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Abstract 
The present work contemplates the possibility of utilizing wavelets along with evolutionarily produced meta-data so 
as to enhance the training of Support Vector Machines (SVMs) confronting time-series problems. Long time-series 
data sets are invariably characterized by multitudes of cases, nonlinearity, and high percentage of noise or fuzziness. 
Moreover, the existing classification methodologies applied in order to solve such problems provide only a static 
training approach. The proposed system is used to design the fittest evolutionary segmentation in time series data 
sets, an approach which is essentially a search in the input plane aiming to interpret the significance by which the 
various combinations of the input time stamp elements affect the output vector. This was materialized by a genetic 
algorithm, which audited the training results of a specially constructed SVM and wavelet time series transformation 
system, promoting the fitter ones through successive generations. In order to evaluate the contribution of wavelet 
transformation in the enhancement of the produced meta-data, we compared the results to those produced by non-
wavelet transformed time series. The results show that the proposed time series piecewise evolutionary segmentation 
method, when utilizing a wavelet preprocessing procedure, was able to better control the dimensionality, as well as 
the noise inherent in the initial raw time series information. 
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1. Introduction 

In this work time series analysis is utilised in phytopathology, for the identification of two serious plant viruses by 
means of artificial intelligence methods and processes. The significance of time series analysis has already been 
stressed out as crucial in many disciplines and data as diverse as energy, finance, econometrics, biology, clinical 
medicine, meteorology, hydrology and hydraulics, forestry, plant and animal production, agriculture and bio-
informatics. Traditionally, the flagship in time series analysis in order to detect trends and patterns hidden under - 
and producing - the monitored information, has primarily been armed with statistical methods, such as statistical 
clustering or regression analysis, while more recently the Autoregressive Conditional Heteroscedasticity (ARCH) 
models, normal or generalized, have appeared as an alternative [1], [2], [17]. Complementarily, a major boost in 
artificial intelligence is occurring during the recent years, including various and diverse tools. Artificial Neural 
Network (ANN) models, Support Vector Machines (SVMs) and Genetic Algorithms (GAs) have once again attracted 
the attention of analysts, experts and consultants, mainly due to the fact that the hardware and know-how we now 
have at our disposal is capable of simulating such procedures much easier than a few years ago [4], [5], [9], [10], 
[13], [14], [15], [16]. 
Our research is focused on engaging a dynamic approach towards applying a piecewise evolutionary segmentation 
modelling procedure on time series initial information so as to produce fit meta-data for the training of artificial 
intelligence tools. This implementation, first proposed in [7] and [8], utilized a vibrant segmental methodology to run 
through the time series adapting the width, the number and the contents of the segments to the data explored. The 
developed model uses a specially constructed GA in order to search for a feasible solution, which might be the 
optimal. Each generation of the algorithm produces a population of trainers, each of which maps part of its genome 
onto the initial time series information, a depiction achieved according to a mechanism dictated by certain genes 
inside the genome. Thus, a multitude of possible meta-data sets are produced and subsequently used in turn for the 
training and testing of an ANN. This procedure ultimately produces a fitness score for each meta-data set derived by 
the performance of the classifier and assigned to the corresponding trainer. The successive generations continue until 
the best trainer (i.e. the one arousing the best response on the part of the classifier) is discovered. The results showed 
that after successive generations, in the end the GA revealed the best possible segmentation for the initial time series 
information. However, this success did not come without a price. The computational cost paid both in time of 
training and in resources depleted is below today’s standards. In particular, the information used for the viruses’ 



 

identification is characterized by high non-linearity and non-stationarity and this may therefore in an extent explain 
the longevity of the training procedure. The whole procedure may be stressed because the ANN is not a fit method to 
cope with non-stationary data, if effective preprocessing does not take place. 
The present work reveals an innovative research regarding the evolutionary production of non time series meta-data 
and their use in the performance enhancement of a Support Vector Machine (SVM) classifier, as opposed to the 
constant re-sampling methods used up to now [6]. It also engages wavelet theory to further enhance its results. In 
other words, in this study ANNs have been replaced by SVMs and the piecewise evolutionary segmentation method 
has been coupled with wavelet decomposition, in an attempt to enhance the preprocessing of the non-stationary 
initial time series information. Wavelet decomposition at various scales produces a few coefficients and provides an 
effective insight into non-stationary time series data. 

2. Problem Statement 

The basic incentive for the current research emerged on the grounds of phytopathology, specifically in the attempt to 
identify two serious plant viruses, the Cucumber green mottle mosaic virus (GMMV) and the Tobacco rattle virus 
(TRV). In this work, we engage the recently introduced BERA method in order to acquire the initial data set [11], 
[12]. The products of the method are time series of electrical potential difference, resulting from the virus interaction 
with properly structured reagents. The two plant virus waves are measured for 331 seconds, for which, at a sampling 
rate of 10 Hz, the average value was calculated and recorded for each second. Therefore, 331 average values are 
obtained for one signal channel corresponding to one virus (signature). While reacting to the biosensors, each of the 
virus waves exhibit characteristic patterns of responses over specific ranges of concentrations. These responses are 
thus considered as virus features, a real identification signature, which should be analyzed and classified in order to 
identify the pathogen in question. The data set acquired for the problem consisted of 1,271 instances of time series 
signatures for both the TRV and the CGMMV. The initial information was split in the training and testing data set 
consisting of 1079 and 192 instances respectively. The overall data set was balanced for this two-class classification 
problem, consisting in particular of 640 and 631 instances for the CGMM and TR viruses respectively. 
Time series analysis was essential and crucial for the solution of the aforementioned problem. Under this prism, the 
control of the dimensionality of the input data vector was twofold: Daubechies and Haar wavelet coefficients were 
passed on to our specially constructed system which searched for the fittest possible meta-data training record set in 
an evolutionary fashion 

3. Materials and methods 

3.1. Support Vector Machines 

The SVM has been recognised as a highly regarded state-of-the-art classification method. In [18], Boser et al. 
expressed their maximum margin classifiers theory and developed related training algorithms. The margin is the 
distance from a hyper-plane separating the classes to the nearest point in the dataset. The advantage of the maximum 
margin requirement is two-fold: firstly, it produces a solution unique for linearly separable problems and secondly it 
offers robustness against noise in data. Based on the structured risk minimization (SRM) principle, SVMs are 
formulated on the basis of minimizing the upper bound of the generalization error. 
For the purposes of our research we have used two kernel functions, the PF and the RBF defined as follows: 
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The kernel width common to all the kernels is specified a priori by the user. For the purposes of our research we used 
the C-SVM and SVR types of support vector machines provided by the libSVM tool [3] and utilizing two kernels, 
the PF and the RBF. 

3.2. Genetic Algorithms 

GAs on the other hand, are inspired by evolutionary biology, and especially driven by the Darwinian axiom of the 
“survival of the fittest”, incorporating numerous biological procedures such as inheritance, selection, crossover 



 

(recombination) and mutation. They are mostly implemented as computer simulations which search the input plane 
for ‘better’ solutions to a given optimization problem. The GA starts out with an, often random, initial population of 
encoded representations of candidate solutions. These representations are referred to as chromosomes, genotypes or 
genome, while the candidate solutions are referred to as phenotypes. The algorithm proceeds by generations each of 
which is comprised by genotypes of the previous generation, which are elected basically by their fitness and 
modified on the grounds of a possible recombination or mutation to form a new population of higher overall 
expected fitness. 

3.3. Wavelet analysis 

The concept of wavelets is a relatively new approach to signal processing, allowing for time series signals 
transformation in the time and frequency domain simultaneously. By decomposing the signal to its wavelets, this 
transformation often over-powers Fourier transformation in many aspects, including the analysis of even non-
stationary signals. Wavelet processing decomposes the signal producing much smaller derivative coefficients / 
approximations, which are easier to manipulate and also caters for the final reconstruction of the original signal. To 
achieve this task, wavelet analysis proceeds as follows: 
Let x(t) a time series signal, then the Continuous Wavelet Transformation (CWT) is defined as 
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The above transformation produces a signal which is dependent on two main factors, s and τ, the translation and 
scale parameters respectively. The concept of scale in wavelet analysis replaces the concept of frequency used in 
Fourier transformation and is essentially a ‘zooming’ factor to the signal, i.e. taking a higher resolution snapshot of 
the oscillation. Higher scales (lower frequencies) correspond to a wider view of the signal, whereas lower scales to a 
more detailed view. Ψ(t) is the transforming function, often referred to as the “mother wavelet”, due to the fact that it 
is an oscillatory (wave) window function of finite length (small) running through the signal (i.e. wavelet). The 
translation term (τ) denotes the position of the transformation window, as it runs through the signal and it obviously 
relates to the time information of the transformation process. The CWT requires large amounts of computation time 
and resources, while the Discrete Wavelet Transformation (DWT) is considerably simpler to implement while 
drastically reducing computational needs. DWT uses a fixed scale throughout as a dilation step, making the mother 
wavelet a discrete function in the sense that the time-space scale is furthermore sampled at discrete intervals. In this 
work DWT scale and translation were chosen such that the sampling of the scale (frequency) and the time axis was 
dyadic (i.e. s=2, t=1). 

4. Developing the system 

4.1. Layout of the Algorithm 

The developed system bears simple physiognomy but complex mechanics, offering the possibility to load a vast 
number of training data, practically covering every width and length of time series information. Upon initiating the 
procedure, the system will generate the first generation of trainers and map their genes to the time series producing 
the first generation of meta-data. These will be thrown into the artificial intelligence tool, defined by the SVM in this 
case [3], while the most efficient record sets will emerge in the next generation. The meta–data production module is 
derived through the implementation of a GA, which proceeds as prescribed in the following pseudocode. 

GA pseudo code for the production of fit meta-data 
Set the ideal accuracy, trainer population, recombination and mutation probabilities, maximum training epochs 
Select the time series train and test data 
Construct basic SVM module 
WHILE SVMAccuracy < idealAccuracy: 
 BEGIN 
  Assembly the generation’s trainer population 
  For each individual trainer: 
  BEGIN 
   map trainer chromosome to ts data 
   Train and test SVM 
   Derive SVMAccuracy 
   Calculate trainer fitness score 
   Assign fitness to chromosome 



 

  END 
  Select trainers on fitness score 
  Store best trainers 
  Formulate next generation of trainers 
  Apply recombination and mutation 
 END 
Save best derived SVM 

The algorithm initiates by producing a random population of trainers in its initial generation. These are binary 
vectors, which are considered as chromosomes behaving in certain predefined ways and able to appropriately 
manipulate the initial raw time series. Each successive trainer is set to map its genes to the initial raw time series 
data, thus producing a meta-data time series recordset, which is used so as to train and test the SVM classifier. After 
the testing phase, each trainer is assigned a fitness value, i.e. the distance of the accuracy of the corresponding SVM 
from the ideal accuracy set in the initialization phase. Thereinafter, the next and subsequent generations of the 
algorithm are formulated according to a selection policy which elects the fittest members of the previous generation 
of trainers. The most potent and powerful trainers, which are more likely to be selected for the next generation, are 
the ones producing the highest accuracy. Thus, after a number of generations, the algorithm is expected to create a 
powerful SVM object, of an almost ideal accuracy percentage. 

4.2. The Structure of the Trainer Population 

The first and subsequent generations of the GA start out by assembling a population of a user defined number of 
chromosomes, the genome of which consists of randomly chosen binary genes (0 or 1). Each chromosome is used so 
as to manipulate the input raw time series data according to their structure, in order to produce fitter educational 
meta-data sets used in the supervised learning of the neural network. The genome of the chromosome is divided in 
two parts: the first part consists of a number of randomly chosen binary bits, equal to the time fragments of the initial 
raw time series data and is called the activation part for it bears as its duty to carry out the instructions given by the 
behavioral mechanism. The second part of the chromosome, located at the beginning of the genome, is the 
behavioral core mechanism of the chromosome. It consists of two supplementary random binary bits, the structure of 
which defines a set of rules deciding the actions taken by the chromosome towards the raw data that it manipulates. 

4.3. Data Manipulation and Chromosome Mapping 

Each training chromosome exists in order to map its genes to the raw data set, according to the structure of its core 
mechanism. Thus, a number of meta-data sets equal to the user defined number of chromosomes for each generation 
of the algorithm are produced and used for the training of the neural network. The mapping of the chromosome onto 
the raw data set is essentially one of a number of descriptive statistics functions, dictated by the behavioral core 
mechanism of each chromosome, which is responsible to manipulate the initial raw time series and produce meta-
data in a rational way. 
Thus, essentially four behaviors have been chosen, including either resampling procedures or grouping ones. One 
method resamples data, while the rest design groups of data in the initial time series and produce a unitary number 
for each group, which also stands out as a memory for the segmentation of the time series. The only parameter which 
varies in these three behaviors is the essence of this memory. In the first case, we represent each designed segment 
by the average of its data, while in the second, we divide it in two equal parts, taking the exact middle value. Finally, 
with the last mechanism we estimate the essential width of each designed segment, embedding this aspect also into 
our system. Specifically, 
 If the core mechanism genes are “00”, then this stands out as a “Discard-All-Zeros” resampling function. In 

this case, the time series will be stripped off of its values for which the corresponding genes of the trainer is 0. 
 If the core mechanism genes are “11”, then this stands out as a “First-One-Last-Zero Average” piecewise 

segmentation mechanism for the initial data. In this case, the trainer extracts the average of the time series 
elements for every group of its own genes which start with the first 1 and end with the last 0. 

 In the case in which the core mechanism is “01”, the chromosome behaves as a “First-One-Last-Zero median” 
piecewise segmentation mechanism, which returns the median of the initial data series elements for each 
segment which corresponds to the first 1 and the last 0 of its own genes. 

 Finally, if the core mechanism is “10”, then the chromosome will return the distance of the maximum to the 
minimum value of every group of the initial time series which is defined in the same aforementioned manner. 

During the mapping procedure the algorithm examines the core mechanism genes of each trainer in the row and acts 
accordingly. Table 1 provides an example of meta-data produced from time series data, according to action taken by 
the mechanism genes. For example, if the core mechanism genes are “00”, then we have a straight forward re-
sampling behavior. The meta-data produced (44, 8, 8, 18, 48) are the only time fragments of the initial time series for 



 

which the genes of the trainer chromosome are 1. In the second case, where the core mechanism genes are “11”, then 
piecewise segmentation and averaging in each segment occurs. In this case, the chromosome defines five segments 
in the time series, as follows: 
 Segment 1: elements 1,2,3. Average(44,32,17)=31 
 Segment 2: element 4. Average(8)=8 
 Segment 3: elements 5, 6, 7. Average(8,12,1)=7 
 Segment 4: elements 8, 9. Average(18,30)=24 
 Segment 5: element 10. Average(48)=48 

Table 1. Example of the mapping of chromosomes onto raw initial time series data, according to their core 
behavioral genes 

Initial raw time series 
 44 32 17 8 8 12 1 18 30 48 

Chromosome genome 
 1 0 0 1 1 0 0 1 0 1 

Core 
Genes Meta data production 

00 44   8 8   18  48 
11 31   8 7   24  48 
01 32   8 8   24  48 
10 27   8 11   12  48 

4.5. The survival of the fittest 

For each generation of the algorithm, each trainer is assigned a fitness score which is derived by the trainer’s 
performance assessed by the accuracy of the SVM object. This is essentially the proximity of the potential of the 

trainer to an optimal solution set in the initialization of the process. Let jir  be the accuracy value of the SVM 

trained and tested with the meta-data produced by the i-th trainer of the j-th population of the algorithm. Then, the 

fitness score jif  assigned to the i-th trainer of the j-th population, should be hrf jiji 1 , where h  is the 

accuracy threshold, which maximizes the jif . As jif rises in value, jir  moves closer to h  and our system crawls 

nearer to the ideal solution h arbitrarily set in the beginning of the algorithm. Maximizing jif  produces stronger 

and more potent populations of trainers. Note that the accuracy of the SVM object is measured during the testing 
phase, where it is applied on totally unseen cases, i.e. the evaluation meta-data set. 
The algorithm stores the meta-data produced, and then updates each trainer with the corresponding fitness score. The 
policy of selecting the best offspring incorporated the stochastic procedure known as roulette wheel selection. Thus 

the fitness score jif  of the i-th trainer (i = 1,2,…,V) of the j-th population (j=1,2,…,M) has probability 
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of being selected. 

The roulette wheel incorporates a fitness proportionate selection operator, which elects to perpetuate the fittest 
chromosomes, i.e. the ones with the higher fitness score. In this context, chromosomes with relatively high fitness 
scores are less likely to be eliminated. On the other hand, less fit chromosomes may not be extinguished from the 
genetic pool of the next generations. This results in the fact that some weaker solutions to the problem at hand may 
survive the algorithm sweep for the forming of the next generations, conveying their potentially useful genes to their 
offspring. 
The algorithm then turns into a decision branch: either the trainers pool is empty, so it is assumed that this is the first 
generation and so produces the initial population, or there are trainers present with fitness scores assigned to them, so 
it proceeds to mating, crossover and mutation in order to formulate the next generation of trainer chromosomes. 
Recombination and mutation is then performed under user defined probabilities on the next generation of trainer 
chromosomes, thus allowing the algorithm to start processing a new generation of meta-data. 

5. Results 

As a case study, we seek to identify two plant viruses, namely the Tobacco rattle virus (TRV) and the Cucumber 
green mottle mosaic virus (CGMMV), by examining their responses towards certain prescribed reagents. By reacting 



 

to these biosensor reagents, each virus produces unique patterns of biosensor response in relation to the reagent 
concentration. This set of responses in the time unit forms a special signature for each virus, a time series data set, 
the examination of which becomes fruitful for its identification. The developed system, equipped with the SVM 
identification machine as provided by the libSVM library, was trained using the dataset described in the section 2. 
Using the parameterization referred to in Table 2, we were able to perform the evolutionary production of meta-data 
from the initial time series information and to train and test the corresponding SVM. 

Table 2. System parameters selected for the virus identification case 
Parameter Value 
SVM Type C-SVC 

RBF Γ=adaptive 
SVM kernel 

Polynomial D=3 
C parameter 150 
Trainer population 25 
Generations 100 max 
Selection method Roulette wheel 
Mutation rate 5‰ 
Crossover rate 40% 

The first time series subset underwent a 10-fold cross validation procedure by the system in order to decide on the 
best C parameter. The validation set was used in order to derive the system prediction accuracy, which was elected 
to be the ratio of the correctly classified patterns to the overall number of patterns in the validation data set. After 
grid-search cross validation, we chose 150C  for all our tests. The degree d of the PF, as well as the width   of 

the RBF kernel, decide the flexibility of the resulting classifier. The lowest degree polynomial ( 1d ) forms the 

linear kernel. Since there is a sheer increase in complexity with small increases of d  we intuitively chose 3d . As 
for , this affects the smoothness of the curvature of the decision boundary, producing smooth surfaces at lower 

values, increasing their complexity as the values rise. An interesting remark is to look more closely on the 
relationship between the values of   and the number of groups designed by the trainer chromosome of the GA. 

Thus, given that a certain genetic trainer dictates k groups in the time series data set, then the decision boundary of 

the corresponding SVM in the current generation will have a curvature decided by k310 . 

5.1. Meta-data production without wavelet transformation 

Table 3 lists the   parameters for the five best performing trainer chromosomes as resulted from the application of 

our system on the virus identification problem. Each constructed trainer was monitored by the SVM as regards to its 
accuracy towards the evaluating data set. In this context, we utilized and tested the RBF and the PF kernel functions 
in the classification mechanism of the proposed system, in order to assess their potential. In the course of our testing 
experiments, the RBF kernel machine proved to be more powerful than the polynomial one, achieving a 
classification percentage of 96.88% in the 92nd generation and thus outperforming the PF kernel, which was confined 
to a mere 85.42% in the fifth generation. Table 3, apart from the k and γ parameters of the RBF kernel, also depicts 
the five best accuracy percentages achieved by the two kernel machines, along with the generation where this was 
achieved. 

Table 3. Five best accuracy percentages for the RBF and the Polynomial kernel 

SVM with RBF kernel SVM with Polynomial kernel 

Gen. Accuracy 
(%) 

k γ Gen. Accuracy (%) 

92 96.88 172 0.172 5 85.42 

56 96.35 167 0.167 4 84.90 

17 95.83 165 0.165 7 84.38 

43 95.31 173 0.173 8 83.85 

9 94.79 159 0.159 14 83.33 



 

As shown on Table 3, as well as on the following Figure 1, the evolutionary process achieves its best results faster 
with the PF kernel rather than with the RBF one, but the polynomial SVM is not further optimized. On the contrary, 
the RBF kernel reaches its best performances later on, but these are much more potent, achieving a score of only 3% 
false classification score in the 92nd generation. It is also clear that the system starts out low for both kernels. The 
average accuracy of the first six generations does not supersede the score of 60%, but from the ninth generation on, 
the accuracy of the system stabilizes at around 78% for the PF and 88% for the RBF kernel. 
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Figure 1. RBF and PF kernel performance for the plant virus identification problem 

By applying an evolutionary piecewise segmentation scheme on the initial raw time series information, the system 
managed to produce a series of meta-data which were getting fitter after successive generations, before reaching a 
final accuracy plateau. It was made clear by this enhancement that the initial time series information was simplified 
to its essential parts, providing more robust piece of training material for the classifier. What was more interesting at 
this moment was the effect that wavelet transformation might impose on the time series, before the latter passed 
through the evolutionary procedure. 
 

5.2 Meta-data production with DWT preprocessing 

In this scenario DWT was used as a preprocessing technique, before the time series was passed to the piecewise 
evolutionary segmentation method. Among the multitudes of wavelet families in existence we elected Daubechies 
and Haar first level wavelet coefficients. 

Table 4. Five best accuracy percentages for the SVM and the polynomial kernel when DWT was performed 
before the piecewise evolutionary segmentation. 
 

Db-10 Polynomial Db-10 RBF Haar Polynomial Haar RBF 
Generation Accuracy Generation Accuracy Generation Accuracy Generation Accuracy 

1 97.39 94 95.31 14 97.39 140 91.15 
17 96.87 53 94.79 1 96.87 4 90.62 
81 96.35 90 94.27 5 96.35 2 89.58 
29 95.83 28 93.75 4 95.83 46 89.06 
69 95.31 15 93.23 - - 1 88.54 

 



 

 
Figure 2 RBF and PF kernel performance when DWT was performed before the evolutionary piecewise 
segmentation 

The results depicted in Table 4 and Figure 2 reveal that in this case the PF kernel is much more capable than the RBF 
one. It not only responds better to all the prism of the evolutionary segmentation method, but it also cuts out the time 
cost of the procedure arriving at its best accuracy early on for the Db-10 and Haar coefficients – i.e. 1st and 14th 
generation respectively with an accuracy of 97.39% for both. 

6. Conclusions 

Time series information often arise while monitoring various phenomena, including environmental and agricultural 
processes, the management of which arises strict demands for credible and accurate forecasting and classification 
potential. Time series analysis functions formulate a sequence which bears the distinctive marks of a certain internal 
structure. This is generated by factors that influence the generation of the time sequence values over time and could 
be analyzed in two main components: trend and seasonality. Thus, time series analysis conforms so as to obtain an 
understanding of the underlying forces which produced the observed information and ultimately develop a model by 
which to classify and forecast a certain procedure. Up till now, time series analysis mainly employs statistical re-
sampling or moving average methods in an attempt to smooth out the negative effects of random variation. The 
estimation of the optimal width of the smoothing technique is of crucial importance as it defines the amount of 
information manipulated. Being a factor heavily dependent on the nature of the problem, the moving width is 
traditionally defined after trial and error in a constant fashion, i.e. it runs through the time series without altering its 
value. 
Through the current research we show that it is possible to use a dynamic smoothing factor for the definition of an 
optimal piecewise segmentation procedure. The algorithm developed is able to produce non time series meta-data in 
order to be incorporated in an evolutionary process along with the input of time series models. The results strength 
and facilitate the learning of predictive artificial intelligence tools. Using the combined power of GAs and SVMs, the 
proposed system utilizes an interchangeable variation of a vibrant piecewise segmentation method to smooth out 
possible inhibitory aspects of time series information, adjusting its behavior according to the data explored. The 
developed tool has so far been applied on two cases, covering the categories of classification and regression 
problems. From the displayed performance and taking into account that the results were recorded during the testing 
phase of the classifier, we can deduce that the proposed technique yields better performance as regards to 
classification than to regression problems. However, and taking into account that the RBF kernel has been proven 
generally more powerful for our data than the PF kernel, in both cases we were able to apply an evolving genetic 



 

data segmentation procedure on the initial data set and note on the enhanced behavior of the system, which was able 
to control the dimensionality and the noise of the input vector, better in the former case and acceptably in the later. 
The plans of the research team for the near future include the enhancement of the tool with modules to genetically 
adapt its structure – i.e. kernel function, hyper-parameters - to the data given. Also, we seek to conduct a thorough 
comparison of this tool with neural and RBF-networks, applying them to problems originating from the agricultural 
and the environmental sector. 
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