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Abstract—We present a memetic algorithm that dynamically 
optimizes the design of a wireless sensor network towards 
energy conservation and extension of the life span of the 
network, taking into consideration application-specific 
requirements, communication constraints and energy 
consumption of operation and communication tasks of the 
sensors. The memetic algorithm modifies an already successful 
genetic algorithm design system and manages to improve its 
performance. The obtained optimal sensor network designs 
satisfy all application-specific requirements, fulfill the existing 
connectivity constraints and incorporate energy conservation 
characteristics stronger than those of the original genetic 
algorithm system. Energy management is optimized to 
guarantee maximum life span of the network without lack of 
the network characteristics that are required by the specific 
sensing application.   

I. INTRODUCTION 

NERGY conservation probably constitutes the most 
important challenge in the design of wireless sensor 

networks (WSNs). These networks generally consist of a 
large number of low-power sensor nodes that communicate 
over short distances, and their energy resources are 
significantly more limited than in wired networks [1-2]. 
Their design should take into consideration these limitation 
and incorporate some operation scheduling so that sensor 
energy saving is optimized and life span of the network is 
maximized.  

Another issue in WSN design is the connectivity of the 
network according to some specific communication protocol 
[2-3]. Cluster-based architectures with single-hop 
communication between sensors of a cluster are the most 
commonly used. In these cases, a selected clusterhead sensor 
collects all gathered information by the sensors in its cluster, 
and sends it to a remote base-station (sink). Usually, 
connectivity issues include the number of sensors in each 
cluster, because a clusterhead can handle up to a specific 
number of connected sensors, as well as coverage issues 
related to the ability of each sensor to reach some 
clusterhead. 

Finally, some issues that have to do with the physical 
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characteristics of the network according to the relevant 
requirements of the specific application of the WSN have 
recently been included as major parameters in the design 
process of WSNs [4-5]. The purpose of the sensor network, 
which is the collection and possibly the management of 
measured date for some particular application, must not be 
neglected. This collection must meet some specific 
requirements, depending on the type of data that are 
collected. These requirements are turned into specific design 
properties of the WSN and play an important role in the 
design optimization of the WSN. 

Most algorithms that lead to optimal topologies of WSNs 
towards power conservation, do not take into account the 
principles, characteristics and requirements of application-
specific WSNs [6-11]. When these factors are considered, 
then the problem of optimal design and management of 
WSNs becomes much more complex [5]. 

It is clear that the problem of WSN design optimization 
that takes into account all the before-mentioned parameters, 
is a multi-objective optimization problem. There are several 
interesting approaches to tackling such problems. One of the 
most powerful heuristics that could be applied in our multi-
objective optimization problem is based on Genetic 
Algorithms (GAs) [12]. The successful application of GAs 
in a sensor network design in [13] led to the development of 
several other GA-based application-specific approaches in 
WSN design, mostly by the construction of a single fitness 
function [14-17], but also by considering Pareto optimality 
in the evaluation of fitness values [18]. However, in most of 
these approaches, either very limited network characteristics 
are considered, or several requirements of the application 
cases are not incorporated into the performance measure of 
the algorithm.  

In our previous work [5], we considered an integrated GA 
approach, both in the direction of degrees of freedom of 
network characteristics and of application-specific 
requirements represented in the performance metric of the 
GA. The primary goal was to find the optimal operation 
mode of each sensor so that application-specific 
requirements are met and energy consumption of the 
network is minimized. More specifically, network design 
was investigated in terms of active sensors placement, 
clustering and signal range of sensors, while performance 
estimation included, together with connectivity and energy-
related characteristics, some application-specific properties 
like uniformity and spatial density of sensing points. Thus, 
the implementation of the proposed methodology resulted in 
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a near-optimal design scheme, which specified the operation 
mode for each sensor.  

That GA-based algorithm was applied dynamically to 
obtain a dynamic sequence of operation modes for each 
sensor, i.e. a sequence of WSN designs, which leads to 
maximization of network lifetime in terms of number of data 
collection (measuring) cycles. This was achieved by 
implementing the algorithm repeatedly in order to develop a 
dynamic network design that adapted to new energy-related 
information concerning the status of the network after each 
measuring cycle or at predefined time intervals. 

In this work, we develop a Memetic Algorithm (MA) [18] 
which hybridizes the GA system developed in [5], with a 
goal to improve its performance by guiding the population 
formulation of the GA towards more intelligent decisions.  

In the following Section we describe the WSN modeling 
approach and the parameters involved in the design 
problem. In Section III we briefly describe the GA approach 
that was originally used to develop the WSN design 
algorithm and the most important features of that algorithm 
are pointed out. In Section IV we present the basic 
characteristics of the novel Memetic Algorithm approach 
and in Section V the network design capabilities of the 
algorithm are compared with those of the original GA-based 
design algorithm. Finally, in Section VI, some overall 
conclusions are drawn and trends of future work are stated. 

II. WSN DESIGN ISSUES 

A. WSN Modeling 

The WSN considered in this application is intended to 
cover a sensing area with a size of 30 by 30 length units. 
Sensors are placed on the junctions of a virtual grid that 
covers the entire area and has a grid step size of one length 
unit, thus there are 900 sensors all together. A length unit is 
an abstract parameter so that the optimal design algorithm is 
general enough. A cluster-based network architecture is used 
where sensors are partitioned into several clusters. Each 
sensor belongs to the cluster of its closest clusterhead 
sensor. All sensors are identical and may be either active or 
inactive. They are capable of transmitting in one of three 
supported signal ranges. Provided that a sensor is active, it 
may operate as a clusterhead transmitting at an appropriate 
signal range (CH sensor) that allows the communication 
with the remote base station (sink), or it may operate as a 
regular sensor transmitting at either high or low signal range 
(HSR/LSR sensor respectively). 

B. Design Parameters 

We propose an algorithm to dynamically design WSN 
topologies by optimizing energy-related parameters that 
affect the battery consumption of the sensors and thus, the 
life span of the network. At the same time, the proposed 
algorithm tries to meet some embedded connectivity 
constraints and optimize some physical parameters of the 
WSN implemented by the nature of the specific application.  

As mentioned in the Introduction, we consider three 
major sets of parameters that influence the performance of a 
specific design of a WSN that is used in some particular 
application. The first set is the application-specific 
parameters. In this work we consider a WSN that is intended 
to sense environmental variables in some rural area, so these 
application-specific parameters regard the deployment of 
sensors for that specific case considered here. They are: i) 
the highest possible uniformity of sensing points, and ii) 
some desired spatial density of measuring points. The 
second set is the connectivity parameters which include an 
upper bound on the number of sensors that each clusterhead 
sensor can communicate with, and the fact that all sensors 
must have at least one clusterhead within their signal range. 
Finally, the third set refers to the energy-related parameters 
which include the operational energy consumption 
depending on the types of active sensors, the communication 
energy consumption depending on the distances between 
sensors that communicate with their corresponding 
clusterhead, and finally the battery energy consumption. 

The measure of uniformity of sensing points was 
estimated by the spatial mean relative deviation (MRD) of 
such points. The entire area of interest was divided into 
several overlapping sub-areas. Sub-areas are defined by four 
factors: two that define their size (length and width) and two 
that define their overlapping ratio (ratios in the two 
directions). All these factors are expressed in terms of the 
unit length of each direction. The larger the overlapping 
ratio is, the higher precision is achieved in the evaluation of 
uniformity, but also, the slower the algorithm becomes. In 
order to define MRD, the notion of spatial density (ρ) of 
sensing points was used. More specifically, ρSi, the spatial 
density of sensing points in sub-area Si, was defined as the 
number of such points over the area of the i-th sub-area, 
i=1,2,…,N, where N is the number of overlapping sub-areas 
into which the entire area, say S, was divided. In addition, 
ρS, the spatial density of the entire area of interest, was 
defined as the total number of sensing points of the network 
over the total area of interest. Thus, MRD was defined as the 
relative measure of the deviation of the spatial density of 
sensing points in each sub-area from the total spatial density 
of such points in the entire area: 
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Low values of MRD correspond to high uniformity of 
sensing points. Acceptable values for our application 
example are of MRD up to 0.15-0.16. 

In addition to uniformity and spatial density of sensing 
points as well as energy consumption of the WSN (both 
operational and communicational), two network 
connectivity issues were taken into account: i) A Sensors-
per-Clusterhead Error (SCE) parameter was included to 
ensure that each clusterhead did not have more than a 
maximum predefined number of regular sensors in its 



 
 

 

cluster. This number is defined by the physical 
communication capabilities of the sensors as well as their 
data management capabilities in terms of quantity of data 
that can be processed by a clusterhead sensor. It was 
assumed to be equal to 15 for the application considered 
here. ii) A Sensors-Out-of-Range Error (SORE) parameter 
was included to ensure that each sensor can communicate 
with its clusterhead. This of course depends on the signal 
range capability of the sensor. It is assumed that HSR-
sensors cover a circular area with radius equal to 10 length 
units, while LSR-sensors cover a circular area with radius 
equal to 5 length units. 

Finally, the battery capacities of the sensors were taken 
into account by the introduction of the battery capacity 
penalty (BCP) parameter (more details can be found in [5]). 

All these parameters of different nature are taken into 
consideration in the design optimization algorithm presented 
in the following sections. 

III. ORIGINAL GA-BASED ALGORITHM 

In this section we briefly present the basic characteristics 
of the GA-based optimal design algorithm originally 
developed in [5]. Initially, the key elements of the GA 
approach are described, and then the dynamic optimization 
algorithm is presented. 

A. Methodology of GA 

The three main steps in the development of a GA are: i) 
the problem representation, i.e. the encoding mechanism of 
the problem’s phenotypes into genotypes that GA 
manipulate and evolve, ii) the formulation of an appropriate 
fitness function that gives a quantitative quality measure of 
each possible solution, and iii) the choice of the genetic 
operators and the selection mechanism used. 

The parameters of each WSN design that needs to be 
encoded in the representation scheme of the GA are the 
placement of the active sensors of the network, the operation 
mode of each active sensor, that is, whether it is a 
clusterhead or a “regular sensor”, and in the case of a 
“regular sensor”, the range of its signal (high or low). All 
these parameters can be distinguished by four states and thus 
can be encoded in a binary representation scheme by two 
bits for each sensor position. If there are x sensors in the 
WSN, each string in the GA population has a length of 2x. 
As explained earlier, the sensors are on a grid deployment of 
size r x c, thus the length of the GA strings are 2 r·c.  

The fitness function incorporates all the parameters that 
influence the performance of the WSN design, which were 
described in the previous section. It is a weighted sum of all 
these parameters, with the values of the weighting 
coefficients αi: i=1,2,…,7 determining the relevant 
significance of each parameter: 

...(1 4321  SORESCESDEMRDf   

             )... 765 BCPCEOE               (2) 

The values of these coefficients were determined based on 

experience about the importance of each parameter. 
Two types of the classical crossover operator defined in 

[20] were tested, the one-point and the two-point crossover. 
The mutation type that was used was the classical one for 
binary representation, that is, the swapping of the bits of 
each string (0 becomes 1 and vice versa) with some specific 
low probability. Crossover is also applied with some specific 
probability. Both these probabilities are tuned after proper 
experimentation. The adopted selection mechanism was the 
roulette wheel selection scheme. The probability of selecting 
some individual to become a parent for the production of the 
next generation was proportional to its fitness value. In 
addition, in order to assure that the best individual of each 
generation was not destroyed by the crossover and mutation 
operators during the evolution process, “elitism” was 
included in the algorithm, meaning that the current best 
individual at each generation of the algorithm always 
survived to the next generation. 

B. GA-based Dynamic Optimal Design Algorithm 

The GA system is initially applied to sensors with full 
battery capacities. After obtaining an optimal WSN design, 
that design is applied to the sensors for an entire measuring 
cycle. Then, the battery capacities are updated and the GA is 
re-applied taking into account the updated battery values. A 
measuring cycle is defined as the time period during which a 
CH sensor loses 20% of its full battery capacity, while HSR 
and LSR sensors lose 2% and 1% respectively. It is assumed 
that inactive sensors do not consume any battery. The 
battery update and the re-application of the GA in each 
measuring cycle are performed during data collection of that 
measuring cycle. This is because battery capacities at the 
end of the cycle can be evaluated based on the developed 
model, without having to wait until the actual end of the 
measuring cycle. Thus, at the end of each measuring cycle, 
the next optimal WSN design has already been formed and it 
is then used for the next data measuring cycle. 

IV. MEMETIC ALGORITHM APPROACH 

The MA approach is incorporated into the dynamic 
optimal design algorithm. This means that the initial optimal 
WSN design (assuming full battery capacities for all 
sensors) is obtained by the original GA-based algorithm, as 
described in the previous section. Beginning from the 
second measuring cycle in the dynamic application of the 
design algorithm, the MA-based system performs the 
optimal design of the WSN. 

Three battery level threshold values are introduced, one 
for each operating mode of the sensors (CHs, HSR and LSR 
modes). The idea is, at each measuring cycle to allow a 
sensor i to operate at some specific mode if and only if its 
battery level at the time is above the threshold value for that 
operating mode. Threshold values are adapted at each 
measuring cycle. More specifically, they are decreased 
according to some specific reduction schedule, as it is shown 



 
 

 

in the next section. 
The “threshold approach” is incorporated into the original 

GA system in the following way: 
When each individual of the population is formed, the 

operating mode of each sensor is checked according to the 
corresponding (according to its selected operating mode) 
threshold. If its battery level is below that threshold, its 
operating mode is changed to the lower mode (CH  HSR 
 LSR  inactive) until its corresponding threshold value 
becomes lower than (or equal to) its battery level. In this 
way, a local search procedure is introduced in the population 
of the GA, leading to the development of a Memetic 
Algorithm. 

Fig. 1 shows the general block diagram of the MA-based 
dynamic design algorithm, while Fig. 2 presents the detailed 
operations of the MA approach, in pseudocode form.  

V. RESULTS 

The MA approach to the dynamic optimization of WSN 
designs was compared to the original GA-based system, 
during 15 consecutive measuring cycles of the WSN. The 
fine-tuned parameters of that GA system (i.e., probabilities 
of crossover and mutation and population size) are kept the 
same in the MA. The additional parameters that are expected 
to influence the performance of the MA system are the 
initial values of the three battery-level thresholds and their 
reduction schemes. For this initial comparison presented 
here, some arbitrary initial values were applied and the 
following reduction scheme was used for all three 
thresholds: 

][]1[ )1( tt TRRT   (3) 

Where T is a specific threshold of the indicated measuring 
cycle and RR is the reduction rate which is equal to 0.2 for 
the case of the CH threshold and 0.1 for the other two cases 
(HSR and LSR thresholds). Further investigation of these 
parameters is going to be the next step in the continuation of 
this work. 

A. Network Characteristics 

The first comparison concerns the network characteristics 
that have to do with the application-specific requirements. It 
is very important that the values of these characteristics are 
kept within certain acceptable limits. Fig. 3 shows the 
progress of the values of uniformity level (MRD), operation 
energy consumption and communication energy 
consumption, for both the GA-system and the MA-system, 
during the examined 15 measuring cycles. In both cases, the 
adaptive WSN designs kept the MRD values quite low 
during all measuring cycles. In general, the MRD values of 
the WSNs designed by the MA-system are a little higher 
(lower uniformity), but they are constantly kept below 0.16, 
which is a very reasonable value. The general trend of 
increase in the values of MRD is reasonable as more and 
more energy limitations are introduced into the network as 
time passes. In the case of operational energy consumption 

of the WSNs, the GA-system results in designs with lower 
consumptions, while the MA-system seems to give lower 
consumptions in the case of communication energy 
consumption. It should be noted that spatial density of 
sensing points was not presented in these graphs because the 
required value was constantly met throughout the entire 
testing period. In addition, no communication faults 
occurred throughout the adaptive design processes of both 
the GA and MA systems. In general, one could say that 
application-specific characteristics of the WSNs designed by 
both approaches are similar. 

Apply original GA [5] to 
obtain initial optimal WSN

Initiate new measuring cycle 
using current optimal WSN

Evaluate battery levels at 
the end of current cycle

Is WSN still 
"alive"?

Update battery capacities

Apply MA to sensors with 
updated battery levels to obtain 

new optimal WSN

Is current measuring 
cycle completed?

Wait for a specific time delay

ENDNO

YES

NO

YES

Load initial values of 
battery level Thresholds

Update Threshold values according 
to some reduction scheme

 
 
Fig. 1.  Flow chart of the MA-based dynamic optimal WSN design 
algorithm. 



 
 

 

B. Energy Saving 

Another important feature of the dynamic application of 
the optimal design algorithms is the energy saving 
characteristics of the designs, which lead to the extension of 
the life span of the networks. Figure 4 shows the percentage 
of sensors (over the entire grid of 900 sensors) with battery 

capacities below certain percentage-levels after each 
measuring cycle, based on the assumption that all sensors 
had 100% battery capacity at the beginning of the first 
measuring cycle, for the designs produced by both GA and 
MA systems. It is clear that the MA-system performs better 
than the GA-system in energy conservation of sensor power 
resources, as at specific measuring cycles, fewer sensors 
have battery capacities below certain values in the case of 
MA-designed WSNs. Something similar can be seen in Fig. 
5, where percentages of sensors with battery capacities 
above certain levels are shown. Again, in most cases, the 
MA-designed networks have more sensors with battery 
capacities above certain levels, even though in very high 
capacities, the performances of both systems are quite 
similar. 

An indication of the sophistication of a design algorithm 
towards energy saving and intelligent scheduling of the 
operation modes of sensors during dynamic network design, 
can be seen in the degree of re-usage of each sensor at some 
specific operating mode. Figures 6 and 7 show the number 
of sensors that were used at each measuring cycle in CH and 
HSR operating modes respectively, for some specific 
number of times (or not used at all). In the case of CH 
usage, it is clear that in the case of the MA-designed 
networks, more sensors were used once as CHs while less 
were used twice or three times, making the MA-based 
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*** PART “LOCAL SEARCH” STARTS HERE *** 

for om=1 to 3   // i.e., for each oper. mode: CH, HSR and LSR 

   for each sensor i of operating mode om 

  if Batteryi < 
][ m

omT , then 

     “reduce” oper. mode of sensor i to om+1  // om=4 means “inactive” 

  end if 

   end for i 

end for om 

*** PART “LOCAL SEARCH” ENDS HERE *** 

Update current population according to “LOCAL SEARCH” modifications 

for t=1 to G 

   Evaluate parameters for each individual in current population 

   Assign fitness value to each individual 

    Perform Crossover and Mutation with specific probabilities 

   Re-apply part “LOCAL SEARCH”    

   Replace old population with modified offspring to form current population 

end for t 

return best individual in current population (Optimal_WSN_design) 

 
 
Fig. 2.  Pseudocode of the MA used in the dynamic optimal design algorithm (bold box in Fig. 1) 
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algorithm more sophisticated than the GA-based one (Fig. 6). Similar but not so strong results are shown in the HSR 
usage (Fig. 7). This behavior also explains the better energy 
conservation achieved by the MA-based design algorithm 
that was shown before. 

Finally, Fig. 8 shows the average battery levels of sensors 
operating at specific modes during each measuring cycle. 
Again, the superiority of the MA approach is obvious in all 
cases, where average battery levels are higher than those of 
the GA-based system’s designs, especially as time goes by 
in the testing period of the 15 measuring cycles.  

VI. CONCLUSIONS 

A Memetic Algorithm for the dynamic optimal design of 
WSNs is proposed. A fixed wireless network of sensors of 
different operating modes was considered on a grid 
deployment and the MA system decided which sensors 
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Fig. 4  Percentages of sensors with battery capacities below 50%, 40%, 30% and 20% of full battery capacity at the end of each measuring cycle, for 
both design optimization systems. 
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should be active, which ones should operate as clusterheads 
and whether each of the remaining active nodes should have 
high or low signal range. During optimization, parameters of 
network connectivity, energy conservation as well as 
application requirements were taken into account. The 
performance of the WSNs designed by the MA-system was 
compared to that of networks designed by a genetic 
algorithm system that has previously been developed. The 
MA-system showed considerable improvement in energy 
conservation of the network resources over the already 
successful performance of the GA-system, while the 
application-specific characteristics of the sensor networks 
were kept close to optimal values. 

Future work will deal with the experimentation and fine 
tuning of the parameters that could improve even more the 
performance of the MA, that is, the initial values of the 
battery-level thresholds for each operating mode of the 
sensors, as well as the nature of the reduction schemes of 
those thresholds. 
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Fig. 8  Average battery levels of sensors operating at specific modes during each measuring cycle, for both GA and MA systems. 



 
 

 

[17] S. A. Aldosari, and J. M. F. Moura, “Fusion in sensor networks with 
communication constraints,” presented at the Information Processing 
in Sensor Networks (IPSN’04), Berkeley, CA, April 26-27, 2004. 

[18] D.B. Jourdan, and O.L. de Weck, “Layout optimization for a wireless 
sensor network using a multi-objective genetic algorithm,” in: IEEE 
Semiannual Vehicular Technology Conference, Milan, Italy, May 
2004. 

[19] P. Moscato, “On evolution, search, optimization, genetic algorithms 
and martial arts: towards memetic algorithms,” Caltech Concurrent 
Computation Program (C3P), Report 826, California Institute of 
Technology, 1989. 

[20] D. E. Goldberg, Genetic algorithms in search, optimization and 
machine learning. Reading, MA: Addison-Wesley, 1989. 


