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Abstract The design, development and implementation

of an innovative system utilized in feature extraction from

time series data models is described in this manuscript.

Achieving to design piecewise segmentation patterns on

the time series in an evolutionary fashion and use them in

order to produce fitter secondary data sets, the developed

system adapts itself to the nature of the problem each time

and finally elects an optimally parameterized classifier

(artificial neural network or support vector machine), along

with the fittest time series segmentation pattern. The

application of the system onto two different problems

involving time series data analysis and requiring predictive

and classification capabilities (torrential risk assessment

and plant virus identification, respectively), reveals that the

proposed methodology was crucial in finding the optimum

solution for both problems. Piecewise evolutionary seg-

mentation time series model analysis, utilized by the

accompanying software tool, succeeded in controlling the

dimensionality and noise inherent in the initial raw time

series information. The process eventually proposes a

segmentation pattern for each problem, enhancing the

potential of the corresponding classifier.

Keywords Evolutionary computing � Machine learning �
Artificial neural networks � Support vector machines �
Plant virus identification � Torrential risk management

1 Introduction

The problem we focus on in this paper is to propose a

competent method by which a time series sequence of real

numbers may be effectively represented in lower dimen-

sionality space. Stemming from a piecewise segmentation

of the time series, the method we have designed keeps

crucial information intact, while transforming the rest such

that the identifying mechanism exhibits good results, after

testing a number of candidate representations and choosing

the fittest. An evolutionary procedure under which the

segmentation scheme has been wrapped up fills the data

pool with possibly fit representations of the time series and

the fittest is finally elected. Historical and temporal time

series databases may well benefit from such a facility,

whether the time series analysis corresponds to classifica-

tion or regression problems. Specifically,

• environmental time series databases, including topo-

graphical, weather and anaglyph data for the prediction

of certain phenomena [1] or

• biological time series databases, including sensor data

in need of classification matching, especially in the

cases where the time series is really excessively wide

[2]

will benefit from the representation of the initial informa-

tion in lower dimensionality and from the generation of a

series of more potent evolutionary data, specifically fit for

the chosen classification or regression tool each time.

Effective feature extraction of time series in such databases
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is essential for various undertaken tasks implying data

mining in identification and forecasting problems.

1.1 Computational intelligence in time series analysis

During the recent years, a major boost in evolutionary

computing and computational intelligence is occurring,

including various and diverse tools. Various proposals in

the literature state that genetic algorithm (GA), artificial

neural network (ANN) and support vector machine (SVM)

models have once again attracted the attention of analysts,

experts and consultants, mainly due to the fact that the

hardware and know-how we now have at our disposal is

capable of simulating such procedures.

The ANN concept was developed in an attempt to

simulate the function of the human brain which, as a

complicated biological machine, works in parallel and is

able to solve innumerable kinds of problems. Basically,

an ANN is a software device consisting of simple pro-

cessing units, the neurons, embedded in layers, intercon-

nected and working in parallel. Each neuron is only aware

of the signals it receives from and sends to other con-

nected neurons. The training of the network and the flow

of information from layer to layer enables it to learn by

example through iterations. Thus, learning is the process

of adapting the neurons’ connection weights in response

to stimuli presented as inputs requiring the presence of a

known output. This process aims to adjust the strengths of

the connections between the processing elements in a

search for the best synaptic weight vector. Effective

training enhances the system’s generalization, enabling it

to be applied successfully to problems incorporating large

numbers of variables. The SVM, on the other hand, stems

from the maximum margin classifiers theory which has

become the base for various highly regarded state-of-

the-art classification training algorithms. The margin is

the distance from a hyper-plane separating the classes

to the nearest point in the data set. The maximum margin

requirement has the advantage that it produces unique

solutions for linearly separable problems, while offering

robustness against noise in data. SVMs utilize kernel

functions based on the structured risk minimization

(SRM) principle and their effectiveness emanates from

the minimization of the upper bound of the generalization

error. Details for the aforementioned models already

known to the AI research community may be found in [3]

and [4].

Several instances of such tools are included into a vast

list of novel research methodologies [5–8] starting to play

a major role in time series representation. ANNs are

reported as cost effective methods for achieving good

results with time series while utilizing meta–heuristic

methods [9–14]. In other cases, novel hybrid models are

engaged, which include combinations of auto regressive

integrated moving average (ARIMA) models and ANNs

[15], rough set back propagation [16], recursive structured

set of multi-layered perceptrons (MLPs) or auto-deter-

ministic networks [17]. Alternatively, the research has

resorted to SVMs which have been reported as offering a

good alternative to neural networks, improving the gen-

eralization performance while achieving better overall

results, especially when combined with genetically driven

pre-processing [18, 19]. Some researchers utilized the

modified SVM models such as least squares SVM normal

[20] and recurrent [21], minimum class variance SVMs

[22] or radial-based function (RBF) neural networks [23,

24], though the mainstream focuses on normal SVMs as

the most prominent constructors, both as regards to

regression and classification problems. Also, GAs and

variations of evolutionary programming have been used

effectively [25–28] in order to utilize time series seg-

mentation and facilitate effective representation.

1.2 Time series segmentation

The significance of time series analysis has already been

stressed out as crucial in many disciplines as diverse as

energy, finance, econometrics, biology, clinical medicine,

meteorology, hydrology and hydraulics, forestry, plant and

animal production and agriculture. Environmental model-

ling has also in many cases engaged time series historical

information so as to facilitate decision-making. A time

series is generated by the mechanism of a phenomenon

producing sequences of vectors, measured at successive

constant time intervals, each of which corresponds to either

a given class or a value. The analysis encompasses pro-

cesses to unveil the underlying context of the mechanism

producing the initial data, either in the scope of identifying

the target class or predicting future states of the system,

always based on the knowledge of already measured and

quantified past events. This kind of procedure underlines

the fact that past orderly measurements give enough input

to reproduce the phenomenon in question, thus it aims at

modelling the mechanism responsible for the production of

the output [29, 30] over time.

A crucial step in the context of feature extraction for

such models is time series representation [31]. Various

such algorithms have been proposed, including, but not

limited to, sampling, averaging and exponential smoothing

[32–34], symbolic mappings [35, 36] and Fourier trans-

formations [37, 38], while various autoregressive condi-

tional heteroscedasticity (ARCH) models, normal or

generalized, have already appeared as an alternative to

traditional econometric analyses [39–41].

Perhaps one of the most ubiquitous representation

schemes in time series analysis is provided by piecewise

Neural Comput & Applic

123

Author's personal copy



linear representation (PLR) models, according to which a

time series of length n is approximated by K straight lines,

where K is typically much smaller than n. According to

Keogh et al. [42], the algorithms which input time series

data and return their piecewise linear representations are

categorized as time series segmentation algorithms. In

order for an algorithm to fall under this category, three

assumptions must be met while producing the best rep-

resentation: it must use an arbitrary number of segments,

while the maximum and average error of all segments is

less than an arbitrary threshold. During the last decade,

there has been a significant increase in the use of seg-

mentation algorithms for time series analysis. Further-

more, due to the method’s wide acceptance, a lot of

variations have arisen aiming primarily at the enhance-

ment of the resulting representation. Ding et al. [43] use

segment radian errors in order to enhance data compres-

sion and time series representation. A segment radian is

defined as the radian of the included angle created by the

segment and the time axis, while radian error is the value

of radian difference between two adjacent segments. The

modified algorithm identifies crucial time series data

points according to a pre-defined cumulative radian error

threshold. Guerrero et al. [44] approach the segmentation

process as a multi-objective optimization problem

(MOOP). Along with the final approximation error

obtained, they introduce the number of segments in the

final representation as another quality metric over the final

results. The objective functions that formalize the MOOP

are in conflict since the error value decreases as the

number of segments rises due to finer approximations.

The researchers use an evolutionary algorithm to solve the

corresponding MOOP. Tseng et al. [45] proposed a seg-

mentation approach which combined the clustering tech-

nique, discrete wavelet transformation and genetic

algorithms in a process to find the segmentation points for

deriving appropriate patterns. Wang and Wang [46] uti-

lized a structure-adaptive k piecewise segmentation pro-

cedure, according to which regression lines deriving from

the local minimum and maximum of the series represented

the segmentations.

1.3 Piecewise evolutionary segmentation

The recent increase in the use of evolutionary pro-

gramming and computational intelligence tools, along

with the need for better time series representation

schemes, has motivated us to combine their power with

PLR so as to design an innovative technique for time

series segmentation, used as data pre-processing proce-

dure. The piecewise evolutionary segmentation (PES)

method for time series representation that we propose in

the present work is characterized by the utilization of a

vibrant segmental methodology, adapting the width, the

number and the contents of the segments to the data

explored.

PES may be registered as a PLR variant. Just like the

latter, it is an algorithm which performs representation by

segmentation, aiming to extract the most crucial time series

data. Another similarity is that it utilizes an approximation

procedure for the segments designed. On the other hand, it

differs from PLR as regards to the approximation proce-

dure, which in the case of PES depends on a genetic

algorithm. While PLR utilizes a pre-defined number of

segments, PES adapts its segments to the data explored,

behaviour which is dictated by the production of a number

of generations consisting of segmentation schemes. Each

scheme is genetically produced and approximated, while

the algorithm evaluates each segmentation performance

embedding ANN and SVM classifiers. In this context, PES

differs from our previous research work [47], in that it has

matured into an integrated software tool which elects the

best fit evolutionary data set, as well as the most prominent

classifier, that is, ANN or SVM, for each given case. It also

swerves from other PLR variations [43, 44], in that it

produces and evaluates time series segmentation schemes

in an evolutionary fashion, that is, the representation is

based on an innovative evolutionary segmentation of the

time series.

Thus, an evolutionary segmentation model pre-pro-

cesses the initial time series information and produces fitter

secondary data sets used in the supervised training and

testing of ANN and SVM classifiers. The design of the

evolutionary segmentation patterns on the input plane is

materialized via a specially constructed GA. A population

of chromosomes is produced in each generation (which we

will call trainers from now on) that maps part of their

scheme onto the initial time series information. This

depiction is achieved according to a mechanism dictated by

certain genes inside the trainer. Thus, a multitude of pos-

sible secondary data sets are produced and subsequently

used in turn for the supervised training of a computational

intelligence classifier. Its performance, measured at the

testing phase, is quantified as a fitness score assigned to the

corresponding trainer. Successive generations continue

until the fittest trainer (i.e. the best segmentation scheme,

the one that is responsible for the best performance) and the

best classifier are elected.

The remaining part of the paper is organized as follows:

in Sect. 2, the PES model is presented, analyzed and

explained through some working examples. Section 3

describes the process workflow, along with the evolutionary
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internal functions of mating, selection, crossover and

mutation. The applications on which the proposed meth-

odology was applied and the yielding results are presented

in Sect. 4, while conclusions are provided in Sect. 5.

2 Piecewise evolutionary segmentation model

Assume that for a given problem:

• The input array X ¼ ½xmn�; xmn 2 R, m ¼
1; 2; . . .;M; n ¼ 1; 2; . . .;N is described by M records

of time series data, each of which comprises of N time

stamps, namely:

X ¼ Xm½ �m¼1ð1ÞM¼ xm1; xm2; . . .; xmN½ �m¼1ð1ÞM ð1Þ

• The corresponding output matrix Y ¼ ½ymp�, ymp 2
f0; 1g; m ¼ 1; 2; . . .;M; p ¼ 1; 2; . . .;P is described

by M records, each of which comprises of P patterns,

namely:

Y ¼ Ym½ �m¼1ð1ÞM¼ ½ym1; ym2; . . .; ymP�m¼1ð1ÞM ð2Þ

• The matrix of trainers X ¼ ½xqn�, xqn 2 f0; 1g; q ¼
1; 2; . . .Q; n ¼ 1; 2; . . .N þ 2 is described by Q records

(trainers), each of which comprises of N ? 2 elements,

namely:

X ¼ Xq

� �
q¼1ð1ÞQ

¼ xq1;xq2; . . .;xqN
..
.
xqNþ1;xqNþ2

� �

q¼1ð1ÞQ
ð3Þ

Definition 1 A trainer consists of randomly chosen

binary genes ordered into two blocks, the activation

block and the core block, having the form: Xq ¼

ðxq1;xq2; . . .;xqN
..
.
xqNþ1;xqNþ2Þ; q ¼ 1; 2; . . .;Q:

Table 1 presents the structure of a trainer through a working

example. As it will be seen, the core of the trainer stands as a

behavioural mechanism defining a set of rules so as to dictate

actions taken by the activation block, the rest of the trainer,

towards the raw data that it manipulates each time.

Definition 2 The N binary genes of the activation block

of a trainer Xq; q ¼ 1; 2; . . .Q define a segment Xk
q; k 2 N

as follows:

X1
q ¼ 1|{z}

1�element

; X2
q ¼ 1 0

|fflffl{zfflffl}
2�elements

; X3
q ¼ 1 0 0

|fflfflfflfflffl{zfflfflfflfflffl}
3�elements

; . . .. . .;

Xk
q ¼ 1 0 0 � � � 0

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k�elements

ð4Þ

namely, as a k-set of binary elements, the first of which is 1

and all the rest are 0.

It is important to note that since the first digit repre-

sents the initialization of the phenomenon, the first

gene of the activation block for each trainer should always

be 1.

In the same way, each of the M records Xm ¼
½xm1; xm2; . . .; xmN � of the matrix X ¼ ½xmn� m ¼ 1; 2; . . .;

M; n ¼ 1; 2; . . .;N is partitioned into equal number of time

series segments, with each one Xk
m; k 2 N defined by the

corresponding trainer segment Xk
q. For example, omitting

for simplicity the index m, the activation block of the

trainer shown in Table 1 consists of the following five

consecutive trainer segments: X3 X1 X3 X2 X1. There-

fore, the corresponding five consecutive segments for the

initial row data will be given by: X3 X1 X3 X2 X1 or

equivalently by: 44 32 17½ � 8½ � 8 12 1½ � 18 30½ � 48½ �.
To complete our notation, it is necessary to include the

number of segments, say r, of the above record, say m, as

well as the number of elements in each segment, say kj; j ¼
1ð1Þr: Thus, denoting the segments identified previously

with Xk1

m Xk2

m Xk3

m Xk4

m Xk5

m and Xk1
m Xk2

m Xk3
m Xk4

m Xk5
m ,

respectively, we may easily verify that the number of

segments defined in the record m is r = 5, with

kj; j ¼ 1ð1Þ5, and k1 ¼ 3; k2 ¼ 1; k3 ¼ 3; k4 ¼ 2; and

k5 ¼ 1.

A trainer comprised of two blocks, the activation block,

segmented as defined above, as well as the core block, is

presented as follows:

X¼ Xq

� �
q¼1ð1ÞQ¼ xq1;xq2; . . .;xqN

..

.
xqNþ1;xqNþ2

� �

q¼1ð1ÞQ

¼ Xk1

q Xk2

q ; . . .;X
kr
q

..

.
xqNþ1;xqNþ2

� �

q¼1ð1ÞQ

ð5Þ

with
Pr

j¼1 kj¼N and all kj; N; r; q2N. Thus, each trainer

Xq¼ðxq1;xq2; . . .;xqN
..
.
xqNþ1;xqNþ2Þ; is combined with the

Table 1 Example of the structure of a trainer (a) divided in the

activation and core blocks

Activation block Core block

1 0 0 1 1 0 0 1 0 1 1 0 (a)

X3 X1 X3 X2 X1 (b)

44 32 17 8 8 12 1 18 30 48 (c)

X3 X1 X3 X2 X1 (d)

The activation block is divided by the evolutionary algorithm into five

trainer segments (b), with which it manipulates a 10-element initial

raw time series record (c), designing a segmentation scheme con-

sisting of five consecutive time series segments (d)
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input matrix X, through the operator ‘�’ in order to produce the

matrix Nq¼ nq
mk

� �
8m¼ 1;2; . . .;M; k¼ 1;2; . . .kr; q¼ 1;2;

. . .;Q; withM;kr;Q2N, as follows:

Nq  X �Xq : nq
mk

� �
¼ ½xmk� �Xq

¼ ðxm1; xm2; . . .; xmNÞm¼1ð1ÞM � ðxq1;xq2; . . .;xqN
..
.
xqNþ1;xqNþ2Þ

¼ Xk1
m Xk2

m � � �Xkr
m

� �
m¼1ð1ÞM� Xk1

q Xk2

q � � �Xkr
q

..

.
xqNþ1;xqNþ2

� �

¼ Xk1
m �Xk1

q Xk2
m �Xk2

q � � �Xkr
m �Xkr

q
..
.
xqNþ1;xqNþ2

h i

m¼1ð1ÞM

with
Xr

j¼1

kj ¼ N and all kj; N; r; q 2 N: ð6Þ

Definition 3 The input matrix X ¼ ½xmn� is transformed

according to the combined values of the two elements of

its core block ðxqNþ1;xqNþ2Þ and its segments Xk
m; k 2 N,

into the evolutionary data matrix Nq ¼ nq
mk

� �
;m ¼ 1;

2; . . .;M; k ¼ 1; 2; . . .; kr; with
Pr

j¼1 kj ¼ N; and all kj; N;

r; q 2 N, as follows:

Nq  X �Xq : nq
mk

� �
¼

nq
11 nq

12 . . . nq
1kr

nq
21 nq

22 . . . nq
2kr

..

. ..
. ..

. ..
.

nq
M1 nq

M2 . . . nq
Mkr

2

6664

3

7775
ð7Þ

and this 8q ¼ 1; 2; . . .;Q with,

nq
mk ¼

Pkr

k¼1

xmkxmk if ðxqNþ1;xqNþ2Þ ¼ ð0; 0Þ

Pkr

k¼1

xmkxmk=kr if ðxqNþ1;xqNþ2Þ ¼ ð1; 1Þ

Median of Xkr
m if ðxqNþ1;xqNþ2Þ ¼ ð0; 1Þ

Max Xkr
m �Min Xkr

m if ðxqNþ1;xqNþ2Þ ¼ ð1; 0Þ

8
>>>>>>>><

>>>>>>>>:

ð8Þ

In other words, if the core genes are zero, then only the

first element of each segment is returned. If they are ones

then the average of each segment is returned. In the cases

where the core genes are (0,1), then the median of each

segment is returned and finally, if they are (1,0), then the

maximum value minus the minimum value of each

segment is returned, provided for both the last two cases

that the numbers in each segment have been ordered

appropriately.

Thus, we end up with a number of secondary data sets

equal to the number of trainers, comprising the matrix

N ¼ Nq½ �q¼1ð1ÞQ. Each data set consists of an equal number

of records as the initial time series, but reduced to size

(i.e. width), according to the segments designed by each

trainer:

N ¼ Nq½ �q¼1ð1ÞQ X �Xq

� �
q¼1ð1ÞQ

¼

n1
11 n1

12 . . . n1
1r1

n1
21 n1

22 . . . n1
2r1

..

. ..
. ..

. ..
.

n1
M1 n1

M2 . . . n1
Mr1

2

6664

3

7775

n2
11 n2

12 . . . n2
1r2

n2
21 n2

22 . . . n2
2r2

..

. ..
. ..

. ..
.

n2
M1 n2

m2 . . . n2
Mr2

2

6664

3

7775

. . .. . .. . .. . .. . .. . .
nQ

11 nQ
12 . . . nQ

1rM

nQ
21 nQ

22 . . . nQ
2rM

..

. ..
. ..

. ..
.

nQ
M1 nQ

M2 . . . nQ
MrM

2

6664

3

7775

2

666666666666666666664

3

777777777777777777775

ð9Þ

The finally produced evolutionary data sets result after

the output matrix Y has been appended to each Nq row wise.

Working example Let us consider a classification dual

class time series problem, where each of the two classes

(Class1 and Class2) corresponds to a 10-measurement set.

The task is to correctly classify an unknown 10-measure-

ment time series record. Supposedly, the initial raw data is

given by the following table:

3 8 7 8 2 1 4 5 9 6 Class1
2 9 4 3 5 2 6 3 8 7 Class1
7 6 3 9 2 1 5 4 6 8 Class2
5 4 5 6 3 4 2 1 7 8 Class1
6 3 2 4 7 5 8 9 1 4 Class1
4 7 6 5 1 8 3 2 9 5 Class2
9 5 8 1 4 6 7 8 4 2 Class2
8 2 9 7 6 3 1 5 3 1 Class2

2

66666664

3

77777775

By creating a binary output matrix for Class1 = 0 and

Class2 = 1, we may break the initial raw data set into the

input X and output Y matrices as follows:

X ¼

x1

x2

x3

x4

x5

x6

x7

x8

2

6666666666664

3

7777777777775

¼

3 8 7 8 2 1 4 5 9 6

2 9 4 3 5 2 6 3 8 7

7 6 3 9 2 1 5 4 6 8

5 4 5 6 3 4 2 1 7 8

6 3 2 4 7 5 8 9 1 4

4 7 6 5 1 8 3 2 9 5

9 5 8 1 4 6 7 8 4 2

8 2 9 7 6 3 1 5 3 1

2

6666666666664

3

7777777777775

and

Y ¼

y1

y2

y3

y4

y5

y6

y7

y8

2

6666666666664

3

7777777777775

¼

0

0

1

0

0

1

1

1

2

6666666666664

3

7777777777775
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Suppose that the matrix of trainers X consists of six

records (trainers), each of which comprises of 12

(=10 ? 2) elements, namely:

X ¼

X1

X2

X3

X4

X5

X6

2

66666664

3

77777775

¼

1 0 0 1 1 0 0 1 0 1..
.
0 0

1 1 0 1 0 0 0 1 0 0..
.
1 1

1 0 1 0 0 1 0 0 1 1..
.
1 0

1 1 0 0 0 1 0 0 1 1..
.
0 1

1 0 0 0 0 0 1 1 0 0..
.
1 1

1 0 1 1 0 0 1 0 0 0..
.
1 1

2

6666666666664

3

7777777777775

Thus, each trainer comprises of the following segments

X1 ¼ X3
1X

1
1X

3
1X

2
1X

1
1
..
.
00 X2 ¼ X1

2X
2
2X

4
2X

3
2
..
.
11

X3 ¼ X2
3X

3
3X

3
3X

1
3X

1
3
..
.
10 X4 ¼ X1

4X
4
4X

3
4X

1
4X

1
4
..
.
01

X5 ¼ X6
5X

1
5X

3
5
..
.
11 X6 ¼ X2

6X
1
6X

3
6X

4
6
..
.
10

Each one of these trainers will produce an evolutionary

data set by mapping its segmentation scheme on the initial

raw time series data. As an illustration, the application of

X1 on the initial raw data set yields:

N1 ¼ X �X1 ¼ X3
m X1

mX3
m X2

m X1
m

� �
m¼1ð1Þ8� X3

1 X1
1 X3

1 X2
1 X1

1

� �

¼ X3
m �X3

1 X1
m �X1

1 X3
m �X3

1 X2
m �X2

1 X1
m �X1

1

� �
m¼1ð1Þ8

Thus

N1 ¼

3 8 2 5 6

2 3 5 3 7

7 9 2 4 8

5 6 3 1 8

6 4 7 9 4

4 5 1 2 5

9 1 4 8 2

8 7 6 5 1

2

6666666666666664

3

7777777777777775

) EDS1 ¼

3 8 2 5 6 0

2 3 5 3 7 0

7 9 2 4 8 1

5 6 3 1 8 0

6 4 7 9 4 0

4 5 1 2 5 1

9 1 4 8 2 1

8 7 6 5 1 1

2

6666666666666664

3

7777777777777775

where the evolutionary data set EDS1 results after the

output matrix Y has been appended row wise. In the above,

the operator ‘�’ is defined as an element by element mul-

tiplication of the two arrays. This behaviour is dictated by

the core block of the trainer (0,0).

In a similar fashion, the core block of the trainer X2 is

(1,1) and so the evolutionary data set will comprise of the

average for each segment:

N2 ¼ X �X2 ¼ X1
m X2

m X4
m X3

m

� �
m¼1ð1Þ8� X1

2 X2
2 X4

2 X3
2

� �

¼ X1
m �X1

2 X2
m �X2

2 X4
m �X4

2 X3
m �X3

2

� �
m¼1ð1Þ8

Thus

N2 ¼

3 7 1
2

3 3
4

6 2
3

2 6 1
2

4 6

7 4 1
2

4 1
4

6

5 4 1
2

3 3
4

5 1
3

6 2 1
2

6 4 2
3

4 6 1
2

4 1
4

5 1
3

9 6 1
2

4 2
4

4 2
3

8 3 4 1
4

3

2

66666666666666664

3

77777777777777775

) EDS2 ¼

3 7 1
2

3 3
4

6 2
3

0

2 6 1
2

4 6 0

7 4 1
2

4 1
4

6 1

5 4 1
2

3 3
4

5 1
3

0

6 2 1
2

6 4 2
3

0

4 6 1
2

4 1
4

5 1
3

1

9 6 1
2

4 2
4

4 2
3

1

8 3 4 1
4

3 1

2

66666666666666664

3

77777777777777775

where, the second evolutionary data set EDS2 results again

after the output matrix Y has been appended row wise.

As it appears, there will be six evolutionary data sets in

total, since the trainer matrix consists of equal number of

trainers, which are all produced likewise. For the sake of

completeness of the working example, we provide the

EDS3 and EDS4 for which the behaviour is dictated by the

core block of the trainer (0,1) and (1,0), respectively.

Therefore,

N3 ¼X �X3 ¼ X2
m X3

mX3
m X1

m X1
m

� �
m¼1ð1Þ8� X2

3X
3
3X

3
3X

1
3X

1
3

� �

¼ X2
m �X2

3 X3
m �X3

3 X3
m �X3

3 X1
m �X1

3 X1
m �X1

3

� �
m¼1ð1Þ8

Thus

N3 ¼

5 1
2

7 4 9 6

5 1
2

4 3 8 7

6 1
2

3 4 6 8

4 1
2

5 2 7 8

4 1
2

4 8 1 4

5 1
2

5 3 9 5

7 4 7 4 2

5 7 5 3 1

2

66666666666666664

3

77777777777777775

) EDS3 ¼

5 1
2

7 4 9 6 0

5 1
2

4 3 8 7 0

6 1
2

3 4 6 8 1

4 1
2

5 2 7 8 0

4 1
2

4 8 1 4 0

5 1
2

5 3 9 5 1

7 4 7 4 2 1

5 7 5 3 1 1

2

66666666666666664

3

77777777777777775

Finally,

N4 ¼ X �X4 ¼ X1
m X4

mX3
m X1

m X1
m

� �
m¼1ð1Þ8� X1

4X
4
4X

3
4X

1
4X

1
4

� �

¼ X1
m �X1

4 X4
m �X4

4 X3
m �X3

4 X1
m �X1

4 X1
m �X1

4

� �
m¼1ð1Þ8

Thus

N4 ¼

0 6 4 0 0

0 6 4 0 0

0 7 4 0 0

0 3 3 0 0

0 5 4 0 0

0 6 6 0 0

0 7 2 0 0

0 7 4 0 0

2

6666666666666664

3

7777777777777775

) EDS4 ¼

0 6 4 0 0 0

0 6 4 0 0 0

0 7 4 0 0 1

0 3 3 0 0 0

0 5 4 0 0 0

0 6 6 0 0 1

0 7 2 0 0 1

0 7 4 0 0 1

2

6666666666666664

3

7777777777777775
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3 System mechanics

The developed tool essentially designs the best possible

segmentation scheme on the initial raw time series data, by

monitoring the performance of a certain number of gen-

erations of trainers, while also deciding on the best clas-

sifier (the ANN or the SVM) to use for the certain problem

each time (Fig. 1). Upon initialization, the system reads the

raw time series data set, creates the training and testing sets

and from then on, proceeds by generations. In our case, the

stopping condition of the algorithm is the number of gen-

erations (1,000). Inside each generation, the first step of the

system is to compile a pool of trainers to manipulate the

training and testing data sets. If this is the first generation,

the trainers are chosen at random, whereas if it is a sub-

sequent generation, the pool consists of trainers of the

previous generation, chosen according to the ‘roulette

wheel’ selection policy. Table 2 presents a pseudo code

sample of the evolutionary data production process. The

interested reader may ask for the full source code of the

method, which is freely available.

After the training and testing phase, each trainer is

assigned a fitness score which is derived by the trainer’s

performance assessed by the accuracy of the classifier

(ANN/SVM) object. This is essentially the proximity of the

potential of the trainer to an optimal solution set in the

initialization of the process. Let rij be the accuracy value of

the classifier trained and tested with the evolutionary data

produced by the ith trainer of the jth population of the

algorithm. Then, the fitness score fij assigned to the ith

trainer of the jth population should be fij ¼ 1

rij�hj j, where

h is the accuracy threshold, which maximizes the fij. As fij
rises in value, rij moves closer to h and our system crawls

nearer to the ideal solution h arbitrarily set in the beginning

of the algorithm. Maximizing fij produces stronger and

more potent populations of trainers. Note that the accuracy

of the classifier object is measured during the testing phase,

where it is applied on totally unseen cases, that is, the

evaluation of evolutionary data set.

The algorithm then updates each trainer with the cor-

responding fitness score. According to the roulette wheel

selection object, with which the next generation genetic

pool is compiled, the fitness score fij of the ith trainer

(i = 1,2,…,V) of the jth population (j = 1,2,…,M) has

probability pij ¼ fij

�PV
i¼1 fij; 8j ¼ 1; 2; . . .;M of being

selected.

Following this procedure, the frequency of each trainer

in the next generation genetic pool is proportionate to its

potential. After the fitness score has been assigned to each

trainer, the system selects the fitter ones, perpetuating the

fittest trainers, that is, the ones with the higher fitness score.

In this context, trainers with relatively high fitness scores

are less likely to be eliminated. On the other hand, less fit

trainers may not be extinguished from the genetic pool of

the next generations. This results in the fact that some

weaker solutions to the problem at hand may survive the

algorithm sweep for the forming of the next generations,

conveying their potentially useful genes to their offspring.

The genetic pool is the interim between successive gener-

ations where mating happens and the next generation of

trainers is produced. Here, the offspring may mate and give

birth to the same (selection) or combined (crossover) trai-

ner, the genes of which may undergo mutation with a

certain probability. The process of mating continues until

the number of the next generation trainers is completed. In

the end, the system elects the best trainer, the best evolu-

tionary segmentation scheme, as well as the best classifier,

trained and ready for use on unseen cases.

4 Use cases

The proposed methodology was applied for the solution of

two problems. The first case is essentially a classification

problem [2]. In this research, the bioelectric recognition

assay (BERA) method [48, 49] was engaged so as to pro-

vide information used in the detection and identification of

certain plant viruses, namely the tobacco rattle virus

(TRV) and the cucumber green mottle mosaic virus

(CGMMV), using appropriately preprocessed reagents as

the sensing elements. While reacting to the biosensors,

each of the viruses in question exhibit unique patterns of

biosensor responses over specific ranges of concentrations,

rendering these responses as a special characteristic for

each virus, a real identification signature. Each signature is

in essence a graphical curve of bioelectrical responses in

the time unit, a time series data set, which should be

identified as a characteristic for each virus and effectively

classified.

The second problem on which PES was applied relates

to the management of water reservoirs [1]. The study area

was Cyprus and the main motivation was that despite the

fact that time consuming studies had been conducted

during the previous years, not much had been achieved

towards the development of a viable solution to the

Cypriot water resources management problem. The inputs

of the problem include structural and dynamic data, in

which monthly precipitation particles play a distinct role.

In this case, the time series information originated from

the historical monthly rainfall data measured at certain

watershed stations for a wide temporal period. The issue

here was to develop a methodology for the production of

evolutionary training/testing data, in order to achieve an

effective estimation of the average annual water supply

(AAWS) on an annual basis, for each mountainous
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Fig. 1 Flowchart of system

function
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Table 2 EDS production

pseudocode
METHOD createEDS_Data(generation, crsvrProbability, mtnProbability):

READ initial time series data IN tsDat

numTrnrs = number of Trainers per Generation

CREATE_EMPTY_ARRAY newTrnrPop # Population of next generation

IF generation == 1 THEN

WHILE i <= numTrnrs

POPULATE newTrnrPop with Trainer(i) # Each trainer must be tsDat wide

i = i+1

END WHILE

ELSE

WHILE i <= numTrnrs

trnr1,trnr2 = Choose two trainers randomly from newTrnrPop

crsvrPosition = Randomly define the position for crossover

crsvrActivate = Random integer in [0,100]

IF crsvrActivate < crsvrProbability THEN # Decide if crossover fires

newTrnrPop.append(trnr1[0:crsvrPosition]+trnr2[crsvrPosition:end])

newTrnrPop.append(trnr2[0:crsvrPosition]+trnr1[crsvrPosition:end])

ELSE

TRANSFER (trnr1,trnr2) to newTrnrPop # If crossover fails choose parents

END IF

mtnActivate= Random integer in [0,1000]

FOR each individual Trainer

FOR each individual gene

IF mtnActivate < mtnProbability THEN # Decide if mutation fires

Change gene from 0 to 1 and vice - versa

END IF

END FOR

END FOR

i = i+1

END WHILE

END IF

FOR trainer IN newTrnrPop # Segmentation scheme mapping

IF (trainer[0],trainer[1]) == (0, 0) THEN # trainer[0],trainer[1]: core genes

EDS_data = Discard_Zeros(trainer[2:],tsDat) #

END IF

IF (trainer[0],trainer[1]) == (1, 1) THEN # FOLZ: First One Last Zero

EDS_data = FOLZ_average(trainer[2:],tsDat) # Segment approximation: average

END IF

IF (trainer[0],trainer[1]) == (0, 1) THEN

EDS_data = FOLZ_median(trainer[2:],tsDat) # Segment approximation: median

END IF

IF (trainer[0],trainer[1]) == (1, 0) THEN

EDS_data = FOLZ_minmax(trainer[2:],tsDat) # Segment approximation: max-min

END IF

RETURN EDS_data
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watershed of Cyprus. The estimation of the aforemen-

tioned factor is crucial and plays a highly important role

to the management of mountainous water reservoirs, as it

is closely related to the mountainous watershed fermen-

tations, as well as to the potential torrential risks posed on

the areas involved.

The proposed system was developed under Ubuntu

Linux and constitutes a cross-platform application. Python

v.2.7 was used as programming language, enhanced with

the PyBrain v.0.3 library for the ANN object and the Sci-

kits.Learn v.0.8.1 library for the SVM object. The genetic

algorithm was developed from scratch. The software tool

was tested on a PC system utilizing an Intel Core i7 CPU

processor at 3.07 GHz with 6 GB of RAM, with system

parameterization as presented in Table 3.

The proposed system is designed such that the fittest

SVM parameters C and c are calculated for each evolu-

tionary data set by utilizing a grid-search procedure under

a fivefold cross-validation scheme. This sub-routine pre-

cedes the actual training phase and separates each evo-

lutionary training set into 5 equally sized subsets. For

each iteration of the procedure, the system is trained with

the fourfolds keeping one for the testing. The training of

the system, along with the subsequent testing aims to

reveal the right combination of the SVM parameters C

and c. The former is derived by an array of numbers from

250 to 1,000, while the latter comes from an array of

powers of 2 [50]. The sub-routine returns the average of

the best combinations of the two parameters in the five-

fold cross-validation testing for each evolutionary training

set. The same combination of C and c is kept for the

testing phase.

The overall training times for each case study and

classifier are given in Table 4.

It might be noted that, although SVM training is faster

than all other cases examined, it generally took a com-

paratively long time for the training phase to complete

(Table 4). This might be justified by the interpreted nature

of the development language to a great extent. Another

crucial reason lies in the mass of the produced evolutionary

representations of the original data, combined with the

system parameterization routines. Indeed, during the

course of the evolutionary procedure, 15,000 such data sets

per problem were generated, for each of which, SVM

parameter optimization and ANN hidden neurons custom-

ization preceded the actual training and testing phases.

4.1 Classification: plant virus identification case study

In this case, BERA method was engaged in order to detect

certain plant viruses, especially the TRV and the CGMMV.

According to the method proposed in [48, 49], appropri-

ately preprocessed reagents are used as biosensor elements

in a reaction towards each of the viruses in a number of

iterations. While reacting to these specially constructed

biosensors, each virus exhibits unique patterns of electro-

chemical responses which are monitored over specific

Table 3 System

parameterization
Sub-routine Use case ANN SVM

Classifier type Virus Id Multi-layer perceptron C-SVC

Torrents C-SVR

Number of hidden neurons Virus Id ((In ? Out)/2) ? 0.1*(records)

Torrents Int(log(records)*log(inputs))

Activation function hidden Both Sigmoid

Activation function output Virus Id SoftMax

Torrents Linear

SVM Kernel Both RBF

C,c parameters Both Grid search

Normalization Both [-1, 1] [0, 1]

Trainer population Both 15

Generations Both 1,000

Selection method Both Roulette wheel

Crossover rate Both 40 %

Mutation rate Both 5 %

Table 4 Training times for both use cases

ANN SVM

Torrential risk Virus Id. Torrential risk Virus Id.

Training time

Days 6 8 0 3

Hours 23 15 16 7

Mins. 28 41 48 27

Secs. 6 44 26 11
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ranges of concentrations and quantified as voltage differ-

ences in the time unit. The produced time series data stand

as a characteristic signature for each virus and is utilized in

the classification procedure.

The data set acquired by the BERA sensors consisted of

1,271 records, each of which was a time series of 331 time

fragments. The initial information was split in the training

and testing data set consisting of 1,000 and 192 instances,

respectively, while 79 records were set aside to form the

evaluation data set.

The classification results were derived after training

the classifier with the training data set and then running the

trained classifier on the corresponding testing data set. The

accuracy metric of each trainer is derived as the ratio of

the sum of true positive (TP) and true negative (TN)

instances by the sum of the total instances in the testing

data set. Thus,

Accuracy ¼ TPþ TN

TPþ FPþ FNþ TN
ð10Þ

In our case, TPs are the instances which truly are

CGMMV and are classified as such, false positives (FP) are

those that are CGMMV, but are classified as TRV.

Similarly, TNs are the instances that are TRV and are

correctly classified, while false negatives (FN) are those

that are TRV, but are classified as CGMMV. The

performance of the trainer, that is, its classification

potential, is also measured by the sensitivity (Sens), the

specificity (Spec), the positive prediction value (PPV) and

its negative prediction value (NPV), metrics also offered by

the tool for each trainer. In our case, the sensitivity and

specificity metrics quantify the likelihood of the tool itself

to correctly classify the records. Sensitivity measures the

proportion of the CGMMV instances which are correctly

identified as such, while specificity stands for the TRV

proportion. PPV and NPV measure the likelihood a virus

identified as a CGMMV or TRV, respectively, to actually

be one. Thus,

Sensitivity ¼ TP

TPþ FN
Specificity ¼ TN

FPþ TN
ð11Þ

PPV ¼ TP

TPþ FP
NPV ¼ TN

TNþ FN
ð12Þ

Results for the classification of the initial raw unchanged

time series data set, as well as the five best performing

trainers from the evolutionary procedure, are shown in

Table 5 and Fig. 2.

4.2 Regression: torrential risk case study

The research area covers all of the mountainous watersheds

under the administration of the Republic of Cyprus. The

initial information was accumulated by 78 stations located

at the span of 70 torrential streams, covering a temporal

period of 28 years, from 1965 to 1993, for most of the

stations’ measurements. The input data, according to their

type, have been split into two categories: structural data

remain constant throughout the period of measurement,

while dynamic data encompass ever changing variables.

All in all, 1,273 patterns of data were accumulated, split

into 1,100 train, 100 test and 73 evaluation data sets,

respectively. The inputs to the system were the area of the

watershed, the absolute altitude and the absolute slope as

structural input data, whereas the time series portion of the

Table 5 Results of classification: raw time series and evolutionary data in ANN and SVM training, sorted by accuracy

Generation TP FP FN TN Sens Spec PPV NPV Acc Neurons

Artificial neural network

150 74 17 7 94 0.813 0.847 0.813 0.931 0.875 193

155 67 15 14 96 0.817 0.865 0.817 0.873 0.849 194

826 72 21 9 90 0.774 0.811 0.774 0.909 0.844 190

287 71 22 10 89 0.763 0.802 0.763 0.899 0.833 182

826 76 28 5 83 0.731 0.748 0.731 0.943 0.828 190

Raw TS 72 84 9 27 0.889 0.243 0.462 0.750 0.516 182

Generation TP FP FN TN Sens Spec PPV NPV Acc C c

Support vector machine

209 80 5 1 106 0.941 0.955 0.941 0.991 0.969 756.5 11.2

662 80 6 1 105 0.930 0.946 0.930 0.991 0.963 757.1 7.5

773 79 6 2 105 0.929 0.946 0.929 0.981 0.958 756.1 46.2

999 78 6 3 105 0.929 0.946 0.929 0.972 0.953 756.8 53.1

998 78 7 3 104 0.918 0.937 0.918 0.972 0.948 754.4 49.4

Raw TS 67 8 14 103 0.827 0.928 0.893 0.880 0.885 786.8 37.4
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input data consisted of the maximum water supply, the

average annual rainfall, as well as the average rainfall for

each month, for each year of measurement. The network

had only one output, the AAWS. Each trainer’s fitness was

calculated as a function of the root mean square error

(RMSE) during the testing phase of the system. The RMSE

metric exhibits the quality of model representation, that is,

lower RMSE shows better model approximation. Derived

results are given in Table 6 and Fig. 3, where it is shown

that PES has achieved to enhance the power of both

classifiers.

Examining the results derived by the two use cases more

closely and comparing the performance of the classifiers

with and without the evolutionary segmentation method,

we come to the following conclusions:

• PES time series model analysis eventually provides a

potent representation scheme for both problems, effec-

tively approximating initial time series data in spaces of

lower dimensionality. The extraction of significant

characteristics enables the system to combine prepro-

cessed data and computational intelligence classifiers in

an integrated tool which adapts to the data explored

• PES has enhanced the predictive and classification

potential of all classifiers in every instance (Tables 5,

6). This is made emphatic in the case of the virus

identification problem, where the time series is large

and the representation very effective. The classifier

potential optimization decreases with the width of the

time series. This leads us to the remark that PES needs

a large enough time series to create credible segments.

Nevertheless, it has succeeded in electing the most fit

time series representation, upgrading the classification

and regression capabilities of both classifiers for the

two experiments.

• Strong enhancement of the classification potential can

be noted for the case of virus identification where we

have a leap from 51.6 % accuracy to 87.5 % for the

ANN, while the SVM accuracy is enhanced from 88.5

to 96.9 % for the same problem. The methodology

elects the SVM as the best classification module for the

virus identification problem.

• As regards to the torrential risk problem (regression),

the performance enhancement, that is, the decrease in

the RMSE, is not that impressive as in the former case,

although it exists in a smaller degree. Nevertheless,

when we train the winning classifier with the best fit

trainer and then test the unseen data set, we may note

that our system predicts correctly all the cases where

there is a real threat for torrential risk, while relaxing

in every other case (Fig. 3). For this problem, our

system promotes the use of the ANN as the predictive

module.

Fig. 2 ANN and SVM accuracies for the virus identification

classification problem

Fig. 3 Torrential risk prediction on the evaluation set, using ANN

trained by the best achieved piecewise evolutionary segmentation of

the 28th generation. The solid line represents system prediction, while

the actual values are depicted by the dotted line

Table 6 Results of regression: raw time series and evolutionary data

in ANN and SVM training, sorted by RMSE ascending

ANN SVM

Generation RMSE Neurons Generation RMSE C c

28 59e-4 14 1 64e-3 1,000 8

49 62e-4 15 4 65e-3 1,000 8

90 63e-4 16 394 66e-3 1,000 4

31 72e - 4 13 329 67e-3 400 4

29 76e-4 14 1 68e-3 700 8

Raw TS 64e-3 19 Raw TS 68e-3 1,000 4
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5 Conclusions

One of the most common techniques for approximating

time series data is perhaps the group of methods collec-

tively referred to as segmentation algorithms, which divide

the given data into a series of segments and cater for their

approximation with a given basic function. Specifically, the

piecewise linear representation family of algorithms utilize

various piecewise linear models as its approximating

functions, which may be classified as regards to their data

feed type and their approximation type. The former clas-

sifies them into on- and offline algorithms, while the latter

into regression and interpolation ones. Online segmentation

performs the approximation on the reception of new data,

while offline requires the whole time series package

beforehand.

In this paper, we present the design, development,

implementation and testing of PES, an innovative PLR-

related method, aiming to enhance classification and

regression capabilities for time series data. The most sig-

nificant contribution of the present work is an effective time

series representation method integrated with two classifiers

through a software tool. The proposed system focuses on

preprocessing time series data to effectively define an opti-

mum, dynamic, auto-adaptive training factor. Thus, piece-

wise data segmentation schemes are designed on the input

data vector of the initial raw information in an evolutionary

fashion and are tested as to their performance. The fittest

evolutionary data set consists of the most substantial features

of the initial information and constitutes a training scheme

utilized to introduce vast enhancements to the classification

or predictive potential of the classifier. The proposed method

was tested against a regression and a classification problem,

giving very promising results, based on the assumption that,

under PES, there will eventually be a trainer which best

describes the problem and enables the chosen classifier to be

optimally trained. Indeed, as shown in Tables 5 and 6, PES

has achieved to produce such trainers that effectively smooth

out the input data in both cases and enhance the training of

the classifiers, compared with the results yielded by the

initial raw time series. Recapitulating the advantages, the

following could be noted:

• The system presented in this paper has been enriched

with two classifiers, that is, ANN and SVM, automat-

ically electing the best one combined with the fittest

evolutionary training data set for each problem. Thus, it

compares two alternatives at the same time, while

keeping the operating costs at acceptable levels.

• The proposed technique fits quite well with highly

noisy or dimensional data in which each record consists

of a large number of time series elements and

constitutes a ‘signature’ for a certain class. Such is

the case of research conducted towards identification

of, say, either plant (like the case examined in this

paper) or human viruses, or even pesticide residuals,

the initial data of which stem from sensor experiments.

Thus, the software tool might be of service in

agricultural, biological or medical research, which

often deals with time series problems of large width

of data elements. Costly repetitions of the same

experiment may also be significantly reduced by the

vast number of PES generated possible representations

of the initial information.

• Successful application of the proposed solution requires

careful parameterization as regards to the genetic

algorithm, as well as the classifier parameters. Associ-

ated with the nature of the initial time series informa-

tion, the analysis must ascertain that the best number of

hidden neurons for the ANN, as well as the optimum C

and c parameters for the SVM have been selected each

time, thus internal grid-search routines have been

embedded in the proposed solution for optimal

parameterization.

• Taking into account that the algorithm has been

designed to run under heavy conditions with optimal

training and parameterization, it is natural to expect

longer training times. Once trained though, the com-

putational cost demands are reduced as PES, except

from effectively smoothing out the input data, also

succeeds in drastically reducing the total number of

inputs in every case. This is essential in the economy of

training because, once the fittest trainer has been

revealed, the system transforms each new unseen case

according to the segmentation scheme dictated by this

trainer and runs only once. Furthermore, a fit segmen-

tation and classifier combination are in fact proposed,

which may then be embedded in any other software tool

or information system to circumvent restraints posed by

the development language.

Future research directions based on the proposed PES

methodology introduced in this paper include tasks to

enhance the overall optimization potential of the system, to

incorporate procedures for alleviating the computational

needs and to make it user friendlier. In the first category,

we have planned to include more classifiers in the com-

parison scheme, such as the k-nearest neighbour (k-NN) or

the Bayesian and decision tree ones. Also, prospects which

pose definite targets for future research in this branch

include embedding yet more advanced statistical metrics in

the evolutionary algorithm or appointing the segments to

enhanced filtering functions. Of course, changes such as

these may burden the system with yet more computational

power demands, thus a shift to genetic representations

other than the binary might assist in this direction. Finally,
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the design of a graphical user interface, which may

encourage the acceptance of the proposed tool in other

disciplines, is currently under construction.
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