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ABSTRACT 
 

This paper presents an analysis on the capabilities of an algorithm for design 
adaptation of wireless sensor networks towards energy conservation. The 
application concerns environmental monitoring in a cultivation field that realizes 
the concepts of precision agriculture. The sensor system is enhanced with solar 
rechargeable batteries and the algorithm’s performance on that enhanced 
approach is compared to the simple design optimization that includes normal 
batteries for the sensors. The comparison shows significant energy conservation 
capabilities and extension of the life span of the network. However, this 
improvement greatly depends on the duration of the measuring cycles of the 
network, a parameter that needs further investigation and tuning. 
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INTRODUCTION 
 

Wireless sensors play a developing role in the realization of Precision 
Agriculture (PA). While their applications in agriculture and in the food industry 
are still rare (Wang et al., 2006), their uses across other areas promise successful 
applications in such high-technology fields as PA. 

 Particularly in open-field agricultural applications, where distances can be 
quite large, networks of such sensors can be structured to monitor the cultivation 
area. These wireless sensor networks (WSNs) usually consist of several low-cost 
multifunctional sensor nodes that are small in size and communicate across 
relatively short distances (Akyildiz et al., 2002). Even though they have low 
power consumption, they usually operate on limited power sources, making 
energy conservation a very significant factor in their design and operation. 

Except for the obvious need for an optimal power management scheme that 
would maximize the life span of a WSN, another equally important matter that 
would make WSNs a useful tool for PA applications is the satisfaction of some 
prerequisite parameters set by the application itself. In other words, the WSN 
characteristics have to meet some criteria that would make its data collection 



useful to the user (grower). These criteria depend of course on the cultivation 
type, the measuring parameter and its properties, the characteristics of the 
cultivation site, etc. All these criteria can form some application-specific 
parameters that the designer of the network should take into account, along with 
the optimization of the energy conservation of the network. 

This work describes such an approach to WSN design, which takes into 
account both energy-related parameters and application-specific parameters in the 
development of an algorithm for optimal design of WSNs for PA applications. It 
extends our initial effort (Ferentinos and Tsiligiridis, 2005) by using solar 
rechargeable batteries as an alternative power source for the wireless sensors. 
Optimal energy management remains an issue in this new approach, with solar 
energy making the entire dynamic optimal design of the network even more 
complicated. 
 

BACKGROUND AND RELATED WORK 
 

The WSN architecture used in this work consists of a square grid deployment 
with a 30 by 30 “length units” size, meaning that a total of 900 sensors are 
available in the junctions of the notional grid. Sensors are identical and may be 
either active or inactive. They are capable of transmitting in one of three 
supported signal ranges. In the case that a sensor is active, it may operate as a 
clusterhead transmitting in an appropriate signal range (CH sensor) that allows the 
communication with the remote base station (sink), or it may operate as a regular 
sensor transmitting in either high or low signal range (HSR/LSR sensor 
respectively). It is assumed that HSR-sensors cover a circular area with radius 
equal to 10 length units, while LSR-sensors cover a circular area with radius equal 
to 5 length units. Regular sensors are divided into clusters and in each cluster a 
sensor is chosen to act as a clusterhead. Regular sensors communicate directly 
with the closest clusterhead, whereas clusterheads communicate with a remote 
base station. Single hop transmission is used in both cases. It is assumed that 
communication between clusterheads and the base station can always be achieved 
when required and that the base station can communicate with every sensor in the 
field, meaning that every sensor is capable of becoming a clusterhead at some 
point. 

As discussed in the previous section, energy conservation has always been the 
major concern in the development of WSNs. Energy consumption of such 
networks concerns mainly two processes: i) operation of the sensors for data 
collection and possible data processing and aggregation, and ii) wireless 
communication between sensors. The first process, i.e. the operational energy 
consumption, refers to the energy that a sensor consumes during some specific 
time of operation and it basically depends on the operating mode of the sensor, 
i.e. whether it is active or inactive and in the former case, whether it operates as a 
clusterhead node, a HSR sensor or a LSR sensor. It was assumed that the energy 
consumption of a sensor operating in clusterhead mode is 10 times more than that 
of a regular sensor operating in HSR mode and 20 times more than that of a 
regular mode operating in LSR mode. Thus, the operational energy (Eop) 
consumption of the WSN at some specific configuration can be calculated by the 
equation: 
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where, NCH, NHSR, NLSR and Nact are the number of clusterheads, high signal range, 
low signal range and total active sensors in the network, respectively. The second 
process, i.e. the communication energy (Ecomm) consumption, refers to the energy 
that is consumed due to communication between regular sensors and clusterheads. 
It mainly depends on the distances between the sensors and their clusterhead, in 
each cluster, as defined in Ghiasi et al., 2002, and is calculated by the equation: 
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where, c is the number of clusters in the network, Ni is the number of sensors in 
the i-th cluster, dji is the Euclidean distance from sensor j to its clusterhead (of 
cluster i) and μ and k are constants, characteristic of the topology and application 
site of the WSN. For the specific PA application for open field monitoring 
considered here, the values of μ=1 and k=3 were chosen. 

Energy efficiency of WSNs has been the major concern of several analyses on 
the design and management of WSNs (e.g., Slijepcevic and Potkonjak, 2001; 
Krishnamachari and Ordonez, 2003). As a result, several optimal design 
algorithms for power conservation have been proposed (Rodoplu and Meng, 
1999; Chang and Tassiulas, 2000; Chiasi et al., 2002; Zhou and Krishnamachari, 
2003). However, all these approaches do not take into account the principles, 
characteristics and requirements of application-specific WSNs, nor do they 
consider alternative power sources. When all these factors are taken into 
consideration, the problem of optimal design and energy management of WSNs 
becomes much more complex. 

Solar energy is a type of environmental energy that can be greatly exploited in 
open-field cultivation applications of PA. By using solar cells, solar radiation can 
be used to produce electrical current, the amount of which is proportionate to the 
area of cells or the light intensity. However, solar cell efficiency is rather low, 
typically around 18% (Roundy et al., 2004). Solar energy has been recently 
incorporated into WSN applications, like the quite successful systems “ZebraNet” 
(Zhang et al., 2004), “Prometheus” (Jiang et al., 2005) and “Trio” (Dutta et al., 
2006). These applications constitute Multiple Power Source (MPS) systems as 
their sensors can be powered by either batteries or solar cells. An important 
problem in such MPS systems is power fragmentation (Chou and Park, 2005), i.e., 
the requirement of a mechanism that should schedule dynamically the current 
source of power according to available battery capacities and alternative power 
supplies. This issue is avoided in our system by using solar energy to charge the 
batteries of the sensors instead of using it directly for operational purposes. 

WSNs have been used in PA mainly in four areas (Wang et al., 2005): i) 
spatial data collection (Gomide et al., 2001; Lee et al., 2002; Mahan and Wanjura, 
2004), precision irrigation (Damas et al., 2001; Evans and Bergman, 2003), 
variable-rate technology (Cugati et al., 2003) and supplying data to farmers 



(Jensen et al., 2000; Flores, 2003). The WSN approach that is used here can be 
used as a theoretical tool to optimize network designs for all these areas of PA. As 
long as the adequate application-specific requirements are incorporated in the 
optimization algorithm, as explained in the following section, the algorithm takes 
them into account together with the other optimization parameters, like 
connectivity and energy conservation. 

 
OPTIMAL DESIGN ALGORITHM 

 
The overall problem that the proposed algorithm tries to solve is multi-

objective. In general, the algorithm dynamically designs WSN topologies by 
optimizing energy-related parameters that affect the battery consumption of the 
sensors and thus, the life span of the network. At the same time, it tries to meet 
some embedded connectivity constraints and optimize some physical parameters 
of the WSN implemented by the nature of the specific PA application. The 
multiple objectives of the optimization problem are blended into a single 
objective function, the parameters of which are combined to formulate a fitness 
function that gives a quality measure to each WSN topology and it is optimized 
by the proposed algorithm. 

Three sets of parameters which dominate the design and the performance of a 
WSN for PA are identified. The first set is the application-specific parameters 
which include two parameters regarding the deployment of sensors for the 
specific case considered here. These are the highest possible uniformity of sensing 
points and some desired spatial density of measuring points. The second set is the 
connectivity parameters which include an upper bound on the number of sensors 
that each clusterhead sensor can communicate with, and the fact that all sensors 
must have at least one clusterhead within their signal range. Finally, the third set 
refers to the energy-related parameters which include the operational energy 
consumption depending on the types of active sensors, the communication energy 
consumption depending on the distances between sensors that communicate with 
their corresponding clusterhead, and finally the battery energy consumption. 

Genetic Algorithms (GAs) (Holland, 1975) were used for the optimization of 
the multiple objectives of the problem. GAs belong to the evolutionary 
computation group of heuristic optimization techniques. They try to imitate 
natural evolution by assigning a fitness value to each candidate solution of the 
problem and applying the principle of survival of the fittest. The methodology and 
formulation of GAs for some specific application incorporates three basic steps: 
(i) the problem representation, i.e. the encoding mechanism of the problem’s 
phenotypes into genotypes that GAs manipulate and evolve, (ii) the formulation 
of the fitness function that gives to each individual (i.e. possible network design) 
a measure of performance, and (iii) the choice of the genetic operators and the 
selection mechanism used. These steps are of major importance, as they 
drastically affect the performance. 

For the representation of WSN designs, binary encoding was used. Thus, each 
specific design was represented by a bit-string of zeros and ones using the 
following scheme: For a sensor placed at each of the r·c grid positions, there are 
four possibilities represented by a two-bit encoding scheme: being an inactive 
sensor (00), being a regular active sensor, operating in a low signal range (10), 



being a regular active sensor operating in a high signal range (01) and being an 
active clusterhead sensor (11). The grid junctions were encoded row by row in the 
bit string. Each position needs two bits for the encoding, thus, the length of an 
individual (GA string) was 2rc. In the specific design problem analyzed here, the 
sizes of r and c were both equal to 30, thus the length of the individuals were 
equal to 1800.  

The fitness function is a weighted function that measures the quality or 
performance of a specific sensor network design. This function is maximized by 
the GA system in the process of evolutionary optimization. A fitness function 
must incorporate all or at least the most important factors that affect the 
performance of the system. In the design of a WSN, these factors concern 
network connectivity issues, energy consumption issues and network 
characteristics issues, according to the specific PA application requirements. The 
connectivity issues include a parameter to ensure that no more than a maximum 
number of sensors are connected to each clusterhead (Sensors per Clusterhead 
Error parameter – SCE) and a parameter to ensure that each sensor is in range to 
its clusterhead (Sensors Out of Range Error parameter – SORE). The energy 
consumption issues include the operational and communication energy 
consumptions expressed by equations (1) and (2) and a third parameter related to 
the available battery capacities of sensors (Battery Capacity Penalty – BCP). 
Finally, the network characteristics issues include two application-specific 
parameters that have to be met by the designed network: a desired uniformity of 
measuring points, expressed by the Mean Relative Deviation parameter (MRD) 
where the smaller the value of MRD, the better the uniformity, and a desired 
spatial density of measuring points, expressed by a Spatial Density Error 
parameter (SDE). All these parameters are defined in such a way that they need to 
be minimized, and since GAs operate by maximizing a fitness function, the form 
of the fitness function or our design problem is given by the following equation: 
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where, f is the fitness value of a specific WSN design and α1-α7 are weighting 
coefficients that determine the relative importance of each parameter in the 
equation. 

 The GA system maximized eq. (3) through the genetic operators of crossover, 
mutation and selection. Initially, full battery capacities were assumed for all 
sensors. After the initial optimal design was applied to the WSN, the batteries 
were updated according to the scheme described in the following section, and the 
algorithm was re-applied. Each such cycle or re-application of the design 
algorithm consisted a measuring cycle of the network. By re-applying the 
algorithm at the end of each measuring cycle, a dynamic system for design 
adaptation of the WSN was realized. 
 

SOLAR RECHARGING SCHEME 
 

The initial implementation of WSNs described in Ferentinos and Tsiligiridis 
(2005) was enhanced with the inclusion of solar rechargeable batteries. The main 



difference of the new approach compared to the original battery scheme, as far as 
the modeling scheme is concerned, is that the battery update parameter has an 
additional positive term. This term compensates for the recharging of the batteries 
from solar radiation. 

The original battery update scheme was depicted by the following equation: 
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where, BCi

[t] and BCi
[t-1] are the battery capacities of sensor i at the beginning of 

measuring cycles t and t-1 respectively, and BRRi
[t-1] is the battery reduction rate 

factor for sensor i that depends on its operating mode during measuring cycle t-1; 
for the four possible operating modes of clusterhead, HSR, LSR and inactive, that 
factor takes the values 0.2, 0.02, 0.01 and 0 respectively. 

The battery update scheme concerns the last parameter of the fitness function 
that the GA system uses for the design optimization of the WSN (eq. (3)), namely 
the BCP parameter. This parameter is given by: 
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where: 

- BCP[t] is the battery capacity penalty of the WSN at measuring cycle t. It 
is used to penalize the use of sensors with low battery capacities, giving at 
the same time larger penalty values to operating modes that consume more 
energy (especially clusterhead mode) 

- Ngrid is the total number of available sensors 
- PFi

[t] is a penalty factor of sensor i that takes different values according to 
the operation mode of sensor i. The values used here are proportional to 
the relevant battery consumptions of the sensor modes, namely, 20:2:1 for 
active sensor mode (CH, HSR and LSR respectively) and 0 for inactive. It 
provides different penalty weights according to the specific modes that 
these sensors are planned to have in the WSN of the next measuring cycle. 

Thus, this parameter uses the battery update scheme so that battery capacities at 
each measuring cycle (BCi

[t]) are evaluated. 
The new scheme introduces a positive term in the battery update equation (4), 

namely the battery charging rate factor (BCR). This term incorporates the amount 
of battery capacity that is added to the sensors from the available solar radiation 
using some solar recharging mechanism. The hardware details of that mechanism 
are not examined in the work presented here, which focuses rather on the effect of 
that charging rate factor in the energy management and optimal design of the 
entire WSN. 

Thus, the new battery update scheme is given by the equation: 
 

]1[]1[]1[][ −−− +−= tt
i

t
i

t
i BCRBRRBCBC         (6) 

 



where BCR[t-1] is the amount of battery capacity added to each sensor from solar 
radiation available during measuring cycle t-1. The values of BRRi

[t-1] were the 
ones used in the original update scheme, that is, 0.2, 0.02, 0.01 and 0 for 
clusterhead, HSR, LSR or inactive operating mode of sensor i during measuring 
cycle t-1. 

The form of BCR depends basically on the duration of the measuring cycle of 
the network. More specifically, it depends on the measure of comparison between 
the measuring cycle and the charging period of the batteries. Since the charging 
period is actually a portion of the day (namely the daylight period), the form of 
the BCR factor depends on the size of the measuring cycle (MC) compared with 
daylight duration (DL). If l is the portion of the daily DL period that is covered in 
one MC (l can be greater than 1 if more than one DL periods are covered in a MC, 
i.e., if ), and m is the increase amount of battery capacity due to 
solar power supply in one daily DL, then BCR can be evaluated by: 

1≥⇒> ldayMC
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The value of m does not depend on the operating mode of each sensor, thus BCR 
is the same for all sensors during some specific measuring cycle. Moreover, m 
depends on the size of solar cells, because larger cells yield quicker charging. 
Here, identical cells are considered for all sensors.  

The estimation of BCR using the parameters l and m makes the comparison of 
MC with the duration of the day unnecessary. Thus, by just varying the value of l, 
several different scenarios of battery update schemes can be investigated. These 
scenarios are not defined in terms of the duration of MC because that duration has 
been already defined in terms of battery consumption and not in an absolute time 
measure (a MC is defined as the period during which the battery capacity of a 
clusterhead sensor is reduced by 20% of its full capacity and it is assumed that 
this period is constant throughout the experiment).  

However, a possible problem in the analysis of dynamic application of the 
proposed algorithm for WSN design could arise in the case where MC ≠ day, 
because then l is different for each MC. In order to avoid this complication, for 
the moment it is assumed that MC = day and thus l = 1. Therefore, the 
investigation of different dynamic schemes of the values of l with possible 
inclusion of real or simulated solar radiation data and different MC sizes is left for 
future work. 

For the value of BCR in the battery update scheme of eq. (6), two different 
cases were considered: 
 

Scenario 1: l=1, so from eq. (7), BCR = m. In this case, it does not matter 
how long the DL period is; it is derived by the value of m. 
Scenario 2: dayMC 3

1=  and dayDL 3
1=  with the two periods 

coinciding. Then, BCR is a periodic step function with the value of m for 
one MC and 0 for the following two measuring cycles, while its period is 
three measuring cycles (Fig. 1). 
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Fig. 1. Step function representation of the BCR factor for the second scenario 
of battery recharging scheme.  
 
 

It should be noted that obviously a sensor with full battery capacity cannot be 
further charged, even during the existence of solar radiation. The investigation of 
the performance of the proposed algorithm in dynamic application of the WSN 
design process, in these two different battery recharging scenarios, is presented in 
the following section. 

 
RESULTS ON DYNAMIC APPLICATION OF WSN DESIGN 

 
The proposed WSN design algorithm was tested dynamically using the two 

previously described versions of battery update scheme. The value of m, in 
addition to the size of the solar cells that it was assumed to be the same for all 
sensors as mentioned in the previous section, also depends on the available 
amount of solar radiation during each daylight period (DL). To compensate 
variations between different periods, an average radiation amount was considered 
throughout the dynamic application of the algorithm, thus a constant value of m 
was used. Specifically, it was assumed that in an entire daily daylight period, a 
sensor’s battery was charged by an amount of 2% of its original full battery 
capacity, that is m = 0.02. 

Therefore, in the first scenario, during each MC a sensor looses either 20%, 
2%, 1% or none of its full battery capacity according to its operating mode (CH, 
HSR, LSR or inactive, respectively) and gains 2% from solar radiation. In the 
second scenario, during each MC a sensor looses again either 20%, 2%, 1% or 
none of its full battery capacity, and gains 2% from solar radiation every third 
measuring cycle, while during the other two cycles it does not gain any battery 
capacity. 

The design algorithm for both battery recharge scenarios was applied for 15 
consecutive measuring cycles, starting from an initial optimal design that assumed 
full initial battery capacities for all available sensors. The results of both 
applications of the algorithm were compared to those of the original battery 
update scheme without solar recharging batteries (Ferentinos and Tsiligiridis, 
2005). 



Fig. 2 shows the comparison between the original battery update scheme 
(normal case) and scenario 1 described before (solar recharging). The two 
columns of graphs correspond to the investigation of sensors that have battery 
capacities below the level of 50% of their initial full capacity after each 
measuring cycle. The plots of the first row show the percentages of sensors 
(among all 900 available sensors) that remain after measuring cycle with battery 
capacities above the specific levels (50% and 30%), for both the original battery 
update scheme and the update scheme of scenario 1. The second row contains 
graphs showing the difference (in absolute number of sensors) between the two 
cases, that is, how many more sensors have battery capacities below those levels 
in the original case than in scenario 1, while the bottom graphs show the relative 
improvement of the update scheme of scenario 1, in terms of existing sensors in 
the original update scheme with battery level below either 50% or 30%. In other 
words, a value of 1 means that all sensors with battery < 50% in the original case, 
have battery > 50% in scenario 1, while a value of 0.5 means that half of there 
sensors have battery > 50% in scenario 1. Similarly, Fig. 3 compares the original 
battery update scheme with scenario 2 described before. 
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Fig. 2. Percentages of sensors with battery capacities below 50% and 30% 

of full battery capacity at the end of each measuring cycle, for original 
battery update scheme and solar recharging scenario 1, absolute differences 
of two cases (in numbers of sensors) and relative improvement over the 
original (normal) case. 
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Fig. 3. Percentages of sensors with battery capacities below 50% and 30% of 
full battery capacity at the end of each measuring cycle, for original battery 
update scheme and solar recharging scenario 2, absolute differences of two 
cases (in numbers of sensors) and relative improvement over the original 
(normal) case. 

 
From these graphs it can be seen that in general, energy conservation was 

improved with the inclusion of solar rechargeable batteries. The battery 
recharging scheme of scenario 1 achieved much better improvement over the 
original battery update scheme than that of scenario 2. That was of course 
something rather expected, as recharging was taking place at each measuring 
cycle. However, this scenario can be realistic only if power consumption of 
sensors is considered quite low, because of the way a measuring cycle is defined, 
by specific amounts of energy consumption of sensors at the available operating 
modes. In addition, the improvement rate is much more normal in the case of 
scenario 1 with the constant recharging, while in scenario 2 there are increments 
of improvement during the measuring cycles of battery recharging. 

In addition to energy conservation, the connectivity characteristics of the 
WSN designs together with their characteristics concerning the application-
specific requirements were of interest. Like in the case of the original battery 
update scheme without rechargeable batteries, in both scenarios of solar 
rechargeable batteries, connectivity constraints were always met during all 15  
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Fig. 4. Network characteristics (uniformity (MRD), operational energy and 
communication energy) over the testing period of 15 measuring cycles for the 
original battery update scheme (normal case) and the two battery recharging 
scenarios. 

 
 

consecutive measuring cycles. In addition, the spatial density requirement was 
also met and uniformity was kept at levels similar to those of the original battery 
update scheme (Fig. 4). Finally, from the graphs of Fig. 4 it can be deduced that 
the recharging schemes did not play a significant role in the evolution of the 
characteristics of the WSNs during the dynamic designing optimization process. 
   

CONCLUSIONS 
 

An algorithm for dynamic WSN design optimization was tested in three 
different battery update schemes: the case where normal batteries were assumed 
and two scenarios with the inclusion of solar rechargeable batteries. The 
comparisons on the energy conservation capabilities of the algorithm towards the 
extension of the life span of the network showed that the inclusion of 
rechargeable batteries was sufficiently accommodated by the algorithm and 
significant improvement was achieved. However, the duration of the measuring 
cycles of the system proved a parameter that greatly influences the performance 
of the algorithm and should be further investigated. Finally, it was shown that the 



algorithm performs adequately in the new recharging schemes as far as the 
network characteristics are concerned, while each specific battery recharging 
scheme does not seem to influence the evolution of these characteristics 
throughout the continuous process of the network design optimization.  
 

ACKNOWLEDGEMENTS 
 
This work was supported in part by the “PYTHAGORAS-II” research project 
which is co-funded by the European Social Fund and Greek national resources 
(EPEAEK II). 
 

REFERENCES 
 
Akyildiz, I.F., W. Su, Y. Sankarasubramaniam, and E. Cayirci. 2002. Wireless 

sensor networks : a survey. Comp. Networks. 38:393-422. 
 
Chang, J.-H., and L. Tassiulas. 2000. Energy conserving routing in wireless ad-

hoc networks. In Proceedings of IEEE INFOCOM 2000. Tel Aviv, Israel. 
 
Chou, P.H., and C. Park. 2005. Energy-efficient platform designs for real-world 

wireless sensing applications. p. 913-920. In Proceedings of IEEE/ACM 
international conference on computer-aided design. San Jose, CA. 

 
Cugati, S., W. Miller, and J. Schueller. 2003. Automation concepts for the 

variable rate fertilizer applicator for tree farming. In Proceedings of 4th 
European Conference in Precision Agriculture. Berlin, Germany. 

 
Damas, M., A.M. Prados, F. Gomes, and G. Olivares. 2001. HidroBus® system: 

fieldbus for integrated management of extensive areas of irrigated land. 
Microprocessors Microsyst. 25:177-184. 

 
Dutta, P., J. Hui, J. Jeong, S. Kim, C. Sharp, J. Taneja, G. Tolle, K. Whitehouse, 

and D. Culler. 2006. Trio: Enabling sustainable and scalable outdoor wireless 
sensor network deployments. In Proceedings of 5th international symposium on 
information processing in sensor networks (IPSN’06). Nashville, TN. 

 
Evans, R., and J. Bergman. 2003. Relationships between cropping sequences and 

irrigation frequency under self-propelled irrigation systems in the Northern 
Great Plains (Ngp). In USDA Annual Report. Project Number: 5436-13210-
003-02. 

 
Ferentinos, K.P., and T.A. Tsiligiridis. 2005. Evolutionary energy management 

and design of wireless sensor networks. In Proceedings of IEEE SECON 2005, 
San Jose, CA. 

 
Flores, A. 2003. Speeding up data delivery for precision agriculture. Agric. Res. 

Mag. (USDA) 51(6):17. 
 



Ghiasi, S., A. Srivastava, X. Yang, and M. Sarrafzadeh. 2002. Optimal energy 
aware clustering in sensor networks. Sensors. 2:258-269. 

 
Gomide, R.L., R.Y. Inamasu, D.M. Queiroz, E.C. Mantovani, and W.F. Santos. 

2001. An automatic data acquisition and control mobile laboratory network for 
crop production systems data management and spatial variability studies in the 
Brazilian center-west region. ASAE Paper No.: 01-1046. St. Joseph, MI. 

 
Holland, J.H. 1975. Adaptation in natural and artificial systems. University of 

Michigan Press. Ann Arbor, MI. 
 
Jensen, A.L., P.S. Boll, I. Thysen, and B.K. Pathak. 2000. Pl@nteInfo: a web-

based system for personalized decision support in crop management. Comput. 
Elect. Agric. 25:271-293. 

 
Jiang, X., J. Polastre, and D. Culler. 2005. Perpetual environmentally powered 

sensor networks. p. 463-468. In Proceedings of 4th international symposium on 
information processing in sensor networks (IPSN’05). Los Angeles, CA.  

 
Krishnamachari, B., and F. Ordónez. 2003. Analysis of energy-efficient, fair 

routing in wireless sensor networks through non-linear optimization. In 
Proceedings of IEEE Vehicular Technology Conference, vol. 5. Orlando, FL. 

 
Lee, W.S., T.F., Burks, and J.K. Schueller. 2002. Silage yield monitoring system. 

ASAE Paper No.: 02-1165. St. Joseph, MI. 
 
Mahan, J., and D. Wanjura. 2004. Upchurch, design and construction of a 

wireless infrared thermometry system. In USDA Annual Report. Project 
Number: 6208-21000-012-03. 

 
Rodoplu, V., and T.H. Meng. 1999. Minimum energy mobile wireless networks. 

IEEE J. Selected Areas Comm. 17(8):1333-1344. 
 
Roundy, S., D. Steingart, L. Frechette, P.K. Wright, and J.M. Rabaey. 2004. 

Power sources for wireless sensor networks. In Proceedings of EWSN 2004, 
Berlin, Germany. 

 
Slijepcevic, S., and M. Potkonjak. 2001. Power efficient organization of wireless 

sensor networks. p. 472-476. In Proceedings of IEEE International Conference 
on Communications, vol. 2. Helsinki, Finland. 

 
Wang N., N. Zhang, and M. Wang. 2006. Wireless sensors in agriculture and food 

industry – Recent development and future perspective. Comput. Electron. Agric. 
50:1-14. 

 
Zhang, P., C.M. Sadler, S.A. Lyon, and M. Martonosi. 2004. Hardware design 

experiences in ZebraNet. p. 227-238. In Proceedings of SenSys’04. Baltimore, 
MD. 


