
 
 

 

  
Abstract— We present an evolutionary optimization 

methodology for self-organizing, adaptive wireless 
sensor network design and energy management, taking 
into consideration application-specific requirements, 
communication constraints and energy conservation 
characteristics. A precision agriculture application of 
sensor networks is used as an example. We use genetic 
algorithms as the optimization tool of the developed 
system and an appropriate fitness function is developed 
to incorporate many aspects of network performance. 
The design characteristics optimized by the genetic 
algorithm system include the status of sensor nodes 
(whether they are active or inactive), network clustering 
with the choice of appropriate clusterheads and finally 
the choice between two signal ranges for the simple 
sensor nodes. We show that optimal sensor network 
designs constructed by the genetic algorithm system 
satisfy all application-specific requirements, fulfill the 
existent connectivity constraints and incorporate energy 
conservation characteristics. Energy management is 
optimized to guarantee maximum life duration of the network 
without lack of the required by the specific application 
network characteristics.  

I. INTRODUCTION 

IRELESS sensor networks (WSNs) generally 
consist of a large number of low-cost, low-

power, multifunctional sensor nodes that are small in 
size and communicate over short distances [1]. Their 
structure and characteristics depend on their 
electronic, mechanical and communication limitations 
but also on application-specific requirements. Sensor 
nodes are generally deployed randomly in the field of 
interest, however, there are certain applications of 
WSNs where the application itself can provide some 
guidelines and insights that can lead to the 
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construction of an optimal architecture of sensor 
nodes that satisfies application requirements and 
meets wireless network limitations.  

Energy conservation is a critical network limitation. 
Wireless sensors operate on limited power sources, 
making power conservation their major objective. 
Several analyses of energy efficiency of sensor 
networks have been realized [2]–[5] and several 
algorithms that lead to optimal topologies for power 
conservation have been proposed [6]–[11], but most 
of these approaches do not take into account the 
principles, characteristics and requirements of 
application-specific WSNs. When these factors are 
considered, then the problem of optimal design and 
management of WSNs becomes much more complex. 
This is why several heuristic algorithms, capable of 
finding good solutions in complex search spaces 
where conventional analytical techniques may fail, 
have been used in application-specific WSN designs.  

Genetic Algorithms (GAs) [12] are one of the most 
powerful such heuristics. Their successful application 
in a sensor network design in [13] led to the 
development of several other GA-based application-
specific approaches in WSN design [14]–[17]. 
However, in most of these approaches, either very 
limited network characteristics are considered, or 
several requirements of the application cases are not 
incorporated into the performance measure of the 
algorithm. Here, a more integrated GA approach is 
proposed, both in the direction of degrees of freedom 
of network characteristics and of application-specific 
requirements represented in the performance metric 
of the GA. More specifically, network design is 
investigated in terms of active sensors placement, 
clustering and signal range of sensors, while 
performance estimation includes, together with 
connectivity and energy-related characteristics, some 
application-specific properties like uniformity and 
spatial density of sensing points. 
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II. NETWORK DESIGN ISSUES 

A. WSN for Precision Agriculture 

The methodology of WSN design that we develop 
here is general but takes into account application-
specific characteristics. We used a precision 
agriculture application, like for example, the 
measurement of soil temperature in a cultivation field, 
or the measurement of relative humidity, to show the 
performance of the developed algorithm. Precision 
agriculture refers to the approach of agricultural 
control and management based on direct chemical, 
biological and environmental sensing. Sensor 
networks play the major role in that approach. In 
order to maximize the quantity, diversity and 
accuracy of information extracted from a precision 
agriculture WSN deployment, a variety of reliable, 
high-performance, and cost-effective sensor 
technologies are needed. An important issue that 
arises in precision agriculture is the type of 
parameters to be sensed, which, except for regular 
environmental parameters like temperature, humidity 
and solar radiation, may include soil moisture, 
dissolved inorganics such as nitrogen and 
phosphorous species, as well as herbicides and 
pesticides. There are several sensing approaches that 
contribute to data collection, including remote 
sensing via satellites and airborne sensors, 
autonomous mobile systems and embedded, 
networked systems. WSNs belong to this last 
category. 

The application considered here, concerns open 
field cultivation at an area of 30 by 30 length units, 
where a length unit is an abstract parameter so that 
the developed system for optimal design is general 
enough. The length unit is defined as the distance 
between the positions of two neighboring sensor 
nodes in the horizontal or vertical dimension. The 
initial goal is to find the optimal operation mode of 
each sensor so that application-specific requirements 
are met and energy consumption of the network is 
minimized. Subsequently, the final goal is to find a 
dynamic sequence of operation modes for each 
sensor, i.e. a sequence of WSN designs, which will 
lead to maximization of network lifetime, in terms of 
number of measuring cycles.  

A further issue in a WSN for precision agriculture 
is the existence of some uniformity and spatial 
density conditions regarding sensors deployment, as 

these are determined by the requirements of the 
specific cultivation and the parameters that are being 
measured or monitored. These requirements, for the 
specific case considered here, are the highest possible 
uniformity of sensing points and a desired spatial 
density of 20 measuring points per 100 square units of 
cultivated area. 

B. WSN Architecture 

The salient features of the proposed WSN are the 
following: A square grid of 30 by 30 length units is 
constructed and sensors are placed in all 900 
junctions of the grid, so that the entire area of interest 
is covered. Sensors are identical and may be either 
active or inactive. They are capable of transmitting in 
one of three supported signal ranges. In the case that a 
sensor is active, it may operate as a clusterhead 
transmitting in the appropriate signal range so as to be 
able to communicate with the remote base station, or 
as a simple sensor transmitting in either high or low 
signal range, in the latter case consuming less power, 
as explained later, in section III.B. High signal range 
sensors cover a circular area with radius equal to 10 
length units, while low signal range sensors cover a 
circular area with radius equal to 5 length units. 
Sensors are assumed to have power control features 
so as to adjust manually or automatically their 
transmit power whenever is needed, through the base 
station. Thus, simple sensors are divided into clusters 
and in each cluster a sensor is chosen to act as a 
clusterhead. Simple sensors communicate directly 
with the closest clusterhead, whereas clusterheads 
communicate with a remote base station. Single hop 
transmission is used in both cases. It is assumed that 
communication between clusterheads and the base 
station can always be achieved when required and 
that the base station can communicate with every 
sensor in the field, meaning that every sensor is 
capable of becoming a clusterhead at some point.  

Clusterheads need to perform long range 
transmissions to the base station, data collection and 
aggregation at specific periods including some 
computations, as well as coordination of MAC within 
a cluster. However, the analysis of this operation is 
out of the scope of this work. After the application of 
the genetic algorithm, a specific operation mode is 
proposed for each sensor. The implementation of the 
proposed GA develops an optimal scheme specifying 
the operation mode for each sensor. Then, the 



 
 

 

algorithm is applied repeatedly in order to develop a 
dynamic network design that adapts to new energy-
related information concerning the status of the 
network after each data collection (measuring) cycle 
or at predefined time intervals. 

III. IMPLEMENTATION OF GA 

Genetic algorithms [12] belong to the evolutionary 
computation group of heuristic optimization 
techniques. They try to imitate natural evolution by 
assigning a fitness value to each candidate solution of 
the problem and applying the principle of survival of 
the fittest. Their basic components are the 
representation of candidate solutions to the problem 
in a “genetic” form, the creation of an initial, usually 
random population of solutions, the establishment of 
a fitness function that rates each solution in the 
population, the application of genetic mechanisms to 
produce new individuals from existing ones and 
finally the tuning of the algorithm parameters like 
population size and probabilities of performing some 
genetic operation. 

The implementation of GAs in the application of 
optimal design and operation of WSNs incorporates 
two basic steps so that the algorithm is formulated for 
the specific application: the design representation, i.e. 
the encoding mechanism of the problem’s phenotypes 
into genotypes that GAs manipulate and evolve and 
the formulation of the fitness function that gives to 
each individual (i.e. possible network design) a 
measure of performance. Both steps of the 
implementation of the algorithm are of major 
importance, as they drastically affect the performance 
of the final results. 

A. WSN Representation 

The variables that are included in the WSN 
representation are those that give all the required 
information so that the performance of a specific 
network design can be evaluated. These variables are 
the placement of the active sensors of the network, 
the operation mode of each active sensor, that is, 
whether it is a clusterhead or a simple sensor, and in 
the case of a simple sensor, the range of its signal 
(high or low). 

A general grid of sensors has r rows and c columns. 
For a sensor placed at each of the r·c grid positions, 
there are four possibilities represented by a two-bit 
encoding scheme: being an inactive sensor (00), being 
a simple active sensor, operating in a low signal range 
(10), being a simple active sensor operating in a high 
signal range (01) and being an active clusterhead 
sensor (11). The grid junctions are encoded row by 
row in the bit string, as shown in Fig. 1. Each position 
needs two bits for the encoding, thus, the length of 
each sting is 2·r·c. In the specific design problem 
analyzed here, the values of r and c are both equal to 
30, thus the length of the GA strings are equal to 
1800. 

B.  Fitness Function 

The fitness function is a weighting function that 
measures the quality or performance of a solution, in 
this case a specific sensor network design. This 
function is maximized by the GA system in the 
process of evolutionary optimization. A fitness 
function must include and correctly represent all or at 
least the most important factors that affect the 
performance of the system. The first step is the 
decision on which factors are the most important 
ones. In the design of a WSN, there are some factors 
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active sensor - clusterhead                 11
active sensor - high signal range        10
active sensor - low signal range         01
inactive sensor                                    00

. . .

bit number:

 
 
Fig. 1.  Binary representation (on the right) of a randomly generated sample of a sensor network (on the left). Representation of the first 
row is shown.  



 
 

 

that concern communication issues of the network, as 
well as others that concern the characteristics of the 
specific application of the sensor network, that is, the 
environmental measurements in the precision 
agriculture application examined here. In the network 
characteristics, those factors include the connectivity 
of the sensors, the operational cost of the system 
depending on the types of the sensors and the 
communication cost of the system, depending on the 
distances between sensors that communicate with 
their corresponding clussterhead. In the application-
specific characteristics, those factors include the 
existence of some uniformity and spatial density 
conditions regarding sensors deployment, as these are 
determined by the requirements of the environmental 
measurements application. As mentioned earlier, 
these requirements are the highest possible uniformity 
of sensing points and a desired spatial density of 20 
such points per 100 square units of cultivated area. 

The second step in the development of the fitness 
function is the decision on the importance of each 
parameter on the final quality measure of the network 
design. This importance is expressed by some 
weighting factor for each parameter in the final form 
of the fitness function and these weighting factors are 
usually based on experience. The final weights were 
such that network connectivity was given the highest 
importance, followed by energy consumption. In 
other words, connectivity characteristics of the 
network were treated as constraints, in the sense that 
all sensors should be in range with a clusterhead and 
no clusterhead should be connected to more than a 
predefined maximum number of sensors. 

1) Application Specific Parameters: The main goal 
of a WSN used in precision agriculture is to take 
uniform measurements over the entire area of interest, 
so that a uniform picture of the conditions of the area 
is realized. The metric of measurements uniformity 
used here was the mean relative deviation (MRD). 
The entire area of interest was divided into several 
overlapping sub-areas. Sub-areas are defined by four 
factors: two that define their size (length and width) 
and two that define their overlapping ratio (ratios in 
the two directions). All these factors are expressed in 
terms of the unit length of each direction. The larger 
the overlapping ratio is, the higher precision is 
achieved in the evaluation of uniformity, but also, the 
slower the algorithm becomes. In order to define 

MRD, the spatial density (ρ) of measurements was 
used. More specifically, ρSi, the spatial density of 
measurements in sub-area Si, was defined as the 
number of measurements over the area of the i-th sub-
area, i=1,2,…,N, where N is the number of 
overlapping sub-areas into which the entire area was 
divided. In addition, ρS, the spatial density of the 
entire area of interest, was defined as the total number 
of measurements of the network over the total area of 
interest. Thus, MRD was defined as the relative 
measure of the deviation of the spatial density of 
measurements in each sub-area from the total spatial 
density of measurements in the entire area: 
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Low values of MRD mean high uniformity of 
measurement points. The measure of sensing points 
uniformity was the first parameter of the fitness 
function. 

The other application-specific parameter of the 
fitness function was a Spatial Density Error (SDE) 
factor that was used to penalize network designs that 
did not meet the minimum required spatial density of 
measurement points that would suffice adequate 
monitoring of the measured variables (e.g., air or soil 
temperature, air or soil relative humidity, solar 
radiation, etc.) in the area of interest. The desired 
spatial density ρd, as mentioned before, was set equal 
to 0.2 measurement points per square unit and the 
SDE factor was evaluated by: 
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2) Connectivity Parameters: A crucial issue in 

WSNs is the assurance that network connectivity 
exists and all necessary constraints are satisfied. Here, 
these necessary characteristics of the sensor network 
were taken into account be including two separate 
parameters in the fitness function: 

a) A Sensors per Clusterhead Error (SCE) 
parameter to ensure that each clusterhead did not have 
more than a maximum predefined number of simple 
sensors in its cluster. This number is defined by the 



 
 

 

physical communication capabilities of the sensors as 
well as their data management capabilities in terms of 
quantity of data that can be processed by a 
clusterhead sensor, and it was assumed to be equal to 
15 for the application considered here. If nfull is the 
number of clusterheads (or clusters) that have more 
than 15 active sensors in their clusters and ni is the 
number of sensors in the i-th of those clusters, then: 
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b) A Sensors Out of Range Error (SORE) parameter 

to ensure that each sensor can communicate with its 
clusterhead. This of course depends on the signal 
range capability of the sensor. If nout is the number of 
active sensors that cannot communicate with their 
clusterhead and n is the total number of active sensors 
in the network, then: 
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3) Energy Related Parameters: Energy 

consumption in a wireless sensor network, as 
explained earlier, is a crucial factor that affects the 
performance, reliability and life duration of the 
network. In the optimization process during the 
evolutionary design of the sensor network, three 
different energy related parameters were taken into 
account: 

a) Operational energy consumption. It refers to the 
energy that a sensor consumes during some specific 
time of operation and it basically depends on the 
operation mode of the sensor, that is, whether it 
operates as a clusterhead, a high-signal range or a 
low-signal range sensor, or whether it is inactive. The 
corresponding relevance factors for the energy 
consumption of the three active operating modes of 
the sensors are taken proportional to 20:2:1 
respectively and zero for inactive. The meaning is that 
the energy consumption of a simple sensor operating 
in clusterhead mode is 10 times more than that of a 
sensor operating in high-signal range mode and 20 
times more than that of a simple sensor operating in 
low-signal range mode. These relevant factors were 

used to simplify the analysis and did not necessarily 
represent accurately the real energy relations between 
the available operation modes of the sensors. Their 
exact values depend on electromechanical 
characteristics of the sensors and were not further 
considered in the analysis presented here. The 
Operational Energy (OE) consumption parameter was 
then given by: 
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where, nch, nhs and nls are the number of 
clusterheads, high-signal range and low-signal range 
sensors in the network, respectively. 

b) Communication energy. It refers to the energy 
consumption due to communication between simple 
sensors and clusterheads. It mainly depends on the 
distances between the sensors and their clusterhead, 
in each cluster, as defined in [10]. It is depicted by the 
Communication Energy (CE) parameter: 
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where, c is the number of clusters in the network, ni is 
the number of sensors in the i-th cluster, dji is the 
Euclidean distance from sensor j to its clusterhead (of 
cluster i) and µ and k are constants, characteristic of 
the topology and application site of the WSN. For the 
specific precision agriculture application for open 
field monitoring, the values of µ=1 and k=3 were 
chosen. 

c) Battery life. An important issue in WSNs is self-
preservation of the network itself, that is, the 
maximization of life of network’s elements, i.e. the 
sensors. Each sensor consumes energy from some 
battery source in order to perform its vital operations, 
like sensing, communication, data aggregation if the 
sensor is a clusterhead, etc. Battery capacity of each 
sensor of the network was taken into account in the 
design optimization process by the introduction of a 
Battery Capacity Penalty (BCP) term. Since the 
operation mode of each sensor is known, its Battery 
Capacity (BC) can be evaluated at each time. Thus, 
when the design optimization algorithm is applied at a 
specific time t (operation cycle) the battery capacity 
penalty term is given by: 
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while BCi is updated according to the operation mode 
of each sensor (clusterhead, high-range or low-range) 
during the previous time step (operation cycle) of the 
network’s operation: 
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In the above: 

- [ ]tBCP  is the battery capacity penalty of the WSN 
at measuring cycle t. It is used to penalize the use of 
sensors with low battery capacities, giving at the same 
time larger penalty values to operating modes that 
consume more energy (especially clustehead mode). 
- ngrid is the total number of available sensor nodes. 

- ][t
iPF  is a penalty factor of sensor i that takes 

different values according to the operation mode of 
sensor i (as explained later). The values used here are 
proportional to the relevant battery consumptions of 
the sensor modes, namely, 20:2:1 for active sensor 
mode (clusterhead, high signal range and low signal 
range respectively) and 0 for inactive. It provides 
different penalty weights according to the specific 
modes that these sensors are planned to have in the 
WSN of the next measuring cycle. However, as it is 
explained in the next section, further exploration of 
the optimal relevance values needs to be performed 

- ][t
iBC  and ]1[ −t

iBC  are the battery capacities of 

sensor i at measuring cycles t and t-1 respectively, 
taking values between 0 and 1, with 1 corresponding 
to full battery capacity and 0 to no capacity at all. 
- ]1[ −t

iBRR  is a battery reduction rate term that 

depends on the operation mode of sensor i during the 
previous time step (t-1) and reduces its current battery 
capacity accordingly, using the percentage of the 
relevance factors for the energy consumption of the 
operating modes of the sensor as follows: 0.2 for 
clusterhead, 0.02 for high-range and 0.01 for low-
range operation modes and 0 for inactive sensors.  

Thus, the final form of the fitness function f used 
by the genetic algorithm was: 
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where f is the fitness value of a specific WSN design. 
The weighting factors 7,...,2,1: =iiα  were used in 

the fitness function to determine the relevant 
importance of the corresponding parameters. The 
values of these factors were chosen based on 
experience about the importance of each parameter 
after experimentation. First, weighting factors that 
resulted on the same importance of each parameter 
were estimated and after some experimentation, the 
final values that best represented the intuition about 
relevant importance of each parameter were set.  
About the weighting factor of the BCP in particular 
(α7), its value was determined after the other 
weighting factors were set. It should be noted that the 
BCP factor was not taken into account in the 
optimization of the initial design of the WSN, as it 
was assumed that all sensor nodes had full battery 
capacities at the beginning. The optimal value of α7 
was the result of a trade-off between energy 
management optimization and network characteristics 
optimization, particularly of the characteristics 
concerning the application-specific properties of the 
WSN. 

C. Dynamic Optimal Design Algorithm 

Having completed the steps of designing a 
representation scheme and forming the fitness 
function, the final genetic algorithm for optimal 
dynamic design of the WSN could be developed. The 
algorithm consisted of the following steps: 
1) An initial population of randomly generated 

designs was formulated and a fitness value was 
assigned to each individual using (1) to (9). 

2) Evolutionary optimization was performed through 
the GA operators of crossover, mutation and 
selection and the population was evolved until a 
predetermined maximum number of generations 
was reached. 

3) The best individual of the final population was 
stored as the optimal WSN design. 

4) The optimal design (topology of the network and 
operation mode of each sensor) was applied to the 
WSN and a measuring cycle was initiated.   

5) Using (8), the battery capacities of all sensor 
nodes were updated according to their operation 



 
 

 

mode in the optimal WSN of step 3. These would 
be their battery capacities at the next measuring 
cycle of the network. 

6) Steps 1–3 were repeated, using the updated values 
of battery capacities. A new optimal WSN was 
found. 

7) When current measuring cycle was completed, 
step 4 was applied, with the new optimal design. 

8) Steps 5–7 were repeated, until the end of life-
duration of the WSN. 

  In order to assure that the best individual of each 
generation was not destroyed by the crossover and 
mutation operators during the evolution process, 
“elitism” was included in the algorithm, meaning that 
the current best individual at each generation of the 
algorithm always survived to the next generation.  

IV. RESULTS 

GAs have a number of parameters that are problem 
specific and need to be explored and tuned so that the 
best algorithm performance is achieved. These 
parameters are the population size, the probabilities 
of crossover and mutation and the type of crossover. 
The explorations led to the use of the following 
parameters for the final GA: a population of 300 
individuals, one-point crossover with probability pc = 
0.8 and probability of mutation pm = 0.005. In 
addition, GAs are stochastic algorithms, in the sense 
that several random decisions take place during the 
optimization process and they tend to be sensitive in 
the quality of the initial population, which is 
randomly generated. Thus, in all explorations and 
then further application of the algorithm, several runs 
were tested with different random initial populations. 

The developed algorithm was tested in three ways 
and the results are shown in the three following parts 
of this section. First, the performance of the algorithm 
in designing initial optimal WSN topologies and 
sensor operation modes was examined. Thus, steps 1 
to 7 of the algorithm, as presented in the previous 
section, were applied in a field of full battery capacity 
sensor nodes. Then, the battery capacity update term 
was included and the integrated algorithm was tested 
off-line at some predetermined WSN designs with 
limited battery resources, that is, with specific limited 
or zero battery capacities at some sensor nodes, so 
that its capability of avoiding low-battery nodes 
would be shown. Finally, the algorithm was applied 

dynamically to examine its performance on adaptive 
optimal topology and energy management that would 
lead to the maximization of the life-duration of the 
entire WSN. 

A. Initial WSN design 

The algorithm was initially applied having 
available all sensor nodes of the grid at full battery 
capacities. The three initial populations that gave the 
best results after 3000 iterations of the GA were 
recorded (abbreviated as “GA1”, “GA2” and “GA3”, 
starting from the fittest design). The evolution 
progress of the best GA run is shown in Fig. 2, where 
both the fitness progress of the best individual found 
by the algorithm as well as the average fitness of the 
entire population at each generation are plotted. The 
optimization in the entire GA population can be seen 
from the general increase of the average population 
fitness, despite the numerous fluctuations caused by 
the search process through the genetic operators of 
crossover and mutation. 

The optimization performed by the GA evolution 
process can also be seen by the progress of the values 
of some of the parameters of the sensor network 
designs found during the evolution. These parameters 
are shown in Fig. 3, for the same run of the GA as 
before. More specifically, in these graphs, plot (a) 
shows the evolution of MRD which represents 
uniformity of measurement points (the lower the 
value of MRD, the better the value of the achieved 
uniformity), plot (b) shows the evolution of the 
operational energy consumption (OE), plot (c) shows 
the evolution of the communication energy 
consumption (CE), while plot (d) shows the number 
of clusterheads (lower line), high signal range (middle 
line) and low signal range sensors (upper line) in the 
sensor networks as they evolved during optimization. 
The optimization process can easily be observed by 
the evolution of WSN characteristics as show in these 
graphs. Experiments with varying ratios of active to 
inactive sensors in the random initial populations of 
designs of the GA showed that in cases where the 
initial random designs suffered with communication 
limitation issues, the algorithm at the beginning of the 
evolution was always trying to find designs that at 
least satisfied the communication constraints as well 
as the application specific constraints and after that 
the other parameters, like energy issues and clustering 
were optimized, with the best possible minimization 



 
 

 

of operation energy consumption factor, the decrease 
of clusterheads existence, the increase of low signal 
range sensors existence and so on. 

Table I summarizes all the sensor network 
characteristics for the three GA-generated designs as 
well as some random generated designs, for 
comparison. Random network designs were generated 
(“Rand1” to “Rand4”) with several different numbers 
of active sensors and percentages of clusterheads, 
high signal range and low signal range sensors, as 
shown in the corresponding rows of the table. Values 
in bold represent the best values for each parameter, 
while networks that did not satisfy the communication 
constraints (i.e., networks with sensors out of range or 
clusters with more than 15 sensors) were not 
considered in that comparison of values. It can be 
seen, not only from the fitness values but also from 
the parameters values, that network designs “GA1” 
and “GA2” have the overall best performance, with 
very good values of uniformity of sensing points, low 
energy consumption both for operation and 

communication issues and rational ratios of 
clusterhead nodes over total active nodes (17-19%). 
Designs “Rand1” and “Rand2” do not satisfy the 
communication constraints, as they both have some 
sensors that cannot communicate with some 
clusterhead and also have some clusters with more 
than 15 active sensors, which is the maximum number 
of sensors a clusterhead can handle. Design “Rand3” 
has a rather high value of MRD (0.1815) and does not 
achieve a satisfactory uniformity of measurement 
points and it also has high values of both operational 
and communication energy consumption. Design 
“Rand4” achieves better value of uniformity than 
“Rand3” (MRD = 0.1541), which is still much worse 
than that of the GA-generated designs and it also has 

 
 Fig. 2.  Evolution progress of the best individual (best fitness 
value) and the entire population (average fitness value) of the GA 
during the best run of the algorithm.  

Fig. 3.  Evolution of WSN parameters during 3000 generations. 
(a) MRD values for estimation of uniformity of measurement 
point; (b) Operational energy consumption factor; (c) 
Communication energy consumption factor; (d) Number of active 
sensors for the three possible operation modes: CH: clusterhead, 
HSR: high signal range, LSR: low signal range 

TABLE I 
WSN DESIGNS PARAMETER VALUES 

 “GA1” “GA2” “GA3” Rand1 Rand2 Rand3 Rand4 
MRD 0.0840 0.1018 0.1141 0.5513 0.3333 0.1815 0.1541 
SDE 0 0 0 0.0944 0 0 0 
OE 5.0086 4.6827 4.9711 2.5276 3.4021 6.5550 8.2474 
CE · 103 1.4323 1.6422 1.4965 1.3882 8.8816 1.7896 0.9610 
OOR 0 0 0 29 5 0 0 
OCC 0 0 0 4 2 0 0 
Active 699 602 622 163 378 591 679 
CH 133 105 117 9 39 161 248 
HSR 275 222 247 78 167 224 209 
LSR 291 275 258 76 172 206 222 
CH / Active 0.19 0.17 0.19 0.05 0.10 0.27 0.36 
HSR / Active 0.39 0.37 0.40 0.48 0.44 0.38 0.31 
LSR / Active 0.42 0.46 0.41 0.47 0.46 0.35 0.33 
Fitness 0.0137 0.0136 0.0131 N/A N/A N/A N/A 

Parameter values for the three GA-generated wireless sensor network designs and four randomly generated design with specific 
sensor characteristics. OOR: out of range sensors (sensors that cannot communicate with some clustehead); OCC: over-connected 
clusters (clusters with more than 15 sensors); Active: active sensors; CH: clusterheads; HSR: high signal range sensors; LSR: low signal 
range sensors  



 
 

 

very high operational energy consumption. 
The fitness values of “GA1” and “GA2” sensor 

network designs are very similar and the choice of the 
best network design between the two is a subjective 
decision. If a value of MRD around 0.1 is satisfactory 
for the precision agriculture application, then “GA2” 
should be preferred, as it uses about 10% less sensors 
than “GA1” and has better distribution ratios of the 
operation modes of the active sensors (rows 
“CH/Active”, “HSR/Active” and “LSR/Active” in 
Table I). On the other hand, “GA1” achieves even 
better uniformity of measurement points and it also 
consumes less energy for communication purposes. 
Finally, it should be noted that the desired spatial 
density for the specific application was always 
reached, because the spatial density achieved in all 
network designs that fulfill the connectivity 
constraints was larger that the desired one. 

B. Performance on battery-constrained WSNs 

The algorithm was applied on specific initial WSN 
designs with sensor nodes of various battery 
capacities, in order to show the quality of decisions 
that the algorithm makes on the operation statuses of 
the sensors for the next measuring cycle. Table II 
shows the three scenarios that were used for the initial 
designs as far as the battery capacities of the sensors 
are concerned. In all three scenarios, 15% of the 
sensors were considered having zero battery 
capacities. The algorithm was run several times for 
each scenario for 3000 iterations and the average 
results are shown in Tables III and IV. Both tables 
represent average ratios of used (active) sensor nodes 
of the proposed by the algorithm WSN designs.  

Table III shows the average percentages and 
standard deviations (values in the parentheses) of the 
sensors of each initial battery level that were active or 
used as clusterheads in the proposed designs of the 
next measuring cycle, for all three scenarios. For 
example, the values 78 and 14 in the 50% battery 
level cells of “Scenario I” mean that 78% of the 

sensors with 50% battery capacity were active in the 
new WSN design of the next measuring cycle, while 
14% of the 50% battery capacity sensors were used as 
clusterheads in that new design. Similarly, in 
“Scenario III”, only 3% of the sensors with 10% 
battery capacity were used as clusterheads in the new 
WSN, while 22% of the full battery capacity sensors 
were used as clusterheads in the same WSN. As it can 
be seen, there was no case where some sensor with no 
battery capacity was used in any of the proposed 
designs, in any scenario. The avoidance of using 
sensors with low battery capacities is not evident in 
Scenario I (the battery level distribution of 
0/50/70/100 did not help towards that), but it can be 
seen in both scenarios II and III, especially in the 
percentages that represent clusterhead usage. It is 
evident that sensors of higher battery capacities were 
preferred over low-battery ones, especially in the case 
where these sensors served as clusterheads in the new 
design. 

A different approach of presenting the usage of 
sensors in the WSN of the next measuring cycle 
according to their previous battery capacities is used 
in Table IV. In that table, the average percentages 
(and standard deviations in the parentheses) of total 
active nodes or total clusterheads in each scenario’s 
design of the next measuring cycle that used each 
initial battery level sensors are presented. For 
example, in Scenario II, 33% of the active nodes of 
the new WSN design of the next measuring cycle had 
10% battery capacity, 39% had 50% battery capacity 
and 27% had full battery capacity, or, in Scenario III, 
8% of the sensors chosen to serve as clusterheads in 
the WSN design of the next measuring cycle had 10% 
battery capacity while 92% of the clusterheads had 
full capacity. The complete avoidance of using 
sensors with no battery is evident here too, while the 

TABLE II 
INITIAL WSN DESIGN SCENARIOS 

Battery level (%) Scenario I Scenario II Scenario III 
0 15% 15% 15% 

10 0 30% 30% 
50 30% 33% 0 
70 33% 0 0 

100 22% 22% 55% 

Percentages of sensors’ battery levels over all available 
sensors, for the three examined scenarios  

TABLE III 
BAT-LEVEL USAGE AS ACTIVE SENSORS AND CLUSTERHEADS 

 Scenario I Scenario II Scenario III 
Battery 

level 
(%) 

active 
sensors

cluster 
heads 

active 
sensors 

cluster 
heads 

active 
sensors

cluster 
heads 

0 0 (0) 0 (0) 0 (0.4) 0 (0) 0 (0.3) 0 (0) 
10 - - 70 (2.3) 5 (1.5) 67 (1.9) 3 (0.9) 
50 78 (1.1) 14 (2.5) 78 (1.4) 19 (2.3) - - 
70 78 (1.5) 17 (1.1) - - - - 

100 78 (3.2) 16 (1.6) 77 (2.4) 21 (2.5) 78 (1.7) 22 (1.1)

Average percentages (std’s) of specific battery levels of sensors 
used as active sensors in general or clusterheads in the WSN of 
the next measuring cycle, for the three examined scenarios  
 



 
 

 

preference in sensors with larger battery capacities 
can be seen, mainly in scenarios II and III where the 
battery distributions were more “difficult”. 

An important issue in the off-line testing of the 
developed system (as well as in the dynamic 
application of the algorithm examined later) is the 
conservation of the application-specific WSN 
characteristics, while the system tries to avoid the 
usage of sensors with no-battery or low-battery 
capacities. The main difference between the 
developed system and other energy-management 
systems of WSNs, like LEACH for example [18], is 
that together with energy conservation, our system 
keeps on taking into account the application-specific 
parameters of the design, as well as the existent 
communication issues and constraints. Thus, it should 
be noted that even better energy-conservation usage 
could be achieved by the developed algorithm, but 
limitations of application-specific parameters and 
communication constraints, limit that ability. As it is 
shown in Table V, the values of uniformity and 
operational and communication energy consumptions 
of the proposed designs, were kept quite close to the 
optimal values of the original WSN design, especially 
if someone thinks that in all three scenarios, 15% of 
the available sensors had no battery capacity and they 
were completely avoided by the design algorithm. In 
addition, in all three cases, all communication 
constraints were met and spatial densities of 
measuring points were kept within the appropriate 
range. 

C. Dynamic design performance 

The self-organizing capabilities of the algorithm 
towards energy conservation but also towards 
connectivity sustainability and nursing of application-

specific requirements were examined by the dynamic 
application of the algorithm to a sequence of 
measuring cycles. As described in Section III.B, 
battery consumption during one measuring cycle was 
set to 20% of the total (full) battery capacity for 
sensors operating as clusterheads, 2% for high signal 
range sensors and 1% for low signal range sensors, 
while there was no battery consumption for sensors 
that were inactive during some measuring cycle. 
Therefore, if a static clustering algorithm was used, 
the life duration of the WSN would have been five 
measuring cycles. It should be noted here that the 
duration of a measuring cycle was set large enough 
(defined by the battery consumption of clusterhead 
sensors) to better demonstrate the way the proposed 
algorithm operates in avoiding low-battery sensors 
and maximizing life duration of the entire network. In 
addition, the necessary setup time for network re-
configuration and updating was not taken into 
account. The performed simulations try to give an 
approximation of lifetime duration of the WSN. 

Two different approaches were used in the 
investigation of the performance of the algorithm 
applied dynamically. The first examined the battery 
capacity levels of all available sensors (900 in our 
application) while the second examined the battery 
capacity levels of the sensors that were actually used 
by the proposed WSN designs at each measuring 
cycle. Investigation of the performance of the 
dynamic application of the algorithm is still under 
way and some preliminary results are presented here. 
Average results from two runs of the algorithm were 
used. In both runs, the optimal design “GA1” 
presented in Table I was used as the initial WSN 
while the algorithm was tested during 8 consecutive 
measuring cycles. The results were compared with 
those of static clustering on the initially optimal WSN 
(“GA1”).  

The algorithm we present is mainly driven by 
application-specific requirements, while the other 

TABLE IV 
ACTIVE SENSORS AND CLUSTERHEADS BATTERY-LEVEL 

DISTRIBUTIONS 

 Scenario I Scenario II Scenario III 
Battery 

level 
(%) 

active 
sensors 

cluster 
heads 

active 
sensors 

cluster 
heads 

active 
sensors

cluster 
heads 

0 0 (0) 0 (0) 0 (0.1) 0 (0) 0 (0.1) 0 (0) 
10 - - 33 (0.8) 12 (3.5) 32 (0.5) 8 (1.9) 
50 36 (0.6) 32 (5.5) 39 (0.4) 50 (2.9) - - 
70 38 (0.6) 42 (3.1) - - - - 

100 26 (1.0) 26 (2.8) 27 (0.7) 38 (3.5) 68 (0.5) 92 (1.9)

Average distribution (percentages and std’s) of active sensors 
and clusterheads in the WSN of the next measuring cycle over 
existing battery levels of sensors, for the three examined scenarios  
 

TABLE V 
WSN DESIGN MAIN CHARACTERISTICS 

 MRD OE CE · 103 
 avg. std. avg. std. avg. std. 

Initial WSN 0.0840 - 5.0086 - 1.4323 - 
Scenario I 0.1227 0.0088 5.1516 0.0950 1.6953 0.1591 
Scenario II 0.1555 0.0116 5.0047 0.3136 2.0106 0.2202 
Scenario III 0.1594 0.0115 5.3593 0.1729 1.8045 0.1031 

Design characteristics of initial WSN design and designs of the 
next measuring cycle, for the three examined scenarios.  



 
 

 

objectives are also taken into account. The main 
difference between our approach and the LEACH 
approach [18] is that our algorithm searches globally 
the “energy management” space taking always into 
account the application-specific characteristics of the 
WSN design, while in LEACH each node makes its 
decision about whether to be a clusterhead or not 
independently on the other nodes in the network and 
more importantly, the algorithm does not take into 
account any application-specific characteristics. The 
only global information that LEACH uses is the 
desired percentage of clusterheads in the network. 
That percentage is a parameter under optimization in 
our approach, because in application-specific WSNs 
such a parameter is not solely determined by 
communication issues and thus it cannot be 
determined a priori. 

Fig. 4 shows the average number of sensors (solid 
lines) during the dynamic application of the algorithm 
that have battery capacities below certain levels (from 
50% to 20% of full capacity). These numbers are over 
all available sensors, not only the sensors used in 
WSN designs during each measuring cycle. The ninth 
cycle shown in the graphs represents the estimated 
values after the end of the final measuring cycle with 
the last designed WSN. The corresponding numbers 
of sensors during application of static clustering, as 
explained before, are shown in dashed lines. The gain 
in overall energy conservation can be shown in these 
graphs. Other statistical measures like minimum 
existent battery capacity at each measuring cycle 

(either in the entire grid of sensors or the active 
sensors of WSN of each measuring cycle), or the 
limited increase rate of the standard deviation of 
existing battery capacities of sensors as compared to 
the increment of the corresponding standard deviation 
in the case of static clustering, or the number of 
sensors above certain battery capacities that existed in 
the adaptive WSN designs during the different 
measuring cycles, they all led to the same 
conclusions. Especially when battery capacities of 
only active sensors of WSN designs at each 
measuring cycle were examined, results were even 
clearer. 

An important issue is the performance of 
dynamically designed WSNs as far as the application-
specific characteristics as well as the communication 
and operation energy consumptions are concerned. As 
it was specifically mentioned before, maximization of 
the battery life of the WSN was one of several other 
parameters of the optimization process. Table VI 
shows the average values of the three main 
characteristics of the dynamically designed WSNs 
through the 8 measuring cycles investigated here, i.e. 
uniformity measure (MRD), operation energy 
consumption and communication energy 
consumption. It can be seen that values were kept 
very close to the optimal values of the initial WSN 
design. 

V. CONCLUSIONS 

In this paper, we presented an algorithm for the 
optimal design of application-specific WSNs, based 
on the evolutionary optimization properties of genetic 
algorithms. Identical sensors were considered on a 
grid placement and the GA system decided on which 
sensors should be active, which ones should operate 
as clusterheads and whether the remaining active 

Fig. 4. Number of sensors (over all 900 sensors) with battery 
capacities below certain levels after each measuring cycle. Solid 
lines: average numbers of dynamic algorithm application. Dashed 
lines: numbers of application of static clustering. 

TABLE VI 
WSN DESIGN MAIN CHARACTERISTICS 

cycle MRD OE CE · 103 
1 0.0840 5.0086 1.4323 
2 0.0803 4.8124 1.6782 
3 0.0883 4.8153 1.6573 
4 0.0894 4.8134 1.5821 
5 0.0892 4.8058 1.5861 
6 0.0996 4.7210 1.7167 
7 0.0896 4.8005 1.5900 
8 0.0767 4.9838 1.6062 

Design characteristics of WSN designs during dynamic 
application of the algorithm for 8 measuring cycles.  
 



 
 

 

normal nodes should have high or low signal range. 
During optimization, parameters of network 
connectivity, energy conservation as well as 
application requirements were taken into account so 
that an integrated optimal WSN was designed. From 
the evolution of network characteristics during the 
optimization process, we can conclude that it is 
preferable to operate a relatively high number of 
sensors and achieve lower energy consumption for 
communication purposes than having less active 
sensors with consequently larger energy consumption 
for communication purposes. In addition, GA-
generated designs compared favorably to random 
deployments and designs of sensors. Uniformity of 
sensing points of optimal designs was satisfactory, 
while connectivity constraints were met and 
operational and communication energy consumption 
was minimized.  

We also showed that dynamic application of the 
algorithm in adaptive WSN design can lead to 
extension of network’s life duration, while keeping 
the application-specific properties of the network 
close to optimal values. Future work will deal with 
further analysis on dynamic WSN design and further 
tuning of the embedded parameters of the algorithm 
that could lead to even better energy conservation.  
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