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Abstract 
The endmost intention of the present survey is to revise the use of a relatively new modelling 
technique inspired by the function of biological nervous systems and to provide insights as to 
their application to landscape problems. The models that arise from the aforementioned 
simulation, called Artificial Neural Networks, promise to alleviate problems posed by 
traditional statistical methods. Specifically, they are designed so as to accommodate 
fuzziness, as well as parallel processing and allow for a more accurately inferred classification 
and/or modelling. Included are the models that pose as the mathematical theoretical bases of 
the neural network types identified as useful to landscape applications. The types to be 
described range from the Multilayer Perceptron to the Self Organising Maps and from the 
Adaptive Resonance Theory to the Hopfield networks. Our aim is to describe and clarify their 
main features, as well as to show their fast utilisation into more environmental fields, 
considerably aided by the fast growing usage of PC-based tools. 
 
Introduction 
Artificial Neural Networks (ANNs) are tools for building models from data. Simulating the 
function of the human nervous system they are essentially an applied mathematical technique, 
bearing a related biological terminology. They can be implemented whenever there is a vague 
or even unknown relationship between input and output data, though there is an adequate 
supply of data illustrating this relationship. Artificial Neural Networks are supposed to be able 
to handle complex multivariate relationships, non-deterministic or non-linear problems, even 
enter the field of fuzzy logic. In addition, they offer fast speed of analysis, objective 
viewpoints, the ability to generalise and to extrapolate beyond initial data range and provide 
rather simple and quick update processes hidden behind complicated in most cases algorithms 
which undertake the role of their theoretical settings. Thus, they have already been used for 
forecasting as well as for other predictive and classifying tasks. This survey revises the recent 
use of ANNs in the environmental sector, especially for landscape applications, provides their 
mathematical theoretical base and derives conclusions relating to their potential as a modern 
land cover and land use modelling and pattern classification tool. 
 
Landscape unfolds a complicated and elaborately organised concept, the dynamics of which 
affect significantly the environmental processes. These dynamics strongly relate to essential 
changes in landscape structure over time, comprising a prominent factor in environmental 
understanding and management (Tatem et all., 2002). Two critical variables, land cover and 
land use, drive landscape. Land cover describes the way that the earth’s surface is blanketed 
by natural or human activities, whereas land use encompasses the employment of an area by 
man. Land cover especially can be seen as a more general critical biophysical variable, which 
not only affects the geophysical environmental processes, but also the scenic beauty and the 
human – nature interaction as well. The earth cover is not a simple layer-like depicted image, 
but rather a dynamically shaped three-dimensional body, directly affecting biodiversity and 
ecological provision. Land cover is typically depicted in remotely sensed images, which 
present different patterns and need to undergo various classification methods so as to be 
usable. Even if a lot of methods, statistical or not, have been proposed for landscape 
applications, such as the maximum likelihood, nearest neighbour, linear discriminant analysis 
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etc, they are not problem free. The main restrictions that conventional methods pose vary 
from the volume of data to be processed to the time needed for the classification. 
Furthermore, they do not take under consideration the fuzziness dominant in environmental 
cases. For the most part, they provide ‘hard’ classification with sharp boundaries, being 
unable to illustrate the gradual transition from one class to another. 
 
The Biological Model 
Artificial Neural Networks stemmed out of research in Artificial Intelligence, particularly 
research in order to emulate the learning ability of biological thinking systems. In order to 
reproduce intelligence, it became rapidly apparent that this task could only be achieved by 
building systems bearing the same architecture as the human brain. The fundamental 
operational unit of the central nervous system is called “the neurone”. This is nothing more 
than a cell, specialised in receiving and propagating electrochemical signals to other neurones 
via certain basic organic structures. The cortex is composed of a stunning number (approx. 
1010 - 1011) of massively interconnected neurones, each of which consists of an input 
structure, a main body and an output structure (Junqueira et all., 1971). The input structure of 
the neurone, called dendrites, passes the received signal to its main body, called pericaryon, 
where it is subjected to certain processes, relating to the activation of the neurone. An 
activated neurone is one that sends similar electrochemical signals to its adjacent neurones. 
The activated neurone fires an electrochemical signal through its axon, which is conveyed via 
the synapse to another neurone. The activation of the neurone exclusively depends on the 
comparison of the total received signal to a certain set level, which is called firing threshold. 
This comparison takes place inside the main body. If the total signal received by the neurone 
main body is greater than or equal to the firing threshold, the neurone is activated and 
conveys the electrochemical signal to adjacent ones, else it remains dormant (Guyton, 1984). 
The synapse plays a very important role in this learning process, because it is enabled in a 
way to alter the intensity of the output signal of the firing neurone. The strength of the signal 
received by a neurone, and therefore its chance of activation, greatly depends on the potential 
of the synapses. Altering the synaptic weights alters the possibility of neuronal activation and 
affects the neuronal process. 
 
Artificial Neural Networks, having risen from their biological counterpart, the brain, have 
nowadays swerved to more applied mathematical techniques, yet bearing a corresponding 
biological terminology. Although the resemblance to the human brain is nowadays rather 
vague, Artificial Neural Networks have retained two major characteristics, which enable and 
activate the ability of knowledge and response: the features of learning through training and 
generalising. 
 
Artificial Structure Overview 
Borrowing their structure from biological neural systems, Artificial Neural Networks consist 
of nodes, or processing elements (Haykin, 1999), each of which has an input, a body and an 
output. These nodes, organised in layers of the same functionality, are interconnected and 
produce a final output for the whole network. Each node receives weighted inputs, serving to 
simulate the role of biological synapses, either from original data or from other nodes inside 
the network. Also, inside every node there has been a single threshold value embedded to 
simulate the role of the biological “firing threshold“. This value is compared to the sum of the 
weighted inputs, so as to determine the activation, or inhibition, of the node. The activation 
signal is then passed to a transfer function to form the overall output of the neurone. The 
output is in turn transferred to various weighted links leading to other neurones of the net, 
such that a practically unlimited number of nodes can be linked together to form a network of 



processing elements. This network is characterised by the presence of layers, each of which 
consists of nodes, typically an input layer, an output layer and, in between, one or more 
hidden intermediate layers of processing elements. The flow of the signals between the layers 
ranges from the feedforward structure where the signals flow from the input layer to any 
hidden layers reaching eventually the output layers, to the recurrent structure where nodes 
from one layer are linked to nodes from previous layers. Thus, the complexity of the network 
increases. Furthermore, the structure of each node, as related to the transfer function applied 
to the weighted sum of its inputs, may not be the same, providing a high versatile system with 
which to manipulate the input data (Hewitson and Crane, 1994). 
 
Training, Generalisation and Over-Fitting. The use of the Artificial Neural Networks is not a 
panacea to solving problems in general. The most important restrictive characteristic is that 
the input data set and the output predictions of the network should be related, no matter how 
noisy, vague or inexistent this relation might at first seem. The role of training then lies in the 
effort to unveil this relationship and enable the network to stamp it mathematically, adjusting 
the links between the synaptic weights, so that its output converges to a meaningful function. 
Three are the most prominent training methodologies. The supervised type is characterised by 
the presence of both the input and the output vectors, the comparison of which leads to weight 
adjustment and error minimisation. The unsupervised training involves only inputs fed into 
the network, which in turn attempts to recognise their structure, formalising clusters of data 
and relating similar classes to each other. The competitive training involves a competition 
among the output nodes as to which one of them will be activated. These training concepts 
aim to minimise the error, which appears when the network is first confronted with the input 
training data, without ensuring the same smooth operation for future ‘unseen’ data. For an 
Artificial Neural Network to be efficient, it must bear the attribute of generalisation, that is 
the ability to apply the knowledge gathered during the process of training to future unknown 
data sets. Generally, the greater and most representative of the problem the number of the 
training vectors is, the better generalisation could probably be achieved. The more hidden 
layers a neural network includes, the more “powerful” is considered to be in that it can focus 
on underlying functions of higher level. In fact, an Artificial Neural Network with no hidden 
layers can only manipulate linearly separable data sets. If the noise probably contained within 
the initial training data is not taken under consideration, this may result in over-fitting, that is 
construction of an over–powerful network, which attempts to model the relationship in a 
higher degree than is actually needed. 
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Table 1: prime characteristics of Artificial Neural Networks 



There are various types of Artificial Neural Networks with different topology. During the 
present survey, four were identified to have been implemented towards landscape 
applications, the Multi Layer Perceptron (MLP), the Self Organising Map (SOM), the 
Adaptive Resonance Theory network (ART) and the Hopfield network. The Τable 1 
summarises their prime characteristics, as well as their use. 
The next sections will present these types analytically, their structure and underlying 
mathematical theoretical base, relating to landscape applications. 
Notation 

• The indices i, j, k denote different layers of neurones. Specifically, i stands for an 
input layer, j for a hidden layer and k for an output layer. 
• wji denotes the synaptic weight from the output of neurone i to the input of j 
• w0 denotes the bias applied to neurone j 
• xi is the ith element of the input vector X 
• yj denotes the output of neurone j 
• dj denotes the desired output of neurone j 
• ej denotes the output error of neurone j 
• ok denotes the kth element of the output vector 
• uj stands for the weighted sum of the synaptic inputs plus the bias (that is, the induced 
local field) of neurone j 
• φj(.) denotes the activation function of neurone j and φ’ its derivative 

 
The Perceptron 
The first Artificial Neural Network structure was proposed by Rosenblatt in 1959 and was 
perceptron. It originated as an attempt to simulate the process followed by the human optical 
system for pattern recognition and to comprise an artificial model for the retina (Rizos, 1996). 
The perceptron is a fairly simple network consisting of one processing element that plays the 
role of the output of the network, bearing n input channels which convey the input vector X 
weighted by the vector W (including an optional bias w0) to the node. There is only one output 
and no recurrent connections in such a network. Then, the induced local field u will be given 

by (1). The activation of the node is determined by the sign of its 
induced local field. In every occasion that the weighted sum of 
the inputs plus the bias is a non–negative scalar, the node is 
activated. The importance of the perceptron lies in its inherent 

ability to adjust its weights in order to define a hyperplane with which a space containing 
linearly separable patterns can be split into two spaces, each of which contains patterns of the 
same type. The perceptron adapts its weights using the perceptron learning rule, according to 
which the alteration of the weights should be proportional to the difference between the 
desired and the actual output. The basic restraint of the perceptron is that it cannot classify 
non linearly separable inputs (Rizos, 1996) that is, for a correct classification to stand, it is 
essential for all the input vectors of each pattern to lie on the same “size” of the separated 
space. This is mainly due to the fact that the hard limiting transfer function of the processing 
element is discontinuous and thus cannot be differentiated. A perceptron of two inputs has a 
linear hyperplane, with location that is given by the equation (1) for u=0 (Haykin, 1999). A 
three input perceptron is characterised by a two – dimensional layer-like hyperplane and so 
on. 
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Multi-layer Perceptron 
This type of network has followed the rise of the perceptron, mainly to be applied to non-
linear problems, and shows a somewhat similar structure, with the difference of the presence 
of hidden layers of processing elements. A typical Multi-layer Perceptron consists of the input 



layer, the output layer and one or more hidden layers of neurones in between (Figure 1). 
Every neurone or processing element receives weighted input signals which sums up and 
compares to a given threshold, by which its activation is determined. The summed up result is 
passed through a logistic transfer function, which results in the output signal of each 

processing element. The network 
functions in a straight 
feedforward manner, that is, its 
topology is constructed such that 
the information flows from the 
input layer through the one or 
more hidden layers, one at a time, 
before the result of the network is 
given by the final output layer. 
The presence of the hidden 
layer(s) serves as a boosting of 
the network, in the sense that it 
enables it to uncover non-linear 
underlying functions, which relate 
to the training data. Thus, the 
number of layers, as well as the 
number of the processing 
elements that each layer contains, 
determine the complexity of the 
underlying function. 
 

Figure 1: A typical Multi-layer Perceptron Neural Network 
 
The training of the multi-layered perceptrons is dominated by the so called Back Propagation 
Algorithm, hence the bibliographic reference of such networks as Back Propagation 
Networks. For the Back Propagation Algorithm to work efficiently, the following process 
should be followed (Rizos, 1996). Initially, the training input vector must be introduced, 
followed by an estimation of the weighted sums of the inputs as well as the outputs of the 
network. Estimation of the difference between the output vector and the desired output, which 
comprises the error of the system, as well as the appropriate alteration of the weights. 
Estimation of the error produced by the processing elements of the immediate previous 
hidden layers, which comprises a backward procedure and, lastly, alteration of all the weights, 
using the values derived from the previous procedure. Thus, the algorithm presents two 
distinct flows of information: a forward phase, where the activation of each processing 
element is passed to succeeding layers until it reaches the output. Also, a backward phase 
propagates the difference between the actual and the desired nominal value of the output layer 
backwards, so as to alter the weights of the previous layers’ nodes accordingly.  
 
The algorithm belongs to the supervised training category, for the requested nominal value of 
the output layer is used in order to form the difference with the actual observed one. This 
difference is estimated via an error function, which gives the overall error of the network. The 
most commonly used error function is the sum squared error, where the individual differences 
of each processing element are squared and summed up. The training process then focuses on 
the minimisation of this function, which in most cases is an exploration of its representation 
surface, which presents slopes, plateaus, local minima and a global minimum. The problem 
here is to avoid entrapment into a local minimum, finding the global minimum to rest into. 



The algorithm takes into account the gradient vector of the error surface, moving along the 
pointed direction with large or small steps towards a – hopefully – global minimum. The 
quicker this movement is, that is larger steps are utilised, the less time is needed by the 
algorithm to accomplish its aim, but the possibility of overstepping the global minimum 
increases. Let yj depict the output of neurone j, where yj = [1+exp(-uj)]-1. The back 
propagation algorithm applies a correction ∆wji to the synaptic weight wji according to the 
delta rule (Haykin, 1999). For a given iteration: 

∆wji = αδjyi   (2) 
where α is the learning rate parameter, and δj, called the local gradient, is given by 
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Thus, the error signal of each neurone becomes very important in the estimation of the 
weight adjustment ∆wji. Its calculation depends on the topology of neurone j. Consequently, 

• if j lies on the output layer then ej = dj – yj, and δj is estimated using (3) 
• if j lies on a hidden layer, then 
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The estimation of the synaptic weight adjustment therefore becomes a matter of the next layer 
local gradient estimation, hence the term back propagation. 
 
The Multi Layered Perceptron using the back propagation of error training algorithm is the 
most popular Artificial Neural Network in use today, introducing lots of applications in 
environmental science, especially remote sensing for landscape applications. Two methods 
aiming at the development of a model used to link landscape variables with scenic beauty 
were compared, in order to investigate landscape preferences (Bishop, 1996). The two 
methods comprised a linear regression and an artificial neural network based model. The 
experiment used a single data set of predictor variables and scenic beauty judgements and 
sought to model the stimulation / response linkage. The objective of the researcher was 
furthermore to investigate the potential use of the neural network approach, bearing the 
characteristic of human brain simulation, to scenic beauty modelling. The experimental site 
was an area roughly 20x10 km in the Australian western Victoria, from where the initial 
sample points where extracted. The data set included panoramic photos depicting electricity 
transmission lines as well, in order to embed their visual impact to the model. The neural 
network was initially constructed having three layers, the input bearing six nodes, which 
correspond to the six variables able to best explain the preference variation. These were the 
tower index, the range of elevation, the maximum slope, the maximum slope for the middle 
ground, the Eucalypt forest proportion in the background and the shelter belt area for the fore- 
and middle-ground. The single hidden layer of the neural network consisted of four nodes 
propagating the information to the output layer, which had only one processing element 
measuring the mean preference score. The same six input variables were used in the 
regression analysis as well. The examination of the node link weightings revealed complete 
consistency between the two models. Bishop concluded that the use of Artificial Neural 
Networks offer an alternative approach to the modelling of complex landscape phenomena, 
including scenic beauty, an approach which may reinforce conclusions drawn from more 
traditional techniques, such as regression models, or provide different interesting insights 
through resulting differences. 
 
Jarvis and Stuart (1996) used a back propagation neural network to classify land cover from 
Landsat Thematic Mapper data into three land cover classes, namely built areas, vegetated 
areas and water areas. Furthermore, they optimised the network topology using the potential 



of momentum towards different rates of network training. Thus, potentially surplus 
processing elements could be identified and removed from the network in order to create a 
more compact and efficient topology without loss of accuracy. The network primarily 
consisted of three layers, the input bearing six nodes, one for each Landsat TM band, whereas 
the number of the nodes in the hidden layer varied during the experiment from three to 
fifteen. The output layer invariably consisted of three nodes, each for every land cover class. 
The results show that a greater number of processing elements are required in the hidden layer 
in the classification attempt of images showing greater complexity and granularity. On the 
other hand, it may be possible to reduce the number of input nodes maintaining classification 
accuracy and alongside increasing the computational rate, provided that a careful selection of 
the best spectral band combinations has taken place. 
 
The implementation of a back propagation neural network for the identification and 
recognition of six conifer species using in situ hyperspectral data was proposed by Gong et 
all. (1997). The experimental site was the Blodgett Forest Research Station of the University 
of California. The forest shows vegetation consisting mainly of the Sierra mixed conifer forest 
type, namely sugar pine (Pinus lambertiana), ponderosa pine (Pinus ponderosa), white fir 
(Abies concolor), Douglas fir (Pseudotsuga menziensii), incense cedar (Calocedrus 
decurrens) and California black oak (Quercus kelloggii). Hyperspectral data were collected to 
avoid the limitations imposed by the spectral approach and were used as a training data set of 
a feedforward back propagation neural network, in order to built up learning capabilities 
towards the direction of species recognition. The experiment showed that the application of 
the Artificial Neural Network model resulted in a 10% higher accuracy compared to the 
accuracy yielded by the use of linear discriminant analysis of the same data set. 
 
Further utilisation of ANNs was proposed in order to derive fuzzy classifications of land 
cover and help ease the definition of boundaries between landscape classes from remotely 
sensed data, particularly for continuous land cover classes separated by fuzzy boundaries 
(Foody and Boyd, 1999). The only possible way to map land cover at a regional to global 
scale is through satellite remote sensed images. Land cover is then derived by the 
implementation of a hard image classification. This, in most of the cases, results in maps 
depicting classes separated by sharp boundaries, mainly due to the fact that seldom is the case 
when a pixel represents a homogeneous cover of only one class. The test site elected to be the 
forest to savannah boundary in southern Ghana, West Africa. The site contains the boundary 
between the two landscape classes, forest and savannah, the position of which is determined 
by the combined effect of geology, topography and climate variables. The four classes of this 
landscape discrimination problem were the savannah area, the forest as well as the forest 
reserve area and the area occupied by water. The forest to savannah boundary was fuzzier 
than the relatively sharp boundary between the forest reserve and the water classes, thus, their 
inclusion in the analyses widened the range of the boundary types investigated. The network 
proposed consisted of three layers. The input layer had five nodes, one for each discriminating 
variable of the input data, that is one for each spectral channel. The hidden layer constituted 
of an equal number of processing nodes passing the information to the output layer bearing 
four nodes, each for every land cover class. With the proper training procedure taken into 
account, the output for every new pixel would be a very high level of association – close to 1 
– of the output node corresponding to the associated class, and a very low level of association 
– close to 0 – for all the other output nodes. The network allowed for continuous values in the 
range of 0 to 1 for all the output nodes, unlike other conventional networks, which restricted 
their utilisation to rather hard mappings, producing more “fuzzy” boundaries between classes. 
 



An efficient classification of Mediterranean land cover using remotely sensed data was 
utilised using a back propagation neural model (Berberoglu et all., 2000). The experimental 
site was Cukurova Deltas in Turkey and the information came from a Landsat Thematic 
Mapper image. The goal was to compare the efficiency and accuracy of an Artificial Neural 
Network, against that of the Maximum Likelihood (MLH) procedure in terms of classification 
of the texture into eight land cover classes, namely citrus plantations, first crop corn, second 
crop corn, cotton, soil, soya beans, urban settlements and water. The accuracy of the ANN 
was found to be greater than that of the MLH method, in the case of spectral data alone, as 
well as when using both spectral and textural data. 
 
In the year to follow, a system based on a back propagation neural network was proposed in 
order to model the landscape transition with regards to changes in vegetation land cover 
(Gullison and Bourque, 2001). The experimental site was a small watershed in the Cape 
Breton Highlands of Nova Scotia in Canada and the network generated a chronological 
sequence of forest landscapes for a 150-year period of forest landscape development. The 
species involved in the experiment reached the number of twenty, including trees as well as 
shrubs. The main characteristic measured was their biomass and their potential growth 
surface. In order for terrain influences on physical and biological variables to be simulated 
properly, a two-dimensional grid representing the site with elevation corresponded to each 
grid point was used. The network proposed consisted of three layers. The input layer had 
forty-one nodes, twenty for the species biomass values, twenty for the species potential 
growth values and one node relating to time t. The hidden layer consisted of four nodes, 
whereas the output layer had twenty nodes giving the resulting biomass values at time t+10 
years. The initialisation of the network was set to bare ground conditions, that is the species 
were considered to have zero biomass at time t. With every iteration, which simulated a ten 
year transition, the output at time t was becoming input at time t+10. The network was 
applied reiteratively to each grid point until the end of the 150-year simulation period. The 
network showed high degree of automation, rapid training time, ability to address well the 
species rich landscape and rapid prediction on the two-dimensional grid. 
 
During the same year a landscape estimation and prediction method was presented in order to 
suggest a desirable mountainous district development model for urban design purposes (Sung 
et all., 2001). The experimental site was located in Kwangju, South Korea. The process of the 
study was divided into two steps: initially, seven landscape variables were elected and their 
normalised function was implemented, obtaining the network’s training data set. The seven 
variables were development-area to watershed-area ratio, slope, green space ratio, distance 
between buildings, building coverage, floor area ratio, height difference between the building 
and the mountain elevation. During the second phase, a back propagation artificial neural 
network used the extracted variables as input in order to predict and estimate the development 
landscape. 
 
Self Organising Map 
These are neurobiologically inspired, highly adaptive artificial neural network systems used to 
capture and express important underlying features contained in an input data set. Their 
topology is characterised by an input layer and the presence of a lattice of one or two 
dimensions (Haykin, 1999), on which the processing elements are placed. The various stimuli 
applied to the input neurones contain statistical features, which are expressed through the 
spatial location of the activated output neurones, which form a topological map, utilising the 
concept of the “neighbourhood of neurones” (Figure 2). Their training procedure is based on 
competitive learning. The first phase of the training algorithm implements a competition 



between the output neurones as to which one will be activated. Once this is decided, a 
“winner takes all” approach is applied on the 
grounds that only the winning neurone is 
activated. The second phase of the algorithm 
is characterised by a co-operation among the 
winner and its adjacent neurones to form a 
topological neighbourhood of excited 
neurones, having the winning neurone as its 
centre. These neurones are next subjected to a 
suitable adaptation of their synaptic weights to 
help generalisation.  

Figure 2: 
The competition process is based on the maximisation of the inner product XWj, where X is 
the input vector and Wj, j = 1,…,m is the weight vector of neurone j. All the m neurones bear 
the same threshold value. The two vectors are dimensionally equal, therefore the 
maximisation of their input product XWj can be considered as the key factor in determining 
the winning neurone, r(X) (Haykin, 1999). Therefore, 
r(X) = arg minj||X – Wj||, j = 1,…,m   (5) 
During the co-operative process, the winning neurone denotes the centre of a neighbourhood 

of neurones, the function of which is given by (6) for a given 
iteration, in which dj,r denotes the lateral distance between the 
winning neurone r and the activated neurone j, and σ is a 

measure of the neurones’ participation in the neighbourhood (Haykin, 1999). 
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Learning Vector Quantization (LVQ) networks were proposed by Kohonen (1989, 1990) to 
be a case of SOM as a means to describe boundaries between classes, contemplating data 
from the input space. They can be used in association with self-organising feature map 
networks in order to promote the classification of input patterns. Learning Vector 
Quantization is a technique using supervised learning with which the underlying structure of 
input vectors can be revealed. Luo and Tseng (2000) implemented a neural network technique 
for land cover classification. The technique involved the use of a self organising feature map 
for the learning of the similarity of the patterns and an LVQ network with the trained SOM 
network as the hidden layer to classify the land patterns. The proposed method was found to 
outperform the traditional maximum likelihood (MLH) method as regards to the quality of the 
classification on one hand, as well as the relaxation of the MLH assumption that each 
category has a normal probability distribution, that is not the case for most real data. 
 
Chang and Islam (2000) used remotely sensed image maps to classify soil texture based on 
brightness temperature and soil moisture via a set of artificial neural network models. The 
classification was conducted with relation to the soil physical properties and the neural 
networks used were the feedforward multilayer perceptron and the self-organising feature 
map networks. The input pattern for the proposed SOM network was a series of brightness 
temperature data for each given pixel. The network functions without reference to the output 
data and upon convergence the sequence of input brightness temperature is classified into 
three groups corresponding to coarse, medium and fine soil, according to the sand to clay 
ratio. The evaluation of the training results was performed with their comparison towards an 
observed soil texture map. The results revealed that, on the grounds that no soil textural data 
are available, the unsupervised SOM model is able to provide reasonable classification 
accuracy. 
 



The aforementioned type of neural network was also utilised in order to automatically classify 
land cover patterns based on raw image data (Vassilas et all., 1995). The experimental site 
elected to be the island of Lesvos, Hellas and the satellite data used for network training were 
taken from a Landsat TM scene containing all the 512x512 pixels, which were normalised for 
the elected three spectral bands TM 1 to 3. The purpose was to classify each image pixel to 
one of four classes, namely, forest, sea, agricultural areas and bare rock areas. According to 
the authors, the training and validation data sets were constructed such as to be representative 
for all categories. The adopted neural network approach was found to provide better 
classification results than traditional statistical methods such as the nearest neighbour method. 
 
Adaptive Resonance Theory 
This type of network models evolved from studies about the parallel functional structure met 
in self-organising biological neural pattern recognition processes. The prime characteristic of 

the adaptive resonance theory is its ability to 
adequately address the stability-plasticity 
problem, known for most neural networks. 
This is more of a dilemma rather than a 
problem and can be summarised thus: 
insignificant variations to the input patterns 
cause the network to generalise wrongly. The 
ART networks maintain their stability in 
classifying already trained patterns whereas, at 
the same time, they are plastic enough to learn 
new pattern categories. The simplified model 
presents two layers of binary neurones, the 
comparison layer (F1) and the recognition 
layer (F2) in a fully connected network. F0 

denotes a layer of nodes corresponding to an input vector. A forward Long-Term Memory 
(LTM) Wf with continuous synaptic weight values connects each neurone of F1 to all 
neurones in F2. Also, a backward binary valued LTM Wb connects the neurones of the F2 
layer with those of F1. There is also a reset function to compare the inputs to a vigilance 
parameter and modules G1 and G2 presenting gains that control the data flow at each stage. 
The neurones of layer F1 receive three inputs: a component of the input pattern, the feedback 
pattern and a gain G1. The neurone is activated (sending 1) provided that at least two of these 
three inputs are high enough (two-thirds rule). Each neurone of the recognition layer 
computes the weighted sum of its inputs on a “winner takes all” basis and sends its output as a 
feedback to F1. The active neurone in F2 accepts an interception by the reset function on the 
grounds that the selected class differs from the input pattern by more than a vigilance level. 
The description of the algorithm that follows comes from Krose and van der Smagt (1996): 
 
Let N denote the number of neurones in F1, M the number of neurones in F2, ρ the vigilance 
threshold that takes values from [0,1]. The forward and backward LTM synaptic weights 
between neurones i and j are represented by the corresponding letter (f or b respectively) as 
superscript, for 0<i<N and 0<j<M. During the initialisation stage the values of the synaptic 
weights are given by (7). 
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After the application of the input vector X, the F2 neurones compute their activation values y’ 
by (8) and the selection of the winning neurone k follows, 0<k<M. 
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If [Wk(t)X / XX]>ρ then set for all l, 0<l<N 
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else disable neurone k and restart the computation of activation values. The algorithm 
provides the system with “knowledge” of patterns. The network attempts to fit each new 
pattern into one of already known classes. If this is not possible, depending on the threshold 
value, the system creates a new class holding the new pattern, without corrupting its previous 
memories. 
 
Gopal et all. (1999) implemented a fuzzy ART neural network in order to be used for global 
scale land cover classification. The classification involved eleven land cover patterns and the 
initial training data set consisted of normalised difference vegetation indices derived from a 
AVHRRR data set. The 80% of the data were used for network training and the rest 20% 
remained unseen and were used as a test of the classification accuracy. The results showed 
that the use of the artificial neural network yielded better results than the traditional maximum 
likelihood method and that increase in the training to test initial data ratio does not result in 
better results. The study shows that the use of ANNs is a viable alternative for global scale 
land cover classification. 
 
Comparisons have also been conducted among various algorithms, such as the maximum 
likelihood method, the linear mixture model and ART neural networks, as to their efficiency 
in the estimation of vegetation mixtures within forest stands (Carpenter et all., 1999). In their 
study, Carpenter’s team obtained the initial data set from a Landsat TM image of the Plumas 
national forest, located in Northern Sierra Nevada Mountains in California. The mapping of 
vegetation within various stands was based on mix quantification of needle-leafed conifers 
and broad-leafed hardwoods. The vegetation mixture at each stand were described not only as 
mosaics of pixels each identified by its primary vegetation class, but as vegetation blends 
even at pixel level as well. The results of the study yielded that ART networks outperform 
traditional methods in both the classification and mixture cases. 
 
The Hopfield Network 
This type of network was introduced by the physicist John Hopfield in the early ‘80s, based 
on content addressable memory (CAM), which simulate the ability of human memory to 

retrieve information having either a part of the 
desired information or some properties of it as 
its input. The network consists of N fully 
interconnected neurones, which update their 
activation values independently and 
asynchronously (Krose and van der Smagt, 
1996) in a recurrent fashion. With the absence 
of discrete layers, the neurones are both input 
and output, presenting states described by 
numbers either of the binary case (1, 0 or +1, -

1) or of the continuous one. The connections between the neurones are bidirectional and 
symmetric (Zaknich, 1998). During the training of the network a set of chosen patterns serve 
as an exemplar to initialise the weights of the network. From this point on, the network will 



respond to the presentation of any given pattern by displaying the exemplar, which is most 
similar to the input. 
Let neurone k have a network input sk. At t+1 this input will be given by (10) The output yk of 

this neurone at time t+1 will be +1 or –1, according to 
the comparison of its net input sk(t+1) towards an 
external input Uk, which, for simplicity reasons, is set to 

0. If sk(t+1)> Uk, then the neurone outputs a +1, otherwise a –1. A stable neurone at time t has 
the same output as it had at time t-1. A state of the network is called stable if, when the 

network is in this state, all neurones are stable 
(Krose and van der Smagt, 1996). With the 
assumption that wjk = wkj, and wii = 0, the 

operation of the network can be described via an energy function (11) which is to be 
minimised with proper selection of the weights. Thus, its minima occur to points representing 
the exemplar patterns, provided that their number is smaller compared to the number of the 
neurones, with an optimum number of exemplars to be at the level of 15% the number of 
neurones (Zaknich 1998, Krose and van der Smagt, 1996). 
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This type of network has been used in super resolution land cover pattern prediction by Tatem 
et all. (2002). In particular, the study focuses on the pixel level and attempts to alleviate the 
problem connected with class mixing within pixels, targeting towards the prediction of spatial 
pattern of sub-pixel scale features. The neurones of the network are placed on a grid and each 
one is referred to by co-ordinate notation. Aerial photography provided land cover targets, 
which were degraded to the spatial resolution of Landsat TM data using a square-averaging 
filter. Thus, each pixel was assigned perfect class proportions that provided the input to the 
network. The spatial distribution of each class at the pixel level was considered as a constraint 
satisfaction problem, the optimal solution of which was determined by the minimum of an 
energy function that characterised a suitably constructed Hopfield network. This was so laid 
out that it could represent a spatial image of finer resolution and the goal for the network was 
to correctly exhibit the sub-pixel classes, a technique which was proved out to be successful. 
 
Conclusions 
With respect to the present survey, the utilisation of Artificial Neural Networks outperforms 
more traditional statistical methods in terms of speed, accuracy, efficiency and complicity, 
relating to landscape applications. Based on the research conducted under this prism, we 
could outline that, both traditional and neural models need to be trained with penalties 
towards simplicity and speed, but the ANN approach caters for easier election of training sites 
(Carpenter et all., 1999), better land cover maps produced (Vassilas et all., 1995), rapid 
convergence and easy interpretation (Luo and Tseng, 2000), better performance (Gopal et all., 
1999) and improved classification accuracy (Berberoglu, 2000, Gong, 1997). 
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