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a b s t r a c t

In this work, genetic algorithms and multilayer neural networks are applied to plant virus identification.
The initial data set is derived via a well known prototype method, which uses specially designed biosen-
sors to monitor the virus reactions. Several techniques have been introduced for preprocessing the plant
virus waves. They include segmentation along the time axis for fast response, nonlinear normalization to
emphasize significant information, averaging samples of the plant virus waves to suppress noise effects,
reduction in the number of samples to realize a more compact network, etc. Given the features of the
acquired virus time-series signals of the problem under study, an evolutionary method is proposed in
order to produce meta-data from the original time-series initial information, reduce the dimensionality
enetic algorithms (GAs)
rtificial Neural Networks (ANNs)
achine learning
ata mining
ioelectric Recognition Assay (BERA)
reprocessing techniques

of the input data space, and to eliminate the noise inherent in the initial raw information. A genetic algo-
rithm is employed so as to smooth out the initial information while, the so produced meta-data sets are
used in the training and testing of the applied neural network, producing fitter training data. The method
is tested against some of the most commonly used classifiers in machine learning via cross-validation
and proved its potential towards assisting virus identification.

© 2009 Elsevier B.V. All rights reserved.

lant virus identification
eature extraction

. Introduction

An important problem arising while analyzing large time-series
ata sets, both in dimension and size, relates to the proper selec-
ion of a subset of the original features. Preprocessing the time
eries to obtain a representative meta-data set not only significantly
educes computational time, but also functions as a smoothing
echnique to weed out possible non-systematic portions of the ini-
ial information, which may, in an extent, inhibit the analytical
rocess. Conventional methods of time-series data preprocessing,
uch as segmentation along the time axis for fast response, nonlin-

ar normalization to emphasize significant information, averaging
amples of the plant virus waves to suppress noise effects, reduc-
ion in the number of samples to realize a more compact network,
nclude descriptive statistical methods such as re-sampling tech-
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niques or moving average procedures, both of which manipulate
the initial information in a fixed width fashion. On the other hand,
time-series analysis plays an important role for phytopathology
and virology, especially as regards to virus identification, which
is made possible due to time-series assessment.

In this manuscript an innovative method is described, aiming
to overcome the limitations posed by the fixed width of the ana-
lytical tools. The algorithm designed allows for the production of
effective meta-data, after having preprocessed the original time-
series information in an evolutionary fashion. Thus, it drastically
reduces the size of the raw data table to more compact sets of
cases and, at the same time, retaining all the crucial information of
the initial time series. This is achieved by the development of ana-
lytical tools of evolutionary adaptive width, propelled by Genetic
Algorithms (GAs) and Neural Networks (NNs). In its present stage
the algorithm is applied to the identification of the Tobacco Rattle
Virus (TRV) and the Cucumber Green Mottle Mosaic Virus (CGMMV),
using an initial raw time-series data set of large proportions and

effectively reducing the length of the input data in each of the
above two cases. The developed system aims to overcome the
problems posed by the dimensionality and noise of the input data
vector on the classification power of NN systems dealing with time
series. The classification potential of the proposed system is also

http://www.sciencedirect.com/science/journal/01681699
http://www.elsevier.com/locate/compag
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mailto:geo_mos@aua.gr
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Fig. 1. CGMMV raw time-series

ompared towards several widely used classifiers, trained and
ested with the same initial time-series data set. The key feature of
he system is the prototyping of the evolutionary procedure under
hich the meta-data sets are genetically formed, enhancing the

dentification potential of the NN. Thus, the algorithm initializes
y employing several testing techniques to design a multilayered
erceptron (MLP) able to use the initial input space as a training
ool and produce a rough neural classifier. The variation introduced
ere and the outmost important contribution of this work is that,

nstead of training and testing the developed MLP with the whole
nitial data set, the algorithm alternatively engages an evolutionary

ethod to genetically manipulate the time series.
The manuscript, except from the present introductory part,

onsists of five more sections. From this point on, the general back-
round regarding the problem is being laid out, interconnecting
ime-series analysis with the virus identification problems, as well
s the potential solutions to them. Also, a brief reference to related
ork is presented, both regarding time-series feature extraction

nd virus identification using artificial intelligence tools. The third
art summarizes the materials and methods undertaken by the
esearch. Here, a link is attempted among plant virus identifica-
ion methods, such as the Bio-Electric Recognition Assay (BERA)

ethod and artificial intelligence tools, such as NNs and GAs. In
his section, a description of the developed frontend Graphical User
nterface (GUI) is also attempted, while at the same time referring
o its functional operation. The fourth section of the manuscript
ives a detailed description of the inner works of the evolutionary
lgorithm, developed especially for training meta-data production.
inally, the paper consummates by presenting the results and the
onclusions reached in the framework of the research.

. Background

.1. Problem essentials

.1.1. The Cucumber Green Mottle Mosaic and Tobacco Rattle
iruses and their identification

Plant viruses, although not as well understood as their human

ounterparts, are infectious intracellular parasites, that lack the
eans of long-term sustenance or reproductive ability, without the

upportive existence of the host. Up to now several hundreds of
lant viruses have been described and, with time, new ones con-
inue to be reported.
s obtained by the BERA method.

Two of the most well known viruses posing serious economic
impact on crops still nowadays are the TRV and the CGMMV, both
of which belong to the category of viruses whose infectious mate-
rial lies in their RNA strands, causing serious productivity pressure
on their hosts. The symptoms of the infected plants include notched
leaf blade margins, yellow ring-spotting and phenotypic concentric
line patterns, mottling, necrotic local lesions, distorted growth, and
systemic necrosis. TRV has a host range of over 350 plant species
and is transmitted by soil-inhabiting nematodes of the genus Tri-
chodorus, mechanically (on infected tools) grafting and seed, while
it has not whatsoever been reported to be spread by plant to plant
contact. On the other hand, CGMMV pathways include seed trans-
mission and carrying water or soil particles. Their identification and
early handling is of the outmost importance for agricultural crops
and yield. The general framework of the research presented in this
manuscript is to contribute in the plant virus identification problem
by combining GA with NNs in order to develop a friendly software
tool for their classification.

In this work, we engage the recently introduced BERA method
(Kintzios et al., 2001a,b, 2003, 2004, 2005), in order to acquire the
initial data set. The products of the method are time series of elec-
trical potential difference, resulting from the virus interaction with
properly structured reagents. The two plant virus waves are mea-
sured for 331 s, for which, at a sampling rate of 10 Hz, the average
value was calculated and recorded for each second. Therefore, 331
average values are obtained for one signal channel corresponding
to one virus (signature). Fig. 1 depicts a randomly chosen set of sig-
natures/time series produced by CGMMV, when reacting with the
biosensors of the BERA method. The X-axis units are time stamps,
while Y-axis units are measurements produced by the sensor. While
reacting to the biosensors, each of the virus waves exhibit patterns
of responses (i.e. the amplitude of the virus waves) over specific
ranges of concentrations. These responses are thus considered as
virus features, a real identification signature, which should be ana-
lyzed and classified in order to identify the pathogen in question.

2.1.2. Meta-data motivation
Time-series analysis engages methods which generally formu-
late two basic analyzing categories: forecasting and identification,
both of which encompass processes to understand the driv-
ing underlying forces and structures that produced the initially
observed data. In most cases the attempt to analyze time-series
information is marred by inhibitory factors such as the dimen-
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Fig. 2. Raw (a) and genetically smo

ionality of the series, as well as the noise inherent in it. Thus,
he data involved are regarded as consisting of two components:

systematic identifiable pattern and random noise in the form
f a systematic error, which intervenes and renders the analysis
ifficult, if not impossible (Box and Jenkins, 1976).

In order to minimize the systematic error it is often essential to
reprocess the time series by applying a smoothing technique on
he raw time-series information, so as to reduce both the systematic
rror and the dimensionality of the time series. The proposed sys-
em utilizes an evolutionary data segmentation method to achieve
his, by producing meta-data which are able to better train the neu-
al classifier. Fig. 2 gives an example of the smoothing procedure
esults referring to one of the signatures acquired for the TRV. In
ig. 2a the initial raw time-series information is depicted, where
ach signature comprises of 331 average values, received from the
ata logger, and the lines seem rather jagged and unsettled. Fig. 2b
emonstrates the results of the evolutionary smoothing procedure
e followed, depicting the meta-data produced. As we will see, the
roposed method achieved to reduce the number of measurements
aken from each virus wave to 84 measurements per signature,
onsequently producing smoother lines.

.1.3. Problem description: analytical tools’ limitations
Exploratory time-series data analysis recently engages a wide

ange of artificial intelligence tools, such as Artificial Neural Net-
orks (ANNs) and GAs, the proper configuration of which employs
n most cases various forms of data preprocessing for the definition
f the input vector (Liu et al., 2007). The first and foremost step in
his kind of analysis is the smoothing out of the error, using various
echniques which almost always engage some kind of local averag-
ng or re-sampling of the time-series sequence, in order to induce
out (b) time-series TRV responses.

mutual cancellation of the non systematic components of individ-
ual observations. Applying filtering techniques, most often than
not referred to as “smoothing procedures”, may remove random
variations and reveal trends and cyclic components of the series,
provided that their parameterization, which is most crucial in their
success (Frank et al., 2001), has been carried out carefully. The most
common smoothing techniques include re-sampling, averaging, as
well as various exponential smoothing methods, which encom-
pass simple averaging techniques and moving averaging ones, the
latter being most effective in the cases that there are trends and
signatures inherent in the time-series data.

According to the moving average smoothing technique, each
component of the time series is replaced by either the simple or
weighted average of n surrounding components. In this case, n
is called the width of the smoothing moving window (Box and
Jenkins, 1976; Velleman and Hoaglin, 1981). For the re-sampling
procedure, the time series is transformed into a new one, con-
sisting of every n-th value of the initial data, in a scope to reduce
dimensionality, in which case n is the re-sampling rate. Of course,
smoothing medians can replace smoothing means in the first case,
having as their main advantage that they are less biased by out-
liers within the smoothing window, although in the absence of
outliers, smoothing medians produce more irregular curves than
their averaging counterparts. On the other hand, the width of the
moving window, as well as the period of the re-sampling rate, play
the most important role not only on the accuracy of the smoothing

procedure, but also on the amount of data which is to be stripped
off from the initial information. Define it excessively and we may
end up with a totally different time series with mass amount of
information thrown away and lost, while more conservative defini-
tions may result in an ineffective smoothing procedure and a mostly
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oisy result. So far, the definition of the width of such exploratory
ools has been defined in a static fashion, that is, the moving aver-
ge window width does not adapt to the underlying information. In
rder to overcome this difficulty, the evolutionary data segmenta-
ion method we introduce, runs through the time series utilizing a
ibrant grouping procedure, which auto-corrects its width accord-
ng to the data explored and produces meta-data sets which are
hen used as educational material for a NN classifier to perform the
dentification. Thus, we attempt to overcome the analytical prob-
ems posed by the static definition of the moving average window

idth, replacing it with an adaptive, dynamically formulated one.

.2. Related work

In recent literature, numerous are the research projects engag-
ng time-series data preprocessing as a preliminary step for the
raining of data mining tools, especially neural networks. In
005, Palmer et al. (2005) developed a machine learning system
ased on MLP neural networks for tourism time-series forecast-

ng. The research engaged data concerning the Balearic Islands for
period of fourteen successive years from 1986 through 2000. The

esearchers used logarithmic transformation and differencing to
reprocess the time series in order to detect trends, minimize noise,
ncover relationships and flatten the variable’s distribution, pro-
edure which eventually resulted in a more accurately forecasting
LP. During the same year, Zhang examined the effectiveness of

ime-series de-seasonalization and de-trending on neural network
erformance (Zhang and Qi, 2005). Their results clearly indicate
hat neural networks are not able to model seasonality directly,
ut they rather need time-series preprocessing, which is critical in
rder to build an effective neural forecaster. Other types of pre-
rocessing have also been tested. In 2006, Cannas et al. (2006)
sed discrete wavelet transforms and data partitioning to prepro-
ess time-series data regarding monthly runoff for the Tirso basin,
ocated in Sardinia in Italy. The meta-data were used to train a
eural network to forecast runoff one month ahead. Their results
how that preprocessing with the discrete wavelet transformation
echnique produces more effective meta-data than using noisy raw
ignals. Still in 2006, Simon et al. (2006) conducted research deal-
ng with the usefulness of time-series clustering. Having noted the
ppearance of papers stating that time-series clustering is mean-
ngless, he contradicts this conclusion by introducing the unfolding
reprocessing methodology. The research shows that, provided
hat adequate preprocessing has taken place, time-series cluster-
ng is eventually useful. Recently, Wu et al. (2009) investigated the
erformance of three time-series preprocessing techniques in the
erformance of a neural forecaster. Specifically, moving average,
ingular spectrum analysis and wavelet multi-resolution analysis
ere engaged to produce meta-data which were compared to un-
reprocessed time-series data as regards to their performance as
raining sets for a neural network estimating daily flows. The results
f the study stress the importance of data preprocessing as essential
or the production of a fitter meta-data sets. Of the three prepro-
essing methods, the moving average one gave the best results.

The analysis and feature extraction for time-series data most
ften than not, resorts to regression models, such as the autore-
ressive and the moving average methods, which are inhibited by
he non-linearity inherent in the input data space. Several cases of
NN systems (Avramidis and Iliadis, 2005; Bodri and Cermak, 2000;
ilho and dos Santos, 2006; Harpham and Dawson, 2006; Jain and
umar, 2007; Kerh and Lee, 2006; Ni and Xue, 2003; Pulido-Calvo

nd Portela, 2007; Sahoo et al., 2006; Wei et al., 2002; Yadav et al.,
007), Fuzzy Logic (Monfared et al., 2009; Fazel Zarandi et al., 2009;
ai et al., 2009; Kolman and Margaliot, 2009; Fernandez et al., 2008)
nd Evolutionary Algorithms (Gallant and Aitken, 2003; Hansen
t al., 1999), along with Bayesian, Nearest Neighbors and Decision
ics in Agriculture 70 (2010) 263–275

Tree methods (Mora-Lopez et al., 2005; Niu and Yang, 2008; Weng
and Shen, 2008; Arroyo and Maté, 2008) are all included into a
vast list of methodologies engaged in order to address the afore-
mentioned problems. Also, a lot of research has been dedicated
in studying the development and prototyping of NN design or the
training and testing via meta-heuristic methods (Abraham, 2004;
Elizondo et al., 2007; Niska et al., 2004; Prudencio and Ludermir,
2004; Rossi et al., 2005; Sivagaminathan and Ramakrishnan, 2007).
Finally, the multi-classification systems design and prototyping has
been contemplated during the recent years, in order to provide
models which might be rendered as potential problem solvers.
In this latter case, multiple classification techniques and models
are combined in individual systems trained to provide solutions to
pattern recognition problems. Classifier combination approaches
might be categorized mainly over three dimensions in this con-
text: the representational and the architectural methodology, as
well as the learning technique (Alpaydin, 1998; Kuncheva, 2000).
All these combinatorial methods might potentially provide models
able to discern through the input space and offer feasible solutions
to problems which, either cannot be solved by single classifier pow-
ered systems, or which might be more effectively handled by a
multi-classifier one.

As regards to machine learning tools implementation in micro-
biology, few are the occasions that relate to plant viruses. Morimoto
et al. (1997) designed an intelligent control technique engaging NNs
and GAs for optimal control of the microbial processes developing
during the storage of fruits. Their system linked relative humid-
ity with fruit water loss and increase of the percentage of lesion
by fungi in the time unit. In the first step of the process, dynamic
responses of water loss and fungal development of fruit as affected
by relative humidity were identified in an actual system and then,
a model of a single input and two outputs was built using NNs. The
inputs of the network received time-series data, while the single
output gave a series of values for the objective function they had
earlier set. A GA was then engaged to seek out the optimal values
which maximized the objective function.

On the contrary, numerous are the studies which engage
machine learning tools for zoo-blast virus identification. One year
later, Haydon et al. (1998) and his team attempted to identify cir-
rhosis in patients with chronic hepatitis C virus infection. In their
research they trained and validated ANNs with routine host and
viral parameters so as to create an automated system trained such
as to identify the presence or absence of cirrhosis in the patients.
The results showed that the ANN outperformed logistic regression
for that matter, reaching at a sensitivity of 92% and a specificity of
98.9%. The predictive values of the positive and negative tests were
95% and 97% respectively, rendering ANNs as potential problem
solvers. By the end of the previous century, artificial intelligence
had established its potential as a useful tool for microbiological and
biochemistry research. Nielsen et al. (1999) used machine learning
classifiers in order to predict the pathways that proteins follow en
route to their final destinations within a cell, known as sorting sig-
nals. The researchers engaged SignalIp, software developed for that
purpose and based on NN technology, for the secure prediction of
the most well known sorting signal, that of the secretory signal pep-
tide. In the course of the research, the software was enhanced with
a hidden Markov chain so as to discriminate between cleaved sig-
nal peptides and un-cleaved signal anchors. More recently, Dawson
et al. (2006) used an ANN for influenza virus type A surveillance.
Specifically, the network was trained so as to recognize influenza
fluorescence image patterns, exhibiting high clinical sensitivity

and specificity values of 95% and 92% respectively. Also, various
NN strands have been engaged in the development of effective
computer-augmented pathology tools, helpful in epidemic inhibi-
tion or the identification of individuals running a risk of infection.
Bayesian networks have been found to be effective in discriminat-
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Table 1
Training and testing data sets for the plant identification problem.

Virus Train set Test set Total cases
T.J. Glezakos et al. / Computers and El

ng between normal from diseased or viral from bacterial tissue
amples in mid to late stages of infection (Gilfeather et al., 2007),
hile identification in earlier stages needs more elaborate time-

eries analysis tools.

. Materials and methods

.1. Development platform

The proposed system is in essence a genetically trained NN with
he architecture of a MLP. It was developed using the programming
anguage of Python, enhanced by the freely available open source
ast Artificial Neural Network Library (FANN), which was especially
rapped up for use with the language. The system was built up

rom scratch and is in an open source state, meaning it is freely and
penly available to everyone. Python is a programming language
ith a relaxed learning curve, while remaining powerful and incor-
orating efficient high level data structures as well as a simple and
ffective approach to object oriented programming, allowing for
rograms to be developed on most of the operating systems avail-
ble today. The source code was written under Ubuntu Linux, but
an be run on a windows–based system just as easily. It is also sup-
orted by a vast number of freely available libraries, one of which

s FANN, with support for both fully and sparsely connected net-
orks. Cross-platform execution in both fixed and floating point

ypes are supported, while it also includes a framework for easy
andling of training data sets. For comparison reasons, the Orange

ibrary for Python (Demsar et al., 2004) was utilized so as to con-
truct the classifiers which the proposed system was compared
ith. It is component-based data mining software including a range

f preprocessing, modelling and data exploration techniques which
ffered the naïve Bayesian, the decision tree and the k-Nearest
eighbors (k-NN) classifiers which were used as benchmarks in

he comparison with the NN. The evolutionary process has been
esigned in Python from scratch and incorporates a GA in order to
roduce fitter meta-data out of the initial raw time-series ones. The
A assesses the potential of each designed NN, engaging its fitness

unction for that matter.

.2. BERA method

BERA is a recently introduced method using biosensors to
dentify various chemical and molecular structures. The method
ssentially assesses the structures’ interactions with a group of cell
omponents immobilized in a gel matrix preserving their physio-
ogical functions. The structures to be identified are referred to as
igands in the sense that they are usually smaller molecular units
i.e. viruses – which specifically bind to the larger biosensor cells.
his procedure ultimately results in the alteration of the reagent
hysiology and the deliverance of electrical energy. Recent stud-

es (Kintzios et al., 2001a,b, 2003, 2004, 2005) have revealed the
sability of the method for cheap and fast identification of human

nfectious viruses and its potential to replace more time-consuming
nd costly methods, such as the Reverse Transcription Polymerase
hain Reaction (RT-PCR).

The method is also massively propelled forward due to the fact
hat the technology behind the biosensor production is advancing
y major leaps. After having gone through a number of improv-

ng biosensor generations, BERA sensors were radically redesigned
o reach the fifth generation of their design development, which

ncorporates sensors almost ideal for diagnostic applications. In this
fth generation we shall meet sensors of extremely reduced size,
onsisting of a disposable array of gel beds loaded with reagent
ells. Their production is characterized by cost at the lowest levels
nd a very high rate of reproducibility and speed of manufactur-
CGMMV 549 91 640
TRV 530 101 631

Total cases 1079 192 1271

ing. Moreover, the fifth sensor generation has achieved to reduce
assay time to approximately 12 s. The BERA biosensor method has
already been successfully implemented to numerous applications,
mainly related to both human and plant virus identification, while
its evident potential has been recorded into various bibliographical
references (Thach et al., 2003; Boltovets et al., 2004; Skládal et al.,
2004; dos Santos Riccardi et al., 2006; Prieto-Simon et al., 2008).

For the purposes of this research, the BERA method was used
so as to provide the initial time-series information regarding the
two viruses. As it has been pointed out the two viruses’ waves
are measured for 331 s. That is, for each virus, the data logger of
each biosensor was engaged to produce 331 average values, corre-
sponding to measurements taken with a sampling rate of 10 Hz.
These average values were used in order to form the signature
of the identifiable object. A data set consisting of 1271 cases was
thus constructed and used as an instructional scheme for the spe-
cially designed evolutionary NN classifier. Table 1 reports on the
distribution of the various patterns acquired for the two viruses.

The usual procedure requires the partitioning of the initial data
set into the training and testing data sets using a well known
dividing scheme, resulting in 1079 and 192 cases, respectively, The
BERA method was thus configured so that it utilized special types
of biosensors according to the target-specific antibody that was
contained on their membrane, specifically for each virus. So, for
each example we came up with different biosensor’s response data
curves. Thus, the overall data set was balanced for this two-class
classification problem, consisting in particular of 640 and 631 cases
for the CGMM and TR viruses, respectively.

3.3. System parameterization

3.3.1. NN parameterization
ANNs were developed in an attempt to simulate the human

cerebral functions (Haykin, 1989). In this context, an ANN is a soft-
ware device consisting of a number of simple processing elements
(neurons) interconnected and operating in parallel. Each neuron is
only aware of the signals it receives from other connected neurons
and the information it sends from time to time to other processing
elements, a procedure enabling the network to learn from exam-
ples, through iteration. During the learning process each neuron’s
synaptic weight vector is repeatedly adjusted in response to stimuli
presented as inputs requiring the presence of a known output.

The neural classifier that has been utilized follows the MLP archi-
tecture with sparsely connected layers. The code was enhanced
with a NN object created from the FANN Python library, which per-
mits for a vast number of parameterization on the N that it handles.
The neural object developed consists of an input layer of varying
number of units, conforming to the meta-data produced during the
evolutionary procedure. The most potent of these meta-data are
eventually used in the supervised learning of the neural classifier.
The variability of the input layer of the neural object was dictated by
the GA producing the meta-training data sets, a procedure in which
different numbers of input data are produced by each trainer, in an

effort to handle the dimensionality of the input space. Thus, it was
straightforward to create an elastic input layer, able to adapt to
the length of the input vector for each generation. Table 2 summa-
rizes the parameterization used in the neural object of the proposed
system.
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Table 2
Neural object parameterization.

Parameter Value

NN type Back propagation MLP
Input layer Adaptive
Hidden layer 30 neurons
Output layer 2 neurons
Connection rate Sparse array 80%
Training algorithm RPROP Increase factor 1.5

Decrease factor 0.5
Delta min 0.0
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Delta max 0.5
Activation function Hidden layer Sigmoid symmetric

Output layer Linear piecewise
Activation steepness 0.5

The decision regarding the use of 30 neurons in the hidden layer
f the neural object was assisted by the automatic search proce-
ure offered by the FANN library, known as cascade training on data,
hich determines the optimal number of hidden layers and neu-

ons based on sequential training. Thus, the network starts out its
raining empty in the hidden layer and then, as training contin-
es, it adds neurons one by one and layer by layer, until an optimal
N structure is reached. The output layer consists of two binary
eurons so as to classify the input space to one of the two viruses.
hus, the target for the output has only one non-zero element, such
s 10 or 01. The training of the network was dictated by the Rprop
raining algorithm which outperformed in the evaluating tests both
he Incremental Training and the Simple Batch Training algorithms.
he Rprop algorithm is a branch of the batch training ones which
pdate the weight table once after the whole epoch has been com-
leted, in contrast to the incremental algorithm which updates the
eights immediately after each pattern has been shown to the
etwork.

.3.2. GA parameterization
GAs on the other hand, are inspired by evolutionary biology,

nd especially driven by the Darwinian axiom of the “survival of
he fittest”, incorporating numerous biological procedures such as
nheritance, selection, crossover (otherwise referred to as recombi-
ation) and mutation. They are mostly implemented as computer
imulations which search the input plane for better solutions to a
iven optimization problem. A GA starts out with an, often ran-
om, initial population of encoded representations of candidate
olutions. These representations are referred to as chromosomes,
enotypes or genome, while the candidate solutions are referred
o as phenotypes. The algorithm proceeds by generations each
f which is comprised by genotypes of the previous generation,
lected basically on their fitness and modified on the grounds of a
ossible recombination or mutation to form a new population of
igher expected fitness. Table 3 reports on the parameterization
cheme of the GA.
In its first phase, the system developed during the current work
ses the success rate of the neural object to form the fitness function
f the GA governing the production of meta-data. As the success
ate we considered the ratio of the number of the correctly iden-
ified signatures to the number of the total signatures of each

able 3
A parameterization.

Parameter Value

Ideal success rate 95%
Trainer population 12 per generation
Number of generations 500 max
Selection method Roulette wheel
Mutation rate 5‰
Crossover rate 40%
ics in Agriculture 70 (2010) 263–275

meta-data set. The success rate thus calculated is a characteristic
of each trainer in each generation and stands for the fitness value
of the trainer. The GA seeks to minimize the distance of this fitness
value to an issued user defined success rate, set in the initializa-
tion stages. In the next and final phase, the neural thus produced is
tested using 10-fold cross-validation on testing data which conform
to the structure of the winning chromosome of the evolutionary
process.

3.4. Data mining tools used for assessment

The proposed solution was compared as regards to its perfor-
mance towards three other widely used data mining tools, namely
the naïve Bayesian, the decision trees and the k-NN classifiers, pro-
vided by the Orange library for Python (Demsar et al., 2004).

The naïve Bayesian classifier derives from the Bayes’ Theo-
rem. Such classifiers may be trained very efficiently in supervised
learning schemes and further be applied successfully to real world
problems. A great advantage of these classifiers is that, for most
of the problems, but not independent from that, they require rela-
tively smaller training data sets.

The classification tree classifiers, also referred to as decision
trees or regression trees, are also predictive models, which engage
a mapping of the features affecting the status of a class variable to
conclusions about its target value. They essentially are generators
of rules referring to the condition of the class they predict, which are
clear and can be easily understood and explained. The tree grows
up due to a technique which is called ‘binary recursive partitioning’.
According to this procedure, the input data is iteratively split into
partitions of clear meaning. Then each partition is further split into
new ones and so on, until a class value is finally met. A tree thus
built has leaves for class values and branches for conjunctions of
features which lead to these values. Classification trees are models
which require supervised learning in order to learn from example
and be able to generalize on real world problems. It systematically
breaks up the input vector into a number of partitions such that the
diversity of the class value is minimal within each partition. This
procedure produces homogeneous partitions as regards to the fea-
ture class in question. The process is repeated for all the fields of
the training set and continued at each next node, until a full tree
has been built. In this work we have utilized the pruning for the
tree with a factor of 2.

Finally, the k-NN classifier was compared against the proposed
system. This classifier is ranked among the simplest in apprehen-
sion and the hardest in implementation algorithms in machine
learning problems. The algorithm is based on the principle of prox-
imity resemblance, i.e. nearest objects are more possible to be alike
than farther situated ones. Thus, an object in the input plane is
classified according to the majority vote of its k-nearest neighbors.
The parameter k is the most vital in the implementation of the
algorithm, deciding the crucial distance in which proximity resem-
blance takes effect. Its optimal estimation is very hard to come
by and is made feasible only through trial and error techniques
or cross-validation. Generally, larger values of k reduce the possi-
bility of noise creeping in classification, but render the boundaries
among the values of the class vaguer. In our research, after several
tests for k, we have elected k = 20.

4. System development

4.1. Meta-data set configuration
Each meta-data set produced by the GA comprises of equal num-
ber of cases to the original data set. The only difference is that
the number of samples per case (i.e. the virus signature) has been
shrunk, according to the evolutionary procedure adopted. Inside
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Table 4
Structure of a random trainer chromosome divided in the behavioral mechanism and the activation part.
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Behavioral mechanism Activation part

1 0 1 0 0 1

ach training meta-data set, each case consists of three parts: the
rst part is produced by mapping the trainer chromosome onto the

nitial time-series information. The second part, also referred to as
tructural information, is the reagent utilized by the BERA method
n order to produce the virus signature. Lastly, the third part is com-
lemented by the binary output class for the CGMMV and the TR
iruses respectively. In the following sub-sections we describe the
onfiguration of the trainer genome, the mapping of each trainer
s well as the encoding of the output class.

.1.1. Trainer configuration
Through the present research we achieve to prototype the pro-

uction of fit meta-data out of time-series data, by utilizing an
nnovative GA. The first and subsequent generations of the GA start
ut by assembling a population of a user defined number of chro-
osomes, the genome of which consists of randomly chosen binary

enes. Each chromosome is used so as to manipulate the input
aw time-series data according to their configuration, in order to
roduce fitter educational meta-data sets used in the supervised

earning of the NN. Table 4, depicts the genome of a fictitious chro-
osome which, for demonstration reasons represents an original

ime-series data set of 10 values. As shown, the genome of the
hromosome is divided in two parts.

The main part consists of a number of randomly chosen binary
its, equal to the time segments of the initial raw time-series data
nd is called the ‘activation part’, for it bears as its duty to carry out
he instructions given by the behavioral mechanism. The second
art of the chromosome, located at the beginning of the genome,

s the ‘behavioral core mechanism’ of the chromosome. It consists
f two supplementary random binary bits (0 or 1), the structure
f which defines a set of rules deciding the actions taken by the
hromosome towards the raw data that it manipulates.

.1.2. Data manipulation and chromosome mapping
Each training chromosome exists in order to map its genes onto

he raw data set, according to the configuration of its core mecha-
ism. For each generation the algorithm produces equal to the user
efined number of the chromosomes/trainers meta-data cases. The
roduced meta-data sets are in turn used for the training of the NN
nd the best set is ultimately chosen. The mapping of the chromo-
ome onto the raw data set is essentially a descriptive statistical
unction. Other mapping functions may also be used. Each chro-

osome behaves as dictated by its core mechanism genes. If these

re 00, then the chromosome is of the “Discard-All-Zeros” type and
ngages a resampling function, with which the raw time series will
e stripped off of its values for which the corresponding genes of the
rainer is 0. If the core genes are 11, then the chromosome behaves
ccording to a “First-One-Last-Zero Average” clustering function,

able 5
apping of trainer chromosomes onto raw initial time-series data, according to their cor

Raw time series 44 32 17 8
Chromosome genome 1 0 0 1

Core genes Meta-data
00 44 8
11 31 8
01 32 8
10 27 8
1 0 0 1 0 1

with which it extracts the average of the initial time-series ele-
ments for every group of its own genes defined as starting with
the first 1 and ending with the last zero inside the main body of
the chromosome. Likewise, if the core genes are 01 or 10, then the
chromosome will engage a “First-One-Last-Zero Median” or a “First
One Last Zero MinMax” behavior, respectively. These are cluster-
ing functions providing the median or the absolute difference of the
maximum to the minimum value for the clusters defined as men-
tioned above. Table 5 gives a brief numerical example of such an
evolutionary data mapping for one of the TRV signatures, using a fic-
tional raw time series of ten values and an accordingly formulated
trainer/chromosome.

In this example, if the core mechanism genes were 00, then the
trainer would function as a Discard-AllZeros resampling procedure,
eliminating the corresponding values (32, 17, 12, 1, 30) for which
its genes are 0. Thus, we would end up with a meta-data frame
such as 44, 8, 8, 18, 48. If the core mechanism genes are 11, then
the trainer would function as an averaging procedure, creating seg-
ments of data with the first 1 and the last 0 of its genes. In this case,
we discern 5 such segments: the first one (1, 0, 0 for the trainer)
comprises of the three first values (44, 32, 17) of the raw time series,
which are averaged producing the value 31 for the first segment.
The next segment is the single 1 (4th gene of the trainer), preserv-
ing the value of 8 in the meta-data frame. The following segment
comprises of the genes number 5, 6, and 7 of the trainer (1, 0, 0)
averaging the corresponding values (8, 12, 1) of the time series to
the number 7. The fourth segment comprises of genes number 8
and 9 (1, 0) giving the average of 18 and 30 which is 24, followed
by the last single segment of the trainer, the last 1, which preserves
the last value of the time series, number 48. In this case we would
end up with a meta-data frame of the types 31, 8, 7, 24, 48. In the
same sense, the meta-data for the combinations of 01 and 10 of the
core mechanism genes are produced by utilizing the median and
the max–min distance respectively. By imprinting the structure of
the trainers’ genome we produce a number of meta-data cases in
each generation equal to the number of the trainers’ population.
These are in turn fed into the neural object and their performance
is monitored and acquired, in an attempt to include the most potent
chromosomes into the next generation.

After the mapping of the trainer chromosome on the initial raw
time-series data, we end up with a series of meta-data sets the
number of which equals to the number of the trainers in each gen-
eration. Inside each meta-data set, the number of cases is equal to

the number of the cases of the initial time-series information. We
discern two types of meta-data sets, that is the training meta-data
set and the testing one, with similar layouts. The performance of
the neural classifier was monitored in the testing phase of the sys-
tem. The output of the produced testing meta-data sets was known

e behavioral genes for the TRV (01).

Input data Output

8 12 1 18 30 48 01
1 0 0 1 0 1

production (one case)
8 18 48 01
7 24 48 01
8 24 48 01

11 12 48 01
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Fig. 3. The course of the evolutionary process.
70 T.J. Glezakos et al. / Computers and El

eforehand, so the success rate of the proposed system was esti-
ated as the ratio of the number of the correct responses from the

eural object to the number of the total cases in the testing meta-
ata set. Note that the training and testing cases do not include the
ombinations of 11 and 00. Of course the system may output one
f four possible combinations, two of which correspond to the two
iruses (10 and 01) and only one is correct each time. Given that
n the initial raw information acquired by the BERA method, there

ere no samples not belonging to one of the two viruses (Table 1),
he algorithm considers the probable outputs 00 and 11 as failures
hatsoever.

.2. Layout of the algorithm

Fig. 3 depicts the algorithm applied step-by-step.
The developed algorithm initiates by populating its first gener-

tion with a number of trainers, the plurality of which is defined by
he user. As shown in the previous sections, the trainers are binary
ectors, which are considered as chromosomes behaving in certain
redefined ways and able to appropriately manipulate the initial
aw time series. After the testing phase, each trainer is assigned a
tness value, i.e. the success rate of the NN trained and tested with
eta-data produced by the corresponding trainer/chromosome.

hereinafter, the next and subsequent generations are formulated
ccording to a selection policy which elects the fittest members of
he previous generation of trainers.

The user also defines the ideal success rate to be approached
n the initialization stages of the algorithm. The most potent and
owerful trainers are the ones closer to the user defined ideal suc-
ess rate set in the initialization stage of the algorithm. Thus, after
number of subsequent generations, the algorithm is expected to

reate a powerful, highly accurate NN through the evolutionary
pdate of its weight vector.

.3. The survival of the fittest

Each meta-data set comprises of a number of cases equal to
he initial raw time-series data, and a number of attributes (i.e.
olumns) genetically reduced by the mapping of the corresponding
rainer. So, after the testing phase in each generation, each trainer
s assigned a fitness score, which is derived by the trainer’s per-
ormance assessed by the success rate of the neural object. This is
ssentially the proximity of the potential of the trainer to an opti-
al solution set in the initialization of the process. Let rij be the

uccess rate of the NN trained and tested with the meta-data pro-
uced by the i-th trainer of the j-th population of the algorithm.
hen, the fitness score fij assigned to the i-th trainer of the j-th pop-
lation, should be fij = 1/|rij − h|, where h is the threshold, which
aximizes the fij. As fij rises in value, rij moves closer to h and our

ystem crawls nearer to the ideal solution h arbitrarily set in the
eginning of the algorithm. Maximizing fij produces stronger and
ore potent populations of trainers. Note that the success rate of

he neural object is measured during the testing phase, where it is
pplied on totally unseen cases, i.e. the evaluation meta-data set.

The algorithm stores the meta-data produced, and then updates
ach trainer with the corresponding fitness score. The policy of
electing the best offspring incorporates the stochastic procedure
nown as roulette wheel selection. Thus, the fitness score fij of the

-th trainer (i = 1, 2, . . ., V) of the j-th population (j = 1, 2, . . ., M) has
robability pij = fi j/

∑V
i=1fij, ∀j = 1, 2, ..., M of being selected.

It is essential to add at this point that a trainer may be selected

ore than once to form the next generation of chromosome selec-

ion pool. Of course, the frequency of each trainer in this array is
roportionate to its potential. After the corresponding fitness score
as been assigned to each trainer, the algorithm incorporates a fit-
ess proportionate selection operator, which elects to perpetuate
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research proceeded in two major phases:
Fig. 4. System frontend interface ha

he fittest chromosomes, i.e. the ones with the higher fitness score.
n this context, chromosomes with relatively high fitness scores are
ess likely to be eliminated. On the other hand, less fit chromosomes

ay not be extinguished from the genetic pools of the next gener-
tions. This results in the fact that some weaker solutions to the
roblem at hand may survive the algorithm sweep for the forming
f the next generations, conveying their potentially useful genes
o their offspring. Thus, the algorithm shifts and turns to formulate
uccessive generations, until it succeeds in finding a potent enough
eta-data set in order to effectively update the weight vector of the

eural object.

.4. System frontend

The Graphical User Interface (GUI) which was developed is sim-
le but robust. The user is offered the possibility to define right from
he start the population of trainer chromosomes, the ideal success
ate for the final product, the crossover and mutation probabilities,
s well as the maximum iterations and the maximum generations
o run, if the ultimate goal has not yet been achieved.

Fig. 4 depicts the developed system frontend. The left-hand side
f the panel (Fig. 4a) shows the parameterization of the GA (trainer
opulation, accuracy, mutation/crossover probabilities, etc.) set by
he user. In the upper table (Fig. 4b) the train and test data files

ave been loaded and the time-series portion of the input has been
elected. Below and left (Fig. 4c), the 27th trainer has been selected
nd the interface shows on the right (Fig. 4d) the non time-series
eta-data produced for this specific trainer. In the middle (Fig. 4e),

he success rate of each trainer in the current generation is being
oaded plant virus time-series data.

displayed. Information on the duration of the training procedure,
as well as the description of the trainers is also provided (Fig. 4f).

The procedure starts out by loading the train and test files con-
taining the initial raw time-series information, along with the value
of the attribute class which the system is to be trained for. These
training/testing values populate the starting tables at the top of
the window, allowing the user to indicate the columns comprising
the time series, by selecting them. By pressing the appropriate but-
ton, the system will generate the first generation of trainers and
map their genes to the time series producing the first generation of
meta-data. These will be thrown into the NN and the most efficient
record sets will be merged into the next generation.

5. Results and discussion

The work so far presented was essentially motivated by the
assumption that the input data acquired by the BERA method might
be enhanced by removing any component which mars the dis-
crimination capability of any subsequent machine learning tool.
Therefore, there should be a more informative subset of the fea-
tures of the initial information, producing powerful meta-data for
the training of the discriminant NN. To test this assumption, the
• First, we used a specially designed GA to smooth out the initial
information. This process resulted in the production of a series of
evolutionary meta-data sets, which gave better and better results
in the course of successive generations.
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maximum and average success rate per generation.
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Table 6
Trainer chromosome accuracies for the plant virus identification problem.

Generation Trainer number Success rate

234 3 0.93%
46 12 0.84%

T
C

Fig. 5. Performance of the proposed system:

Once the best trainer was found, a 10-fold cross-validation
scheme was employed in order to test the discrimination capabil-
ities of our system towards three of the most popular data mining
tools, using the initial raw time-series information, as well as the
best meta-data set derived by the evolutionary process.

During the first phase, we seek to create genetically enhanced
on-time-series meta-data for the modelling of the responses of the
GMM and the TR viruses. The system, equipped with an NN classi-
cation machine as provided by the FANN Python library, initiated
he evolutionary production of multiple meta-data sets from the
nitial time-series information. Assessing each one of these meta-
ata sets via the discrimination capability of the neural object, the
lgorithm eventually succeeded in training and testing the latter
ith the fittest set produced.

The system discrimination potential was derived as regards to
he validation subset formed for each meta-data set. The success
ate of each trainer was estimated as the ratio of the correctly clas-
ified patterns to the overall number of patterns in the validation
ata set formed by the same trainer. Inside each generation, the
est trainer performance as well as the average performance of
ll trainers was estimated, in order to monitor the course of the
volutionary process, which is depicted in Fig. 5.

In the course of our testing experiments the NN achieved a suc-
ess rate of 93% in the 234th generation. Table 6 reports on the five
est accuracies and the generations in which they were accom-
lished.

The second step in our research design was to compare the dis-

rimination potential of the derived best meta-data set towards the
nitial raw time-series information. We also tested the proposed
olution towards a range of widely used classifiers, chosen among
he most common in machine learning, so as to assess its robust-
ess. For each classification method, a single metric was estimated,

able 7
ross-validation results for the proposed method and three widely used classifiers.

Input: original time-series data

Neural Bayes Tree k-NN

Fold-1 0.967 0.688 0.867 0.844
Fold-2 0.236 0.717 0.866 0.858
Fold-3 0.847 0.787 0.874 0.913
Fold-4 0.444 0.756 0.921 0.921
Fold-5 1.000 0.669 0.882 0.906
Fold-6 0.097 0.748 0.898 0.890
Fold-7 0.806 0.622 0.858 0.866
Fold-8 0.792 0.717 0.898 0.898
Fold-9 0.083 0.677 0.913 0.882
Fold-10 0.972 0.661 0.874 0.858

Average 0.624 0.704 0.885 0.884
19 9 0.79%
1 12 0.74%
8 3 0.64%

namely the success rate of the classifier, which was calculated as
the effective generalization of each one, expressed as the ratio of
correctly classified input patterns to the total number of presented
patterns during the testing phase.

For this purpose we utilized a 10-fold cross-validation scheme,
in which the two data sets to be compared were partitioned into
ten complementary subsets each, while the neural classifier started
untrained. The training was then performed on one subset, which
included nine partitions, while the testing of the system was done
with the remaining tenth partition. The procedure went on until all
partitions had served as a testing subset and the result was averaged
(Table 7).

In this last evaluating procedure we also compared the perfor-
mance of the proposed solution towards the potential of three other
popular classification systems. The comparison shows (Table 7) that
the neural classifier trained and tested with the derived best meta-
data set outperforms not only itself when the initial information
was used, but also all other classifiers, regardless of the data set

used for training.

The results of the testing showed that:

• During the course of the evolutionary process, a multitude of
meta-data sets were produced. In fact, until the fittest trainer

Input: best trainer meta-data

Neural Bayes Tree k-NN

0.956 0.789 0.915 0.901
0.778 0.704 0.845 0.859
0.847 0.718 0.901 0.831
0.972 0.704 0.930 0.845
0.935 0.775 0.930 0.873
0.913 0.718 0.901 0.901
0.917 0.746 0.887 0.930
0.869 0.746 0.944 0.915
0.960 0.803 0.871 0.929
0.847 0.831 0.786 0.871

0.899 0.754 0.891 0.886
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was found, 5850 such sets had been produced comprising of 1271
cases of varying length each, according to the instructions of the
corresponding trainer used in their formation. The neural object
was trained with each one of these meta-data and the success
rate of the test phase was assigned as a fitness score to the cor-
responding trainer. These facts, combined with the interpreted
nature of Python, had as a result that the time of training through
to the optimal solution was quite long on a 2.4 GHz Pentium PC
with 1 Gb of RAM.
The GA leads to the construction of a fitter meta-data set. During
the evolutionary process, the main focus lay in effectively reduc-
ing the features of the initial time-series data. Thus, it concluded
in providing a fitter trainer which formed a meta-data set of 84
time stamps in the 234th generation, providing a testing success
rate as high as 93% (Fig. 5).
There is a ‘key generation’ among the 234 generations that the
GA materialized in order to conclude on the fittest trainer. As
shown in Fig. 5, the decisive generation for the performance of
the system and the one which fills its genetic pool with fit genetic
material is generation 120, where an average success rate of 0.56
is noted, along with a maximum rate of 0.84. Although such high
maximum rates also appear in earlier generations (46, 53, 111
and 119), they are not accompanied by equally high average ones.
Thus, generation 120, despite the fact that it is followed by a series
of rather poor performing generations, sets the landmark for the
success of the evolutionary training.
The initial time-series information as derived by the BERA
method actually contains noise, the elimination of which pro-
duces more powerful training data sets. Table 7 reports on results
derived by cross-validation of the proposed method and three
widely used classifiers (naïve Bayes, decision tree and k-NN),
comparing the classification potential of the derived best meta-
data set towards that of the initial time series. The results show
the increase of performance to all classifiers using meta-data
formed by the best trainer. Although the three benchmarking
classifiers behave somewhat indifferently towards the use of the
two data sets, they nevertheless show a slight increase in their
performance. The case is totally different with our neural classi-
fier, which exhibits a 45% increase of its discriminant capability
when trained with the best meta-data (success rate of 0.899),
compared to the initial raw time-series training set (success rate
of 0.624).
The neural network exhibits the most powerful discriminant
capability when combined with the products of the best trainer.
In other words, the leap in performance has a great impact in
the ranking of the proposed solution among the four contes-
tant classifiers. Table 7 reports that the neural classifier is the
worst of the four in discriminating the two viruses, when using
the initial raw time-series information. This situation is totally
reversed when the best meta-data training set is employed. The
outcome of the comparison yields that by applying an evolu-
tionary segmentation method on the time-series raw data, in
order to produce genetically enhanced meta-data, we are able
to produce a more robust classifier with better generalization
potential.

. Conclusions

Effective virus epidemics confrontation, prior to propose and
ndertake the proper treatment measures, mainly lies on the deter-
ination whether the pathogenic organism is a virus of a totally
ew species or belongs to an already known and described family,
rocedure known as virus identification. In this context, precise
irus identification plays a crucial role in decision making and
ffective amass of healthy crops and products. In this work we
sed the recently introduced BERA method, in order to acquire
ics in Agriculture 70 (2010) 263–275 273

the initial information regarding the identification of two viruses
of high economical importance, the Tobacco Rattle Virus and the
Cucumber Green Mottle Mosaic Virus, both of which pose serious
productivity problems on their hosts. BERA uses special biosensors
containing certain reagents suspended in a gel matrix which, while
interacting with the virus particles, produce electrical signals mea-
sured as a voltage. This interaction between the biosensor and the
virus particles lasts for a certain period of time, thus the voltage
series produced are essentially time-series data which are consid-
ered as a signature, each of which is a characteristic of the virus
and thus should be analyzed in order to determine the pathogen
in question.

The proposed solution combines the basics of time-series anal-
ysis with NNs and GAs in order to design, develop and test
an automated evolutionary technique to preprocess these time
series in the training phase of the neural object, so as to pro-
duce genetically enhanced meta-data which effectively control the
dimensionality of the input space. In this way we are able to find
the scheme inside the time-series length which produces the meta-
data set with the most promising structure. The outmost benefit
offered by the present research is a framework for the develop-
ment of an evolving system capable of correctly classifying virus
signatures. The proposed solution, alongside with its usefulness as
a powerful assistant at the hands of virus identification experts, also
keeps the effort and expenses required for its function at accept-
able levels, as its only demands lie on the acquisition of the initial
information, as well as the discovery of the best meta-data set.
The former is a well-established methodology, while the latter
poses strains only in computational power. The vast number of
the produced meta-data sets results in the enhancement of vari-
ability inside the genetic pool and thus increases the probability
of discovering a fitter combination of genes, towards the uncov-
ering of the fittest structure of the trainer. Once the evolutionary
procedure concludes in finding the best meta-data set, this will
always consist of a subset of the features of the initial informa-
tion. Thus, the proposed system achieves an effective reduction
in the dimensionality and the production of a more lightweight
input vector with obvious benefits, as regards not only to the
training time needed, but also to the accuracy of the developed
system.

Of course, once trained, the proposed system exhibits the same
classification time demands as the rest of the classifiers and, of
course, is very competitive to the time an expert needs to make a
decision by evaluating a signature curve. Also, the proposed system
yet remains to be comprehensively validated by human experts.
Such a procedure is undergone at this time and, although we are
not yet able to provide a concise answer, however some of the pre-
liminary results obtained so far are encouraging. Another difficulty
we encountered was that the developed GA seemed particularly
sensitive to slight changes in its parameterization. Its fine tuning
was very difficult as it demanded a great amount of time and trial
and error interventions.

Yet in the first stages of system development, the floating point
representation of the chromosome genes was rejected and the
binary representation was adopted instead, for the problems posed
by the former were impossible to come by at the present stage.
However, it appears as a good prospect for future work, due to
its many virtues, such as greater variability assembled inside the
genetic pool or greater resistance against trapping into local min-
ima. The system, as presented here, may be successfully applied to
classification problems and, with slight changes in the core engine,

to regression problems as well. What is yet unknown is the amount
of data that it can handle in the search for the best trainer to each
category of problems. The plans of the research team for the near
future are to conduct a research project in order to find the upper
limits of the system as regards to the maximum length of the ini-
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ial information which it can handle, not only in terms of number
f cases, but also as regards to each case length, i.e. time-series
alues, as well. It would also be interesting to research the possi-
ility of widening the scope of the algorithm by interweaving other
ata mining tools as fitness score providers, besides the neural net-
ork. It is clear at this point that such an alteration may require
heavy re-engineering of the source code to control the computa-

ional demands of such a product. Finally, a professionally designed
UI might contribute in the wider acceptance of the application by

he average user.
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