


Abstract— Genetic algorithms and neural networks are
exciting technologies in the fields of artificial intelligence,
machine learning and data mining. In this work, we propose an
evolutionary method to produce time series meta-data for the
training and testing of a neural network module used in plant
virus identification. The initial dataset is derived via a
prototype method developed by members of our research team,
which uses specially designed sensors to monitor the virus
reactions. The proposed method incorporates an evolutionary
technique to manipulate the time series in order to effectively
manipulate the dimensionality of the input data space.
Furthermore, our method is tested against some of the most
commonly used classifiers in machine learning and proves its
potential towards assisting an identification which, up to now, is
accomplished mainly empirically.

I. INTRODUCTION

HE analysis and feature extraction of time series data
most often than not, resorts to regression models, such as
the autoregressive and the moving average methods,

which are inhibited by the non-linearity inherent in the input
data space. Numerous fault-tolerant tools, such as fuzzy
systems and neural networks have been engaged in order to
address this problem, as in [6], [13]-[14], [16]-[17], [20]-
[21], [29], [32], [34], [36]–[39]. Also, a lot of research has
been dedicated in studying the development and prototyping
of neural network design or the training and testing via meta
– heuristic methods, such as in [1], [12], [30], [31], [33],
[35]. Finally, the multi – classification systems design and
prototyping has been contemplated in the recent years, in
order to provide models which might be rendered as
potential problem solvers. In this latter case, multiple
classification techniques and models are combined in
individual systems trained to provide solutions to pattern
recognition problems. Classifier combination approaches
might be categorized mainly over three dimensions in this
context: the representational and the architectural
methodology, as well as the learning technique [2], [27]. All
these combinatorial methods might potentially provide
models able to discern through the input space and offer
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feasible solutions to problems which, either cannot be solved
by single classifier powered systems, or which might be
more effectively handled by a multi classifier one.

The dimensionality of the input data vector has been
contemplated a lot in this context and has been found to be
most crucial for this kind of data analysis. Most of the
researchers agree that in case the dimensionality may be
delivered too small, the neural network might not have all
the important information at its disposal. On the other hand,
if the dimensionality rises at high levels, then we run the risk
of over - feeding the network, which might result in
redundant information and noise creeping into it, inhibiting
its function, causing over - fitting and smothering its ability
to generalize [28].

Our research in its essence describes the design,
implementation and testing of an innovative method to
overcome the problems that the dimensionality of the input
data vector might pose on the classification power of neural
network systems dealing with time series. It also assesses the
classification potential of the evolutionary neural system
produced, towards several widely used classifiers, trained
and tested with the same data set, by setting a contest
between the former and the latter. The system introduced in
our work is an evolutionary trained Multi Layer Perceptron
(MLP) used in the line of detecting plant viruses using time
series data produced by bio-sensors.

The key feature of our system is the prototyping of an
evolutionary method to produce genetically enhanced meta –
data from the initial time series data set, which may produce
a more powerful trained network. Thus, the research
initializes by several testing techniques to design an MLP
able to use the initial input space as a training pool and
produce a rough neural classifier but, instead of training and
testing the produced MLP with the whole initial data set, we
alternatively engage an evolutionary method to genetically
manipulate the time series. In this way, we come up with the
production of meta – data for training and testing, which
introduce vast enhancements to our neural system as regards
both to its discerning capabilities, as well as to its
generalization potential. The system thus produced enters the
contest arena to compare to other widely used systems,
proving its classification potential towards classifiers like the
naïve Bayesian, the k Nearest Neighbors and the
classification trees, all of which attack the same complex
problem of plant virus identification.

Assessing the classification accuracy of an evolutionary neural
network: the case of plant virus identification

Thomas J. Glezakos, Georgia Moschopoulou, Theodore A. Tsiligiridis, Spiridon Kintzios, and
Constantine P. Yialouris

T



II. MATERIALS AND METHODS

A. Bioelectric Recognition Assay (BERA).

The Bioelectric Recognition Assay (BERA) is a novel
method using biosensors to identify various chemical and
molecular structures. The method essentially assesses the
structures’ interactions with a group of cell components
immobilized in a gel matrix preserving their physiological
functions. The structures to be identified are referred to as
‘ligands’ in the sense that they are usually smaller molecular
units – i.e. viruses – which specifically bind to the larger
biosensor cells. This procedure ultimately results in the
alteration of the reagent physiology and the emittance of
electrical energy. Recent studies [22-26] have revealed the
usability of the method for cheap and fast identification of
human infectious viruses and its potential to replace more
time - consuming and costly methods, such as the reverse
transcription polymerase chain reaction (PT – PCR).

The method is also massively propelled forward due to
the fact that the technology behind the biosensor production
is advancing by major leaps. After having gone through a
number of improving biosensor generations, BERA sensors
were radically redesigned to reach the fifth generation of
their design development, which incorporates sensors almost
ideal for diagnostic applications. In this fifth generation we
shall meet sensors of extremely reduced size, consisting of a
disposable array of gel beds loaded with reagent cells. Their
production is characterized by cost at the lowest levels and a
very high rate of reproducibility and speed of manufacturing.
Moreover, the fifth sensor generation has achieved to reduce
assay time to approximately twelve seconds. The BERA
biosensor method has already been successfully implemented
to numerous applications, mainly related to both human and
plant virus identification, while its evident potential has been
recorded into various bibliographical references.

B. Data Acquisition and Analysis
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Figure 1. Time series data produced by the BERA sensors
for the two viruses investigated.

In this work, the BERA method has been engaged so as
to produce data sets which will be used in the detection and
identification of certain plant viruses, namely the tobacco

rattle virus (TRV) and the cucumber green mottle mosaic
(CGMMV) one, using appropriately preprocessed reagents
as the sensing elements. While reacting to the biosensors,
each of the viruses in question exhibit unique patterns of
biosensor responses over specific ranges of concentrations,
rendering these responses as a special characteristic for each
virus, a real identification signature. Each signature is in
essence a graphical curve of bioelectrical responses in the
time unit, a time series data set, which should be identified as
a characteristic for each virus.

Fig. 1 depicts a close - up of two such signatures / time
series, one for each virus, with a resample rate of 6 time
units. The x-axis represents the time, while the y-axis’ units
are voltages produced by the reaction of the biosensor
reagent towards the presence of each virus. Up to now these
‘signatures’ are assessed by experts, special biologists who
are able to discern one signature from the other and decide
on the identity for each virus. Our effort is focused on
producing an expert system which will be trained with
various patterns of signatures and their already known
outcome, and generalize on any unknown input data space
with as higher classification capability as possible.

The data set gathered by the biosensors consisted of
1274 instances of time series signatures for both the tobacco
rattle virus and the cucumber green mottle mosaic virus,
while each time series consisted of 331 time fragments. That
is, for each virus, each biosensor was engaged to produce
results for 331 seconds and these were used in order to form
the ‘signature’ of the identifiable object. The constructed
data set was used as an instructional scheme for a special
designed evolutionary neural network classifier, employing
the ten-cross-validation training and testing technique, with a
proportion of 70/30.

C. The Python Programming Language enhanced with the
Fast Artificial Neural Network (FANN) and the Orange
Libraries.

Our system is in essence a genetically trained neural
network with the architecture of a Multilayered Perceptron.
It was developed using the programming language of Python,
enhanced by the freely available open source Fast Artificial
Neural Network Library, which was especially wrapped up
for use with the language. The system was built up from
scratch and is in an open source state, meaning it is freely
and openly available to everyone. Python is a programming
language with a relaxed learning curve, while remaining
powerful and incorporating efficient high level data
structures as well as a simple and effective approach to
object oriented programming. Being a multi platform
language, it allows for programs to be developed on most of
the platforms available today. Our source code was writen in
Ubuntu Linux, but can be run on a windows – based system
just as easily. It is also supported by a vast number of freely
available libraries, one of which is the Fast Artificial Neural
Network Library (FANN), with support for both fully and
sparsely connected networks. Cross-platform execution in
both fixed and floating point types are supported, while it
also includes a framework for easy handling of training data



sets. On the other hand, the rest of the classifiers with which
our system was compared were constructed via the Orange
library [19], a component - based data mining software
including a range of preprocessing, modelling and data
exploration techniques. Via the orange library the
construction of classifiers such as the naïve Bayesian, the
decision tree and the k Nearest Neighbor ones, were made
possible.

Our system has been successfully implemented in [15]
and is used here without alteration. The evolutionary process
has been designed in Python from scratch and incorporates a
genetic algorithm in order to produce fitter meta – data out
of the initial raw time series ones. The genetic algorithm
assesses the potential of each designed neural network,
engaging its fitness function for that matter.

D. Artificial Neural Networks

The human brain, is a highly complicated biologic
machine, capable of solving innumerable kinds of problems,
from the most simplistic to highly complex ones. Through
years of research and experimentation we have come to a
state where we can decipher some of its basic operations,
though we are yet far from fully understand its mechanisms.
The brain is part of the central nervous system, consisting of
a large number of interconnected simplistic processing
elements called neurons. Each neuron’s core, the nucleus,
communicates with other neurons by means of the dendrites
and the axon, connection which is called a synaptic
connection. The neuron fires electric pulses through its
synaptic connections which are received by the connections
of other neurons at the dendrites level. When a neuron
receives enough signalling, that is when the total signals
overcome a certain threshold, the neurons fires in turn a
similar signal to its counterparts. This way information
propagates through the network. The connections, as well as
the threshold change throughout the lifetime of each neuron
and this is the main reason that the network ultimately learns.

The human brain consists of around 1011 neurons which
communicate with around 1015 connections [18], activating
in parallel reacting to various external and internal sources.
The brain receives information from the five senses and
controls the muscles. Artificial Neural Networks (ANNs)
were developed in an attempt to simulate the function of the
human brain. An ANN is a software device consisting of a
number of simple processing elements interconnected and
operating in parallel. Each neuron is only aware of the
signals it receives from other connected neurons and the
information it sends from time to time to other processing
elements. In this context, an ANN is a computer program
capable of learning from examples through iteration. In most
of the times no prior knowledge of the input data is required,
because the training process is essentially a search for the
best synaptic weight vector. Learning is the process of
adapting or modifying the neurons’ connection weights in
response to stimuli presented as inputs requiring the presence
of a known output. This process enables the network to learn
to solve problems by adequately adjusting the strength of the
connections between their processing elements according to

the input data and the desired outputs. ANNs have been
vastly used for recognizing patterns in the input data space or
to extract simple rules for complex problems according to
their inputs. The key factor in neural network training is
generalization, i.e. the capability of the network to predict
“unseen” inputs merely with the knowledge that has been
acquired during the training process, in which a stimulus
presented in the output corresponds to a desired response for
a given input. Although a simple processing element (a
neuron) may have very limited learning capabilities, there is
a spectacular upgrade in computing power when a large
number of thus constructed simple processing elements
interconnect and collaborate in parallel. In its typical
structure, a neural network consists of the input layer the
hidden layer and the output layer. The input layer consists of
neurons equal to the problem inputs, whereas the hidden
layer is the real processing machine of the network, which
may be divided in one or more sub-layers. Finally, the output
layer produces the outcome of the network.

The ANN concept is currently widely used in various
research works, ranging from pattern recognition, quality
control, classification and have gained wide recognition in
modelling many processes in engineering, such as in [4]-[9].
Lately they have been used to predict wood water isotherm
or sorption isotherms in food science [10], [11] and
numerous other disciplines. A neural network may learn by
example and outmatches rivalling techniques in that it may
use its knowledge under untrained circumstances
incorporating a large number of variables [18].

E. Genetic Algorithms

Genetic algorithms are inspired by evolutionary biology,
and especially driven by the Darwinian axiom of the
“survival of the fittest”, incorporating numerous biological
procedures such as inheritance, selection, crossover
(otherwise referred to as recombination) and mutation. They
are mostly implemented as computer simulations which
search the input plane for ‘better’ solutions to a given
optimization problem. The genetic algorithm starts out with
an, often random, initial population of encoded
representations of candidate solutions. These representations
are referred to as chromosomes, genotypes or genome, while
the candidate solutions are referred to as phenotypes. The
algorithm proceeds by generations each of which is
comprised by genotypes of the previous generation, which
are elected basically by their fitness and modified on the
grounds of a possible recombination or mutation to form a
new population of higher overall fitness.

III. THE CONTESTANTS

A. Evolutionary Multilayer Perceptron

The innovative classifier that has been developed and
has been put to test against all others follows the multilayer
perceptron architecture with fully connected layers. The code
we developed was enhanced with a neural network object



created from the FANN Python library, which permits for a
vast number of parameterization on the neural network that it
handles. The neural object developed consists of an input
layer of varying number of units, conforming to the meta-
data produced by the evolutionary procedure and which form
the data set used in the supervised learning of the neural
classifier. The variability of the input layer of our neural
object was dictated by the genetic algorithm producing the
meta-training data set. According to this, each trainer
produces different input data, in an effort to handle the
dimensionality of the input space. Thus, it was unavoidable
for the research team to create a ‘plastic’ input layer, able to
adapt to the length of the input vector for each generation.

The hidden layer of our MLP network consists of 25
hidden units, bearing the Sigmoid Symmetric activation
function. Table 1 depicts the activation functions tested
during the design of the structure of the neural network, with
the Sigmoid Symmetric function giving the best results.

Table 1. Activation Functions used
Activation
Function

Dependent
Variable
Span

Description

Linear -inf < y < inf y = x*s, d = 1*s
Threshold x < 0 -> y = 0,

x >= 0 -> y = 1
Sigmoid 0 < y < 1 y = 1/(1 + exp(-2*s*x))

d = 2*s*y*(1 - y)
Sigmoid
Symmetric
(Tanh)

-1 < y < 1 y = tanh(s*x) = 2/(1 +
exp(-2*s*x)) – 1
d = s*(1-(y*y))

Gaussian 0 < y < 1 y = exp(-x*s*x*s)
d = -2*x*s*y*s

Gaussian
Symmetric

- 1 < y < 1 y = exp(-x*s*x*s)*2-1
d = -2*x*s*(y+1)*s

Where x is the input to the activation function, y is the
output, s is its steepness and d is the derivation
(http://leenissen.dk/fann).

The output layer of the neural object consists of two
units so as to classify the input space to one of the two
viruses as an output.

The training of the network was dictated by the Rprop
training algorithm which outperformed in our tests both the
Incremental Training and the Simple Batch Training
algorithms. The Rprop algorithm is a branch of the batch
training ones which update the weight table once after the
whole epoch has been completed, in contrast to the
incremental algorithm which updates the weights
immediately after each pattern has been shown to the
network.

In its first phase, our system uses the Root Mean Square
(RMS) error of the neural object to form the fitness function
of the genetic algorithm governing the production of meta-
data. Having initially set an ideal RMS error to be reached,
the distance of the recorder error of each trainer from it
should suffice to stand as the fitness function deciding the

potential of the chromosomes of the evolutionary process. In
the next and final phase, the neural thus produced is tested
using 10-fold cross validation on testing data conforming to
the structure of the winning chromosome of the evolutionary
process.
Notes on the structure of the Neural Object. As already
mentioned, our neural object utilized 25 neurons in its
hidden layer. It was clear by the vast number of the input
record set (time series of 331 time stamps for each pattern)
that we needed a neural network strong enough to cope with
such a high dimensionality. The decision about the optimal
structure of the neural network object was made using an
automatic search procedure of the FANN library, known as
cascade training on data, which determines the optimal
number of hidden layers and units based on sequential
training. By using the initial raw training and testing record
set, while leaving the input and output layers intact, we
instructed the network to start out its training with one
hidden layer containing only one neuron. After having
reached an arbitrary set number of iterations – we used 1,000
for our purpose – the system recorded its root mean square
error for the testing record set. Then, it added one more
neuron to the hidden layer and recorded the RMS error
anew, continuing adding neurons one by one to the hidden
layer, until a maximum number of neurons was reached. For
our research we set 35 maximum neurons for each hidden
layer. The neural object thus developed, has the ability to
cascade - train on data, a procedure which permits automatic
search for the optimal number of hidden units. Thus, the
network starts out its training empty in the hidden layer and
then, as training continues, it adds neurons one by one and
layer by layer, until an optimal neural network structure is
reached (http://www.leenissen.dk/fann). Our tests showed
that the best structure for the neural object was the one
bearing one hidden layer of 25 neurons.

B. Naive Bayesian Classifier

The Bayes’ Theorem is entangled in probability theory
as a rule by which conditional probabilities are related. Let A
and B denote two stochastic events. Then P(A) and P(B) are
the marginal (or else prior) probabilities that they will occur
independently. These probabilities do not take into account
one another. Also, P(A|B) gives the conditional probability
that A occurs given B. The Bayes’ theorem sets a relation
between P(A|B) and P(B|A), as follows:
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The theorem is valid in all the interpretations of
probability and also helps form rules of how synthesize or
update evidence-based beliefs in light of new, a posteriori
evidence.

A naïve Bayesian classifier is a derivative assumption of
the aforementioned theorem, with strong independence
assumptions. Such classifiers may be trained very efficiently

http://www.leenissen.dk/fann


in supervised learning schemes and further be applied
successfully to real world problems. A great advantage of
these classifiers is that, for most of the problems, but not
independent from that, they require relatively smaller
training data sets. The model of any classifier relates C, a
dependent variable with a known number of outcomes (or
classes), with several feature variables Fi, i = 1, .., n, such
as:P(C|F1, …, Fn). Using the Bayes theorem we can write:
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We normally are interested only in the nominator, since
the denominator is considered constant, not depending on C.
So:
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and so forth.
Assuming that each feature Fi is conditionally

independent of every other feature Fj for i≠j, that is assuming 
naïve conditional independence for the features Fi, we can
write:

)|(),|( CFPFCFP iji 

thus, the above model could be expressed as:
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It is obvious that the conditional distribution of class
variable C, under the above naïve assumptions, can be
expressed as:





n

i
in CFPCP

Z
FFCP

1
1 )|()(

1
),...,|( , where Z

is a scaling factor dependent only on the values of the
features Fi and constant if the latter are known.

The naïve Bayes classifier combines the above model
with decision rules, the most common of which is the
Maximum a Posteriori (MAP) decision rule. The resultant
classifier is given by the following function
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C. Classification Trees

Classification Trees, also referred to as Decision Trees
or Regression Trees, are also predictive models, which
engage a mapping of the features affecting the status of a
class variable to conclusions about its target value. They
essentially are generators of rules referring to the condition
of the class they predict, which are clear and can be easily

understood and explained. The tree grows up due to a
technique which is called ‘binary recursive partitioning’.
According to this procedure, the input data is iteratively split
into partitions of clear meaning, then each partition is further
split into new ones and so on, until a class value is finally
met. A tree thus built has leaves for class values and
branches for conjunctions of features which lead to these
values.

Classification trees are models which require supervised
learning in order to learn from example and be able to
generalize on real world problems. A trained classification
tree learner is transformed into a classifier for a given
problem. Thus, given a training set, the classification value is
known for each record. The algorithm systematically breaks
up the initial recordset into a number of partitions such that
the diversity of the class value is minimal within each
partition. This procedure produces homogeneous partitions
as regards to the feature class in question. The process is
repeated for all the fields of the training set and continued at
each next node, until a full tree has been built.

A trained classification tree is evaluated via a testing set
of patterns. Pruning of leaves and branches has been
introduced, as a technique to help the tree improve on
classification on the test and the ensuing real world
application phases, reducing the over-fitting of the classifier.
During the training phase, the algorithm adds a vast number
of branches and leaves onto the tree, as a result of the
partitioning of the input data plane. It has been noted that
most of the times, a non relevant number of such nodes is
embedded due to the need of the tree to explain all of the
training data set and, as a result, renders the tree prone to
data over-fitting. Pruning of these irrelevant nodes helps the
tree perform better on real world problems, helping enhance
the generalization capabilities of the classifier.

D. k-Nearest Neighbor Classifier

The k-Nearest Neighbor (k-NN) classifier is included
among the simplest in apprehension and the hardest in
implementation algorithms in machine learning problems.
The algorithm is based on the principle of proximity
resemblance, i.e. nearest objects are more possible to be
alike than farther situated ones. Thus, an object in the input
plane is classified according to the majority vote of its k
nearest neighbors. The parameter k, standing for ‘kriging’, is
the most vital in the implementation of the algorithm,
deciding the crucial distance in which proximity resemblance
takes effect. Its optimal estimation is very hard to come by
and is made feasible only through try and error techniques or
cross – validation. Generally, larger values of k reduce the
possibility of noise creeping in classification, but render the
boundaries among the values of the class to be predicted
vaguer.

The kriging approach has resulted from several
geostatistical techniques attempting to interpolate the value
of a feature of a certain location given the values of the same



features of its nearby locations. Let Z be the feature we study
and xi various locations of the input space for which we
know the values zi = Z(xi), i = 1, …, n. We need to predict
the value of Z at an unobserved location x0 , that is we have
to find z0 = Z(x0). The method computes the issue value
based on a stochastic model of the spatial dependence
estimated either by a variogram or by the mean value μ(x) =
Ε[Ζ(x)] and the covariance c(x,y) of the location in question.
The kriging estimator is given by:
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which is in fact a linear combination of zi = Z(xi), i.e. the
feature observed values in various locations, normalized by
the weight vector wi(x0) i = 1, …, n. The weight vector is
chosen such that the kriging error
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is minimized in accordance to the following condition:
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The algorithm considers training patterns as vectors in a
multidimensional space, which it partitions in regions by
locations and values of the samples. A class c is assigned to a
random point of the feature space if it is the most frequent
among the k nearest neighbors/training patterns of the
location. Euclidean distance is often employed to decide the
distance between locations in the feature space.

IV. THE EVOLUTIONARY PROCESS

The first goal that this research achieves is the
prototyping of meta – data production from time series data,
through the implementation of an innovative genetic
algorithm. Roughly, the algorithm initiates by producing a
random population of ‘trainers’ in its initial generation.
These are nothing else than binary vectors, which are
considered as chromosomes behaving in certain predefined
ways and able to appropriately manipulate the initial raw
time series. After the testing phase, each trainer is assigned a
‘fitness’ value, i.e. the root mean square error of the neural
network trained and tested with meta-data produced by the
said trainer/chromosome. Thereinafter, the next and
subsequent generations of the algorithm are formulated
according to a selection policy which elects the fittest
members of the previous generation of trainers. It is obvious
that the most potent and powerful trainers are the ones with
the lowest RMS assigned to them, thus, the algorithm after a
number of generations is expected to create a powerful
neural network of an almost ideal RMS error.

With the following pseudocode the route of the
evolutionary training of the network is shown:

Set the ideal RMS to reach
Set the trainer population
Set the recombination and mutation probabilities
Set the maximum training epochs

Change to the proper working directory
Read the initial train file
Read the initial test file
Select the time series train and test data
Split the train and test files to time series and non-time
series data respectively

WHILE neuralAccuracy < ideal Accuracy
Assembly the generation’s trainer population
For eachindividual trainer:

Map trainer chromosome to time series data
Rejoin the derived meta – data to the saved non

time series data
Train and test the neural network
Assign the derived neural RMS to the trainer

chromosome
Select trainers according to their fitness value for

the next generation
Apply recombination and mutation procedures to

the selected trainer chromosomes

A. The Structure of the Trainer Population

The first and subsequent generations of the genetic
algorithm start out by assembling a population of a user
defined number of chromosomes, the genome of which
consists of randomly chosen binary genes (0 or 1). Each
chromosome is used so as to manipulate the input raw time
series data according to their structure, in order to produce
fitter educational meta data sets used in the supervised
learning of the neural network. The genome of the
chromosome is divided in two parts: the first part consists of
a number of randomly chosen binary bits (0 or 1), equal to
the time fragments of the initial raw time series data and is
called the ‘activation part’ for it bears as its duty to carry out
the instructions given by the behavioral mechanism. The
second part of the chromosome, located at the beginning of
the genome, is the ‘behavioral core mechanism’ of the
chromosome. It consists of two supplementary random
binary bits (0 or 1), the structure of which define a set of
rules deciding the actions taken by the chromosome towards
the raw data that it manipulates.

B. Data manipulation and chromosome mapping

Each training chromosome exists in order to ‘map’ its
genes to the raw data set, according to the structure of its
core mechanism. Thus, a number of meta data sets equal to
the number of the user defined chromosomes for each
generation of the algorithm is produced and is used for the
training of the neural network. The ‘mapping’ of the



chromosome onto the raw data set is essentially one of a
number of descriptive statistics functions, chosen according
to the following table 2:

Table 2. Representation of the mapping of chromosomes
onto raw initial time series data, according to their core
behavioral genes

Core
Genes

Description
and meta-data example for time series
44 32 17 8 8 12 1 18 30 48
and chromosome genome
1 0 0 1 1 0 0 1 0 1

00 Discard All Zeros
Resampling function, with which the raw time
series will be stripped off of its values for which the
corresponding genes of the trainer is 0
44 8 8 18 48

11 First One Last Zero Average
Clustering function, which extracts the everage of
the initial time series elements for every group of its
own genes which start with the first 1 and end with
the last zero
31 8 7 24 48

01 First-One-Last-Zero Median
Clustering function, which returns the median of the
initial data time series elements for each cluster
which corresponds to the first 1 and the last zero of
its own genes
32 8 8 24 48

10 First One Last Zero MinMax
Clustering function, which returns the distance of
the maximum to the minimum value of every
cluster which corresponds to the first 1 and the last
zero of its own genes
27 8 11 12 48

C. The survival of the ‘fittest’

Each meta data set produced is used in supervised learning,
passing through the neural network for which the RMS error
is calculated and later assigned to each corresponding
chromosome. Thus, the rating of the chromosome by its
performance becomes a crucial factor for its survival. The
policy of selecting the best offspring incorporates the
stochastic procedure known as roulette wheel selection.
Let f(ωi) denote the fitness function of each of ω = Ν
individual chromosomes. Then, the chromosome ωi, i = 1, 2,
…, N has probability
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of being selected.
The roulette wheel incorporates a fitness proportionate

selection operator, which elects to perpetuate the fittest
chromosomes, i.e. the ones with the higher fitness score, in
our case the ones with the lowest RMS errors. In this
context, chromosomes with relatively high fitness scores are

less likely to be eliminated. On the other hand, less fit
chromosomes may not be extinguished from the genetic pool
of the next generations. This results in the fact that some
weaker solutions to the problem at hand may survive the
algorithm sweep for the forming of the next generations,
conveying their potentially useful genes to their offspring.

The next and subsequent generations of the algorithm
are assembled after the fittest offspring have passed through
a mutation and cross-over procedure according to a
predefined probability respectively.

V. RESULTS

In order to assess the robustness of the proposed
evolutionary solution, it had to be compared towards a range
of widely used classifiers, which were chosen among the
most common in machine learning. For each classification
method, a single metric was estimated, namely the accuracy
of the classifier, which was calculated as the effective
generalization of each one, expressed as the ratio of correctly
classified input patterns to the total number of presented
patterns during the testing phase. The accuracy metric, as
defined above, was calculated using two testing techniques,
namely the 70/30 data set random re-sampling and the area
under Receiver Operating Characteristic(ROC) curve, using
for both the 10 fold cross validation scheme. The following
Table 3 depicts the results.

Table 3. Average classification accuracies among three
classifiers and the evolutionary neural network for virus
identification time series data

Evolution
Neural

Naive
Bayes

Class
Tree k -NN

Accuracy 0.93 0.70 0.88 0.88

AROC 0.96 0.66 0.88 0.96

The outcome of the comparison yields that by applying
an evolutionary resampling method on the time series raw
data, in order to produce genetically enhanced meta data, we
are able to control their dimensionality, achieving to produce
a more robust classifier with better generalization potential.
Also, although the time of training is much longer, the
proposed classification system exhibits the same
classification time demands as the rest of the classifiers, once
trained and, of course is very competitive to the time an
experts needs to make a decision by evaluating a signature
curve.

VI. CONCLUSIONS

Genetic algorithms and neural networks are exciting
technologies in the fields of artificial intelligence, machine
learning and data mining. Numerous are the research works
binding their powers, thus providing flexible, adaptable,
swift and potential systems successfully applied on
classification or prediction problems. Genetic algorithms are



considered as modules to ‘breed’ solutions for optimization
or prediction problems by means of simulated evolution,
while neural networks are data modelling systems comprised
of interconnected layered nodes which learn by example and
are able to represent complex input to output relationships.
In many cases the evolutionary process is entangled in the
design of the structure of the network optimizing its
architecture, in other applications it optimizes the training
weight vector of a fixed architecture and in yet other
references it manipulates both the structure and the training
simultaneously. In this work we present and test an
evolutionary neural network for the detection of plant
viruses. The method producing the data for the system is the
Bioelectric Recognition Assay (BERA) method for the
detection of viruses. BERA uses special sensor electrodes
containing certain reagents suspended in a gel matrix which,
while interacting with the virus particles, produce electrical
signals measured as a voltage. This interaction between the
sensor antibodies and the virus particles lasts for a certain
period of time, thus the voltage series produced are
essentially time series data which are considered as
signatures, each of which is a characteristic of the virus. The
method proposed in this paper incorporates an evolutionary
technique to manipulate these time series in the training
phase of the neural object so as to produce genetically
enhanced meta - data, in perspective of controlling the
dimensionality of the input space. After the evolutionary
neural object has been designed, trained and tested, it is put
to contest against some of the most common classifiers in
machine learning, namely the naive Bayesian classifier, the
decision tree classifier and the k-nearest neighbors one. The
whole method is essentially an attempt towards the
development of a more credible classification system,
exploiting the fascinating features of neural networks and
genetic algorithms in the line of identifying viruses with the
use of a technique, the products of which could up to now be
assessed only empirically.

In our work the classification demand was supported by
the biosensor method BERA and was applied to the
identification of serious plant viruses, namely the tobacco
rattle virus (TRV) and the cucumber green mottle mosaic
virus (CGMMV). The main drawback of the traditional
identification process was the empirical way that was
employed in order to assess the results. The produced meta
data set was used to train an evolutionary MLP, in the sense
that it adapted its input layer to the provided meta data. This
was further compared to other classifiers trained with the
same initial raw time series data. The results show that the
proposed technique yields better results in the testing phase
of our classifier, demanding the same classification times,
once trained. By applying an evolving genetic data clustering
procedure on the initial data set, we were able to better
control the dimensionality of the input data space on one
hand and also to overcome the drawbacks of the empirical
assessment on the other.
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