(t) =A(aj(t)); j= l,...,M; ZM+l(t) = 

xdaM+l(t)); Z~+2(t) = x(a,+,(t)), and aj(t) = t - 5; 

j=l )...) M; Qf+1(t) = t-3-0; &4+2(t) = t-q -... 
-rM - 3-o. 

As one may observe, in case M is small, the resulting 
system is simple and can be solved using well known 
serial methods. However, in case M is large, some 
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more efficient methods have to be derived in order to 
provide a numerical stable solution. This problem will 
be faced in the subsequent sections. 

2.3. The parallel model 

We now proceed with the model presented in Fig. 3. 
This is a single node virtual circuit network with exo- 
genous cross traffic rate v and service rate p. For the 
theoretical development, the network is assumed to be 
balanced, i.e. X = p - Y, with fixed service rate p and 
Poisson cross traffic rate I/. Since the unit of time has 
been selected to be representative of the round trip pro- 
pagation delay, X is large. It is assumed that the virtual 
circuit aggregates many smaller virtual circuits, say C, 
following the same or different paths in the network with 
various propagation delays. Thus, for the jth virtual cir- 
cuit, data experiences some propagation delay Ttj before 
it reaches the bottleneck queue, and acknowledgements 
experience some propagation delay T2j before returning 
to the source with q = Trj + T2j for each j = 1,2,. . . , C. 
Note that the 5’s are assumed to be 0( 1) constants, so 
they do not scale with the large parameter X under mod- 
erate usage regime. 

Letdj(t);j= 1,2,..., C, denote a set of fractional allo- 
cation parameters of bandwidth in which 0, is the 
fraction of the total throughput which is to be allocated 
to the jth virtual circuit, that is, 0, > 0, j = 1,2,. . . , C, 
with c,c!l 6” = 1. If we denote by xi(t), pj and xj(t) the 
transmission rate, the service rate and the occupancy of 
the jth virtual circuit, the mathematical equations that 
govern the system we are analysing are defined for each 
j= 1,2,...,Cby: 

gXj(I) = 

i 

Aj(t_71j)-pj ifAj(t-71j)-pj>O 

or Xj(t) > 0 

0 otherwise 

(20) 

( 

Fj(xj(t - T2j), xj(t))xj(t - 7j) 

$Aj(l) = if Xj(t - T2j) = 0 

FjCxjCt - T2j)j),Aj(t))Pj otherwise. 

(21) 

Clearly, ej is allocated to thejth virtual circuit, and there- 
fore: 

xj(t) = 0,x(t), pj = 0jp and xj(t) = ejx(t) (22) 

x(t) = gAj(‘)> P = 2Pj and x(t) = gxj(t). 
j=l j=l j=l 

(23) 

Note that acknowledgements carry information about 
the state of the queue at the bottleneck node, and this 
information is used to control the rates x,(t) through the 
control functions Fj(Xj(t - 72j), Xi(t)). 

The above system of DDEs consists of 2C equations 
with 3C unknowns, namely the xi(t), xi(t) and 
Fj(xj(t - 72j), xi(t)). The solution should also satisfy 
Eqs. (22) and (23). To model the adaptive scheme of 
Mitra and Seery in terms of the above system of equa- 
tions, one has to use the following recursive relations (see 
Ref. [ 111): 

Kj,n+l = Kj,n - aj [e-l)&-bj] 

with bj = 7j 1 cBi’ (24) 

c i=rY 

In the above, Kj,n represents the window size of thejth 
virtual circuit, by means of the amount of outstanding 
unacknowledged data of the jth virtual circuit at the nth 
acknowledgement, and Rj,n is the round trip delay of the 
nth packet of thejth virtual circuit. The use of simulation 
has been suggested [l l] to obtain the constants aj, 
j= 1,2 , . . . , C, but as we shall see later, these constants 
may be calculated directly for the cases of interest. Using 
similar queueing arguments to those developed in the 
analysis presented earlier in this section, we may approx- 
imate the rate of transmission of the source by the 
throughput of the windowing system, Aj( tn) = 

Kj,,lRj,, = Kj,n/q, where t, is the time when the source 
receives the nth acknowledgement of the jth virtual cir- 
cuit. Again, the queueing delays have been ignored when 
calculating the window throughput, since the propaga- 
tion delays dominate the round-trip delay for the high 
speed networks we are studying. However, the queueing 
delay of each virtual circuit can be obtained through the 
round-trip delay measurements: 

Rj,n - q = 
xj(f - T2j) 

Pj ’ 
j= 1,2,...,C 

R. 
or E-l= xj(t - 72j) 

; j=1,2 ,..., C. 
7j Pjui7j 

In scheme (24) the source adapts every time an 
acknowledgement is received. Thus, the rate of acknowl- 
edgements dictates the rate of adaptation. Note that 
when packets find that the queue of the jth virtual circuit 
is empty, acknowlements return at the same rate as the 
packets that are being acknowledged when transmitted. 
On the other hand, when packets find the queue of the jth 
virtual circuit non-empty, acknowledgements return at 
the rate at which packets are served at the bottleneck 
queue. Thus, we may approximate the adaptation 
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strategy for each j = 1,2, . . . , C by: 

Ax’ Kj,n+l - Kj,n -$j(‘) x+= 
7jAt 

where: 

1 . 

& = Aj(t _ 71j _ T2j) lfxj(t - T2j) = ' 

llPj otherwise 

and rj = -aj. 

Using the above, we may re-write Eqs. (20) and (21) as: 

$Xj(t) = 

Aj(t-TU)-_j ifXj(t-TV)-_j>O 

or Xj(t) > 0 

0 otherwise 

XAj(t - Tlj - T2j) if Xj(t - T2j) = 0 

rj 
xj(t - T2j) 

CLifi 

otherwise. (26) 

Observe that this system may be simplified further by 
assuming that Xj = hj + O(@) Vj = 1,2, . . . , C. Thus 

$Xj(t) = 1 
Aj(t-Tlj)-pj ifxj(t-71j)-pj>O 

or Xj(t) > 0 

\O otherwise 

(27) 

Yj p($$) - bj] T”pj otherwise. 

(28) 

Remark 3 
Working out with the linear function scheme: 

Vj= 1,2 ,..., C, 

where fj(-bj) - O(l), f;.(Xj) J,, and fi(0) = 0, we may 
conclude: 

a==: (X1,XI;X2,X2;...XC,XC)= 

= (111,B,;~2,B2;...;I1C,BC)=, 

where Bj = bjm, is an unstable equilibrium point. 
AssumeVj= 1,2,... C:fj(xj) 1, -bj 5 Xj 5 00 and 3 
is general. Then, there are functions Hj(pj), A)‘(/+)> 
Aj’(~j), which are positive, bounded, and indepen- 
dent of initial conditions, such that: 

(a) 0 5 xj(t) 5 Hj(Pj) 

(b) pj - AI’ 5 xj(t) I Pj + A,‘(Pji>, 

Vt large enough, t > T, where T depends on 
initial conditions. 

(c) For optimal scaling ri = qfij/&j; 3 mj, nj > 0; 
j= 1,2,..., C, independent of initial conditions 
such that: 

Hj(Pj) = mj fi 

and AT (pj) = A/ (pj) = nj fi. 

Finally, to numerically solve the above system (25) and 
(26), one has to numerically represent the system of 
DDEs to an equivalent ODE system. The procedure is 
as follows: 

$Xj(t) = 
Zj(t) - /lj if Zj(t) - pj > 0 or Xj(t) > 0 

0 otherwise 

(2% 

[ 

wj(t> 
- xj(t) 
I-4ifi d- - bj 

1 
~~ 

[ 

wj(f) 
- xj(t) 
&fi J- - bj 

1 
3’ 

-‘Yj(t) 

if Wj(t) = 0 

-I/+ otherwise. 

where 
(30) 

zj(t) = xj(fj(t))> wj(t) = xj(gj(t)), 

and rj(t) = Aj(hj(t)) 

with 

(31) 

fi(t) = - T1j, gjCt) = t - T2j, 

and hj(t) = t - T1j - T2j. (32) 

In the above, j= I,..., C, and in reality C may be 
large. In addition, the control functions may be compu- 
tationally expensive. Thus, serial methods may not be 
efficient. It is therefore necessary to provide new, more 
efficient methods to solve the produced systems of 
DDEs. These methods will be considered in the following 
section. However, the analysis presented above is quite 
general, and may be applied in some interesting practical 
situations of a single hop high speed data network. To 
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facilitate the examination, the following classification 
has been adopted. 

1st case: No of nodes: 1, No of VCs: C, unequal propaga- 
tion delays, unequal allocation of bandwidth. 

This is the case presented above. It corresponds to the 
most general situation of a single node network. The 
adaption algorithm for the jth VC, j = 1,2, . . . , C, fol- 
lowing the path with propagation delay 3 and having a 
fraction of the total throughput 0, is given by Eq. (24). 
Note that for each VC, j = 1,2, . . . , C, the parameters 3 
and ej may all be different. Clearly, the corresponding 
system of ODES is that of Eqs. (29) and (30), while the 
solution should also satisfy Eqs. (31) and (32). However, 
an interesting case may allow groups to be considered as 
well. As an example, we may consider the case of a single 
node network with two paths, ‘long’ and ‘short’ propa- 
gation delays rL and rs (rL/rs = 2), and many VCs in 
each path, say CL and C,, respectively (C = CL + C,). 

2nd case: No of nodes: 1, No of VCs: C, unequal propaga- 
tion delays, fair allocation of bandwidth. 

This is the case in which a virtual circuit aggregates 
many smaller virtual circuits, each of which follows a 
different path with different propagation delay q; 
j= 1,2,... , C, and shares an equal allocation of band- 
width. The adaptation algorithm, and the resulting 
system of ODES is derived from Eqs. (24) and (29) to 
(32), with t9, = l/C; j = 1,2,. . . , C. 

3rd case: No of nodes: 1, No of VCs: C, equal propagation 
delays, unfair allocation of bandwidth. 

This is the case in which a virtual circuit aggregates 
many smaller virtual circuits, each of which follows the 
same path in the data network and shares an unequal 
allocation of bandwidth. In such a case the propagation 
delays q, j = 1,2, . _ . C, are all equal (say equal to l), and 
the fractional bandwidth allocation parameters 0, are all 
different. For each j = 1,2,. . . , C, the adaptation algo- 
rithm (24) is reduced to: 

K. ~,n+l =K/,n-Yj[(Rj,n- l)&- fi] (33) 

while in a similar way, we may derive the following ODE 
system: 

iXj(t) = 

Zj(t) - /J,j if Zj(t) - /_Lj > 0 or Xj(t) > 0 

0 otherwise 

(34) 

if wj(t) = 0 

otherwise 

(35) 

where 

zj(t> = xj(fj(t>>, wj(t) = xjkj(t)>, 

and rj(t) = Aj(h(t)) (36) 

with 

J(t) = t - Tlj, gj(t) = t - 72j, 

and h(t) = t - 71j - 72j = t - 1. (37) 

4th case: No of nodes: 1, No of VCs: C, equal propagation 
delays, fair allocation of bandwidth. 

This case is similar to the 3rd case, except that we 
assume a fair share of bandwidth, and therefore the frac- 
tional allocation parameters 0, are all equal to l/C, 
j= 1,2,... , C. The application is straightforward. The 
adaptation algorithm is derived from Eq. (33), while the 
system of ODES representing this scheme is derived from 
Eqs. (34) and (35). The solution also satisfy Eqs. (36) and 

(37). 

5th case: No of nodes: 1, No of VCs: 1, 
This is a trivial case. 

3. Numerical analysis 

3.1. Introduction to parallel block methods for ODES 

In the sequel we propose a new method for solving the 
ODES systems produced from the above modelling. The 
method is particularly useful in complex cases, where 
the resulting systems are large. As one may observe, the 
resulting systems of ODES can be viewed as systems of 
equations of the form: 

$$ = Q(g) where $= (X,,X,;X~,X~;...;X~,X~)~ 

(38) 

and Q is a functional form of our system of equations. 
Such problems may not be solvable in reasonable time on 
a serial machine because of their magnitude. However, 
parallelism may also be exploited in many other ways. 
For example, one may be interested to solve this model 
over a long time scale, or if solutions are needed in real 
time, and finally, if function evaluations are expensive. 

One natural way to exploit parallelism associated with 
such large systems is by splitting the evaluation of the 
function components amongst the processors available. 
A second source of parallelism arises if the problem to be 
solved is stiff. Stiffness is a very difficult property to char- 
acterise explicitly, but problems that are stiff typically 
arise from models which have widely differing time com- 
ponents. These two natural ways of exploiting paralle- 
lism suggest that it is not possible to develop parallel 
algorithms in isolation from the parallel environment. 
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However, currently there are no general purpose parallel 
scientific libraries, and while there have been some 
attempts at creating codes which can be ported between 
different parallel environments, this has only focused on 
the basic elements of array manipulation. Note that, 
according to the taxonomy in Ref. [21], four basic 
types of parallelism can be identified, that is, SISD 
(Single Instruction stream, Single Data stream), SIMD 
(Single Instruction stream, Multiple Data stream), 
MISD (Multiple Instruction stream, Single Data stream) 
and MIMD (Multiple Instruction stream, Multiple Data 
stream). In addition, new architectures are being pro- 
posed which are hybrid in nature, having elements 
from many different categories. 

Both Gear [19] and Franklin [20], in their review 
papers, gave a taxonomy of available modes of paralle- 
lism in the numerical solution of first order Initial Value 
Problems (IVP) of the form: 

;? = @(t,<(t)), ? : [to, T] x R” + R” P(t,) = ?o. 

(39) 

Their classifications include parallelism across space, 
equation segmentation methods, methods in which 
specific subsystems in Eq. (39) are assigned to separate 
processors, parallel predictor-corrector methods, paral- 
lelism across time, parallel block methods, and finally, 
other methods which accommodate some mode of par- 
allelism, or they are adaptable to parallel computations. 
Gear [ 191 identified the major impediments to parallelism 
in ODE solvers as: 

The narrowness of the computational lattices inherit in 
most conventional algorithms which adopt error and 
stepwise control. 
The extensive communications between processes, 
particularly in the case of stiff algorithms which are 
implicit and which are solved through some variants of 
Newton’s scheme introducing independence of the 
components of the dependent variable. 

Block methods turned out to be efficient methods 
for solving, on parallel computers, the first order scalar 
IVP presented in Eq. (39) and corresponding to the sys- 
tems of ODES in which we are particularly interested. 
The general structure of the new block methods 
described here is a direct generalisation of the implicit 
one-step method: 

where h is the stepsize and yn an approximation to y( r,). 
We introduce the block vectors Fn,, 1 = (y,, , , . . . , y,,JT, 
a’= (dl,...,dk) and dk = 1, where the components 
yn,j denote numerical approximations to the exact 
solution values y(t, + dih) at k points. Since, for scalar 
ODES (dy(t))/dt =f(l,y(t)),y(ts) = y. is a scalar test 

equation, we may define the block method: 

?n+l = A& + hBi(?,) + hC@,+ I)1 n = 0, 1, . . . , 

(41) 

where A, B and C are k-by-k matrices. Here we use the 
convention that, for any given vector u’ = (ui), i(a) 
denotes the vector with entries f(nj)- The method (41) 
can be considered as the block analogue of (40), and it is 
straightforwardly extended to systems of ODES, and 
thus to non-autonomous equations. 

A characteristic of these methods is that, unlike con- 
ventional BLM (Block Linear Multistep) methods, the 
block point vector a’ is allowed to have k - 1 non-integer 
components. Note that, in the block methods considered 
here, the components of the block vector represent 
approximations to the exact solution are not necessarily 
equally spaced block points tn + djh. Thus, we obtain 
additional parameters for increasing the order of accu- 
racy of the method. In the derivation of these methods, it 
turns out to be convenient to start with a Runge-Kutta 
(R-K) method. Then, in analogy with BLM methods, we 
may replace the y-values generated by the method by 
vectors, the components of which represent approxima- 
tions to the exact solution. Since these vectors are k- 
dimensional, the R-K parameters are replaced by k x k 
matrices. 

The points tn and tn + 4h; j # k, will be called step 
points and block points, respectively. Block points coin- 
cide with step points if the corresponding value of dj is an 
integer. Upon completion of the integration process, the 
order of accuracy of the numerical solution obtained is 
not necessarily the same at all points tn + djh. Points 
where the corresponding components of ?n+l have the 
same order as the components corresponding to the step 
points are called output points. To start the method, we 
need the initial vector qo, which requires, in general, as 
many starting values as there are distinct values dj 

y= 1,2,..., k). Notice that the last component of 

?I+1 contains the step point value y,, + 1. Furthermore, 
we remark that in general, y,,i = ym,j even if 
n+di=m+dj. 

The method (41) is suitable for direct use on parallel 
computers if the matrix C is diagonal, since such a form 
uncouples the various components as far as impliciteness 
is concerned. In such cases, the corresponding methods 
will be called parallel block methods. Let the exact solu- 
tion be substituted into Eq. (41). Then, in general, the 
order conditions are derived by requiring that the resi- 
dual vector is of order hp+’ for all components (that is, 
we require that all components of gn+i are pth order 
approximations to the exact solution values). In this 
way, we obtain the following order consistency: 

(I - zC) exp(za) - (A + zB) exp(za - zq = O(zp+‘) 

(42) 
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wheree’= (l,l,... , l)T denotes the unit vector. By defin- 
ing the error vectors: 

I=j(O) := A;_ e’ 

Definition 5 The region where ]]M”]] tends to zero will be 
called the strong stability region. 

Ij(‘):=A(;-s)++-C&a 

a(j) := A(a _ s)j +j[B(; _ s)j-’ _ C&i] _ @ 

j = 2,3,. . . (43) 

the conditions for pth order consistency take the form: 

IjCj) = @iJ] = 0’ 
, 

i = 1 2 
> 7”‘) k j=O,l,..., p. (44) 

Here, powers of vectors (apart from those in parenthesis) 
are meant to be component-wise powers. Note that in the 
construction of high-order formulas, it is convenient to 
specify the matrix A in advance. This is because the 
eigenvalues of A should lie in a zero-stable configuration, 
and therefore they should be on the unit disk, those on a 
unit circle being simple. Such a zero-stability condition is 
difficult to be satisfied simultaneously with the order con- 
ditions unless k is sufficiently small. 

However, the linear stability of block methods can be 
investigated by applying the method to the test equation 
(d/dt)y = py. Thus, we obtain the following recursive 
equation: 

%+ 1 = Wd,, M(w) = [I - WC]-‘[A + wB], 

u’ = ph (45) 

where M is the ampltfication matrix and its eigenvalues 
are the ampltfication factors. Note that, if we require the 
elements of the diagonal matrix C to be positive, then the 
matrix I - WC is non-singular for all w on the negative 
axis. Thus, we may assume that the elements of C are 
positive, and following the familiar stability definitions 
used for Runge-Kutta and linear multistep methods we 
may introduce the following definitions: 

Definition 1 The region where the ampltfication matrix 
M(w) is power bounded, is called the stability region of the 
block method. 

Definition 2 Zf the stability region contains the origin, 
the method called zero-stable. 

Definition 3 Let the characteristic equation: 

P(H, r) = det[A + HB - r(1 - HC)] (46) 

of the block method, where H = ph with p defined by the 
scalar test equation (d/dt)y = py. Then, the block method 
is A-stable tf the roots of polynomial P(w, r) are on the 
unit disk, those on the unit circle being simple. 

Definition 4 Zf the amplification matrix of an A-stable 
method has vanishing eigenvalues at infinity, the method 
is called L-stable. 

Definition 6 Zf the strong stability region of a block 
method contains the left half plane, the block method is 
called strongly A-stable. 

3.2. Construction of A-stable parallel block methods 

In the sequel we consider A-stable block methods of 
two and three dimensions. 

3.2.1. Methods of order two (k = 2) 
Consider the case k = 2 and choose the coefficients 

matrices of the form: 

and a’= (d, l)T. (47) 

Using Eq. (44) we may obtain the conditions of second 
order consistency: 

a(o) :=Ae’-e’=ti 

~(‘):=A(a-e’)+fBe’-Ce’-a=o 

fic2) := A(d - Z)’ + 2[B(;i - Z) - C;i] - 2 = 0’. (48) 

The above equations may be re-written explicitly 
(;i = 1,2) as: 

ai1 = ai 

ai = 1 - aj 

bil =J(l -d)ai+ 
di(2ci - di) 

2(1 -d) 

bi2 = di + (1 - d)ai - bil - Ci. (49) 

Note, that dI = d, and d2 = 1. Thus, we may express the 
coefficients of the matrix B in terms of the five par- 
ameters d, al, a2, cl and c2. 

The components @ of the vector c(j), forj 2 3 are 
given by: 

@j) = (1 - &j)(d - l)ja, +j&ici 

+~jdi(di-2ci)(d-l)i-2-d~ i= 1,2. (50) 

It is easy to observe that Dj3) vanishes if: 

ai =L [3(d - l)(di - 2ci) + 2dt(3ci - di)] 
(d - 1)3 

i= 1,2 (51) 
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and D!4) also vanishes if: I 

d d-2 

‘i=2(d+l)’ ‘*=2(d- (52) 

The characteristic equation of the method is given by: 

P(H, r) = det[A + HB - r(1 - HC)] (53) 

with H = ph, where p is defined by the scalar test equa- 
tion (d/dt)y = py. Thus, the condition of zero-stability 
(i.e. the condition that the eigenvalues 1 and al - a2 of 
the matrix A are on the unit disk) leads to the condition: 
-1 2 al - a2 < 1. Also, the condition of A-stability (i.e. 
the roots of polynomial P(co,r) are on the unit disk) 
leads to the conditions: 

[hc2 + b22c11 I qc2[qc2 + det(B)], det(B) 6 CICZ. 

(54) 

Based on the above, we may now present the A-stable 
parallel block methods of second order consistency by 
choosing the free parameters ai and Ci such that the 
matrix B in Eq. (49) vanishes while satisfying the A- 
stability property. As an example in case where d = 0 we 
have: 

ii = (0, l)=. 

To present the A-stable, parallel block methods of 
three-order consistency, we choose Di3) = @’ = 0 in 
Eq. (50). Thus we find: 

a1 = 
d(d* - 3d + 6q) 

(d - 1)3 ’ 

a2 = 
3d + 12c2 - 6dc2 - 5 

(d - 1)3 

bll = 
d* - 2dq - d2c1 

(d-l)* ’ 

b12 = 
d - 2dq - cl 

(d _ l)* 

b2I = 
2 - 5c2 - d + 2dc2 

(d-l)* ’ 

b22 = (d - 2)2 - c2(d2 - 6d + 8) 

(d - 1)2 

where d, cl, c2 are free parameters. Taking into account 
the conditions of zero-stability and A-stability, we find 
d = 0.917387, cl = 0.319523, c2 = 0.347067. 

3.2.2. Methods of dimension three (k = 3) 
Consider the case k = 3 and choose the coefficients 

matrices of the form A = [au], with ai = 1 - ait - ai2, 
4= 1,2,3, B = [bv], C = [c& diagonal, with Cii = ci and 
d = (d,, d2, l)=. Clearly, the condition of the first order 
accuracy is satisfied, since d, = 0’. Requiring the condi- 
tions of fourth-order accuracy the following linear 
systems must be satisfied: 

bil + bi2 + bi3 + ci = df - oil (dl - 1) - aiz(d2 - 1) 

(d, - l)bil + (d2 - l)bi2 + dici 

= 4 [df - ail (d, - l)* - o;2(d2 - l)*] 

(d, - l)*bil + (d2 - l)*bi2 + dfci 

= f [d! - ail (dl - 1)3 - aiz(d2 - 1)3] 

(d, - 1)3bil + (d2 - 1)3bi2 + dfci 

=$[d;-ajl(d, - 1)4 - on(d2 - 1)4]. 

To ensure zero-stability, we require that A has the two 
extra eigenvalues within the unit circle. Writing the char- 
acteristic equation of A in the form P(z) = (z - 1) 
x(z* + toz + SO) = 0, we find that we have zero-stability 
if: 

Itol<so+l, so< 1, t0 = a31 + a32 - all - a22 

sO = alla12 + u31a12 + a32a21 - alla32 - a21a12 - u22a31* 

Taking this constraint into account, and using a pack- 
age of symbolic computation, we search over the free 
parameters (ail, Ui2, i = 1,2,3, dl, d2), to obtain the A- 
stable fourth-order method: 

A= 

2795 15161 103501 - - ~ 
2048 3168 92160 

-467 B= ; ~ -259 

i 1 

126 702’ 

80345 54419 41927 ~ - - 
129024 30240 55296 

16939 277 16001 
C diagonal with cl = 28160, c2 = 234, c3 = 23040 

and d’ = (5,13/4, I)=. 

4. Conclusions 

In this paper we have developed a general method for 
solving some basic delayed feedback schemes used in 
long haul, high speed, virtual circuit networks in which 
the propagation delay cannot be neglected. A major 
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problem in such networks is the statistical interaction 
among the traffic flows to be controlled. Two basic vir- 
tual circuit networks of a balanced form are examined. 
These are the single-hop networks which aggregate many 
virtual circuits in parallel, and the M-hop tandem net- 
work. These networks are presented as systems of DDEs 
with unknown control functions, in which the rate of 
transmission and the queue occupancy are modelled as 
fluids. We used the well known adaptive algorithms of 
Mitra and Seery [l l] to dynamically adjust the window 
size and to impose linear structure control. As a result, 
the examined networks are presented as linear systems of 
some DDEs. 

Using linear approximation, the above schemes are 
proved unstable (in a Liapounov sense). However, we 
identified the appropriate scaling for the parameters so 
as to make the above schemes to perform near their 
optimal theoretical values for a wide range of speeds. 
Since the standard theory of DDEs does not treat the 
class of systems we considered, stability in a Liapounov 
sense is very difficult to prove. Thus new tools have to be 
developed. In addition, and more importantly, a solution 
method of such DDE systems has not been investigated 
so far, particularly in general cases, where the resulting 
DDE systems are more complex and large. For this 
reason, we proposed a general method, by means of par- 
allel block methods, and we derived an approximate 
numerical solution. This method is used to solve the 
systems of the ODES in which the original systems of 
DDEs have been transformed. The basic theory under- 
lying the parallel block methods for the numerical 
solution of the system of ODES has been developed 
and fully discussed. Finally, we examined the numerical 
stability by deducing two and three dimensional, A- 
stable parallel block methods of second, third and fourth 
order consistency. 

The results found leave open the question of whether 
further improvements are possible. Since this work 
directly applies to the adaptive control of frame relay 
and ATM networks, both of which provide feedback 
to users on congestion, the results found are even more 
important. However, one may observe that the principal 
concerns here are the accuracy of the results and the time 
required to obtain them. Of course, on the analytical 
side, accuracy is an issue only if the model or the solution 
method is approximate. In either case, one should seek a 
means of determining bounds on the errors of approxi- 
mations, as they reflected in the performability values 
that are ultimately determined. If both the model and 
the solution method are approximate (as in this case), 
there is a need to understand the interaction between 
the two types of approximation; the concern being in 
incompatibility which causes excessive errors when the 
two are used together. Therefore, further study is needed 

in order to provide more accurate models, so that any 
improvement in the numerical stability, by means of pro- 
viding high-order A-stable parallel block methods, will 
become viable. 
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