Stereocontrolled Second Generation Syntheses of the ABC and FG Ring Systems of Brevetoxin B§

K.C. Nicolaou,* D.A. Nugiel, E. Couladouros, and C.-K. Hwang

Department of Chemistry Research Institute of Scripps Clinic 10666 N. Torrey Pines Rd La Jolla, CA 92037

and

Department of Chemistry University of California, San Diego La Jolla, CA 92037

and

Department of Chemistry University of Pennsylvania Philadelphia, PA 19104

(Received in UK 6 February 1990)

Abstract: Stereocontrolled, second generation syntheses of the ABC and FG ring systems of brevetoxin B (1) are described. The two key intermediates 2 and 3, representing the ABC and FG ring frameworks, were prepared from 2-deoxy-D-ribose via short and efficient sequences. The synthesis of 2 proceeded via the epoxy alcohol cyclization precursors 6 and 7, and the Horner-Emmons cyclization precursor 5, to give the desired tricyclic system in 3.6% overall yield. The synthesis of 3 proceeded via the epoxy alcohol cyclization precursors 10 and 11 to give the desired bicyclic system in a 11.5% overall yield. Both syntheses represent improvements over the previous procedures and allow for rapid and facile entries into the ABC and FG ring systems of this complex natural product.

Introduction

The "red tide" phenomenon, originating from the Gulf of Mexico and the Florida coastal waters, has received much attention in recent years. Several interesting neurotoxins are produced by the organisms responsible for these catastrophic outbreaks. As one of the first structures to be elucidated from this class of marine natural products, brevetoxin B (1) has stimulated a

[§]This paper is dedicated to Professor David Ollis on the occasion of his 65th birthday.

considerable body of scientific activity.² Recent studies have led to a proposed biosynthetic pathway to brevetoxin B (1) and related compounds.³ The biological action of this and related compound has been extensively investigated and reviewed.⁴ Brevetoxin B (1) is one of the most potent neurotoxins known with a $LC_{50} = 16$ ng; it binds to a unique receptor site on the sodium channel causing inhibition of sodium uptake and repetitive firing of neurons. Other related compounds in this class include brevetoxin A⁵, hemibrevetoxin⁶ and ciguatoxin.⁷

The structure of brevetoxin B (1) was determined by X-ray crystallographic analysis⁸ and its absolute stereochemistry was established by the dibenzoate chirality method⁹. This molecule exhibited an unprecedented array of *trans*-fused rings connected in a ladder-like structure, 30 Å long, 6 Å high and 6 Å wide, with twenty three stereogenic centers. The eleven-ring framework is essentially flat and quite rigid except at the bis(oxepane) region where it is somewhat flexible.

The novel structure and striking biological activity of brevetoxin B (1) prompted us to explore synthetic routes towards this class of compounds. New synthetic methods for the construction of pyrans¹⁰, oxepanes¹¹, and oxocenes¹², all relevant to brevetoxin B (1) and its relatives, have been described from these laboratories. Furthermore, syntheses of the ABC¹³, FG¹⁴ and IJK¹⁵ ring systems of brevetoxin B (1) have been reported by us. In this article we describe second generation syntheses of the ABC and FG ring systems that can deliver the optically active fragments in large quantities and with high stereocontrol. The present sequences are more efficient than the first generation routes and, are therefore, the preferred pathways to these intermediates. Both constructions begin with 2-deoxy-D-ribose as the starting material.

Scheme 1 ª

A Possible retrosynthetic analysis of brevetoxin B (1)

Retrosynthetic analysis

A potentially attractive retrosynthetic analysis of brevetoxin B (1) is shown in **Scheme 1**. Thus, disconnection of the indicated strategic bonds, followed by a number of standard functional group manipulations, disassembles the seven- and eight-membered rings and leads to the three key intermediates 2, 3, and 4. These disconnections allow for a highly convergent approach involving intermediates that contain only tetrahydropyran rings and thus simplify the problem at hand.

Scheme 2 outlines the retrosynthetic analysis of the ABC ring system as the trimethylsilylethyl ester alcohol 2. Thus, disassembly of the A ring double bond leads to the ketophosphonate methyl ketone 5 which, in turn, can be traced to the hydroxy epoxide 6. Finally, disconnection of the remaining tetrahydropyran ring in 6 leads to the hydroxy epoxide 7 which can be related to the α,β -unsaturated ester 8 and, thence, to 2-deoxy-D-ribose (9) by obvious chemistry.

Scheme 2 *

*Retrosynthetic analysis of the ABC ring system of brevetoxin B (1).

The retrosynthesis of the FG ring system, as the protected derivative 3, is outlined in **Scheme 3**. Once again, the cornerstone of the present analysis is the facile construction of tetrahydropyrans via 6-endo activated ring closures of hydroxy epoxides. Thus, disconnection of the subtarget 3 as indicated, followed by simple functional group manipulations, leads to hydroxy epoxide 10 which can be further disconnected as shown to reveal compound 11 as a potential precursor. Removal of the methyl group from 11 leads to ketone 12 which can be derived from 2-deoxy-D-ribose (9) via intermediate 8 using standard chemistry. The successful execution of the synthetic strategies for the synthesis of the ABC (2) and FG (3) fragments of brevetoxin B (1), developed from the above analysis, is described below.

Scheme 3 *

$$HO_{2}C$$

$$GUMe_{2}SIO$$

$$HO_{1}$$

$$HO_{2}C$$

$$HO_{1}$$

$$HO_{1}$$

$$HO_{2}C$$

$$HO_{1}$$

$$HO_{1}$$

$$HO_{1}$$

$$HO_{2}$$

$$HO_{1}$$

$$HO_{2}$$

$$HO_{1}$$

$$HO_{1}$$

$$HO_{1}$$

$$HO_{2}$$

$$HO_{1}$$

$$HO_{1}$$

$$HO_{1}$$

$$HO_{2}$$

$$HO_{1}$$

$$HO_{1}$$

$$HO_{2}$$

$$HO_{1}$$

$$HO_{1}$$

$$HO_{2}$$

$$HO_{1}$$

$$HO_{1}$$

$$HO_{2}$$

$$HO_{2}$$

$$HO_{3}$$

$$HO_{4}$$

$$HO_{5}$$

$$HO$$

^aRetrosynthetic analysis of the FG ring system of brevetoxin B (1).

Synthesis of the ABC ring system 2

The initial steps for the synthesis of the ABC ring system 2 are shown in **Scheme 4**. Treatment of 2-deoxy-D-ribose (9) with (carbethoxyethylidene)triphenylphosphorane in refluxing tetrahydrofuran (THF) provided the α,β -unsaturated ester triol 13 in 97% yield. The thermodynamically favored six-membered benzylidene 8 was obtained by exposure to excess benzaldehyde dimethyl acetal and

Scheme 4 8

*Reagents and conditions: (a) 1.2 equiv of Ph₃P=C(Me)CO₂Et, THF, 65 °C, 4.5 h, 97%; (b) 1.3 equiv of PhCH(OMe)₂, 0.3 equiv of CSA, CH₂Cl₂, 25 °C, 12 h, 96%; (c) 1.1 equiv of t BuMe₂SiCl, 1.5 equiv imidazole, DMF, 25 °C, 5 h, 98%; (d) 2.2 equiv of DIBAL, CH₂Cl₂, -78 °C, 1 h, 98%; (e) 0.2 equiv of (-)-diethyl tartrate, 0.15 equiv Ti(O'Pr)₄, 1.5 equiv of t BuOOH, CH₂Cl₂, -27 °C, 14 h, 89%; (f) 4.0 equiv of SO₃·pyr, 5.0 equiv of Et₃N, CH₂Cl₂:DMSO (4:1), 0 °C, 3.5 h, 94%; (g) 1.5 equiv of CH₃P*Ph₃Br*, 1.3 equiv of NaN(SiMe₃)₂, THF, 0 °C, 1 h, 88%; (h) 1.5 equiv of t Bu4NF, THF, 25 °C, 0.5 h, 98%; (j) 0.85 equiv of PPTS, CH₂Cl₂, 0 →25 °C, 3 h, 86%.

camphorsulfonic acid (CSA) in dichloromethane (CH₂Cl₂) at 25 °C in 96% yield. Protection of the remaining hydroxyl function was achieved with *tert*-butyldimethylsilyl chloride (TBDMSCl) and imidazole in dimethylformamide (DMF) at 25 °C leading to silyl ether 14 in 98% yield. Reduction of the α,β -unsaturated ester using diisobutylaluminum hydride (DIBAL) in CH₂Cl₂ at -78 °C gave the allylic alcohol 15 in 98% yield. Sharpless epoxidation¹⁶ of alcohol 15 with (–)-diethyl tartrate gave the epoxy alcohol 16 in 89% yield. Conversion of the epoxy alcohol to the olefin was carried out in two steps. Oxidation using SO₃-pyridine complex¹⁷ in CH₂Cl₂:DMSO (4:1), gave the epoxy alcohol 17; subsequent olefination of the crude aldehyde gave the epoxy olefin 18 in 83% yield for the two steps. The epoxy alcohol 7 was obtained after deprotection of the silyl ether with tetrabutylammonium fluoride (TBAF) in THF at 25 °C in 98% yield. This epoxy alcohol was now

properly functionalized to give the desired 6-endo cyclization product preferentially over the 5-exo isomer upon suitable activation. The activation of epoxy alcohols to give preferential 6-endo cyclization has been elaborated upon previously. Thus, subjecting 7 to 0.85 equiv pyridinium ptoluenesulfonate (PPTS) in CH₂Cl₂ at 0 °C for 3 h gave the cyclized product 19 in 86% yield. This sequence secured the proper B ring stereochemistry and functionality.

Scheme 5 *

***Reagents and conditions:** (a) 1.1 equiv of ${}^{1}\text{BuMe}_{2}\text{SiCl}$, 1.5 equiv imidazole, DMF, 50 °C, 10.5 h, 97%; (b) 1.5 equiv of 9-BBN, THF, 0 °C, 1.5 h, then 2.1 equiv of $H_{2}\text{O}_{2}$, 2.5 equiv of NaOH, 0 °C, 1 h, 93%; (c) 1.5 equiv oxalyl chloride, 2.0 equiv DMSO, 5.0 equiv of Et_{3}N , $\text{CH}_{2}\text{Cl}_{2}$, -78 °C, 1 h, 98%; (d) 1.2 equiv of $\text{Ph}_{3}\text{P=CHCO}_{2}\text{Me}$, $C_{6}\text{H}_{6}$, 50 °C, 0.5 h, 88%; (e) 2.2 equiv of DIBAL, $\text{CH}_{2}\text{Cl}_{2}$, -78 °C, 0.5 h, 98%; (f) 0.2 equiv of (-)-diethyl tartrate, 0.15 equiv of $\text{Ti}(\text{O}^{1}\text{Pr})_{4}$, 1.5 equiv of BuOOH, $\text{CH}_{2}\text{Cl}_{2}$, -28 °C, 14 h, 87%; (g) 4.0 equiv of SO_{3} -pyr, 5.0 equiv of E_{5}N , $\text{CH}_{2}\text{Cl}_{2}$:DMSO (4:1), 0 °C, 3 h, 93%; (h) 1.1 equiv of $\text{Ph}_{3}\text{P=C}(\text{Me})\text{CO}_{2}\text{Et}$, 0.1 equiv of $\text{Ph}\text{CO}_{2}\text{H}$, C_{6}H_{6} , 25 °C, 0.5 h, 88%; (j) 1.5 equiv of Bu_{4}NF , THF, 25 °C, 0.5 h, 95%; (k) 0.8 equiv of PPTS, $\text{CH}_{2}\text{Cl}_{2}$, 25 °C, 13 h, 84%.

Further elaboration to provide the C ring is shown in **Scheme 5**. The alcohol **19** was once again protected as the silyl ether using TBDMSCI in DMF to give **20** in 97% yield. The olefin was hydroborated using 9-BBN in THF followed by oxidative work-up leading to alcohol **21** in 93% yield. Swern oxidation¹⁸ of this alcohol gave the aldehyde **22** in 98% yield. Subjecting the crude aldehyde **22** to reaction with methyl(triphenylphosphoranylidene) acetate in benzene at 50 °C gave the α , β -unsaturated ester **23** in 88% yield. DIBAL reduction of the ester gave the allylic alcohol **24** in 98% yield. Sharpless epoxidation of alcohol **24** using (–)-diethyl tartrate as the chiral auxiliary gave the epoxy alcohol **25** in 87% yield. SO₃-pyridine oxidation of the allylic alcohol, followed by treatment with (carbethoxyethylidene)triphenylphosphorane in benzene gave the α , β -unsaturated ester **26** in 82% yield. Deprotection of the silyl ether with TBAF in THF gave the epoxy alcohol **6** in 95% yield. Finally, preferential 6-endo cyclization of this intermediate using PPTS in CH₂Cl₂ proceeded smoothly to give the BC ring system **27** in 84% yield. With the bicyclic intermediate **27**

at hand, it was necessary to adjust the oxidation state of the ester functionality and selectively protect it as a silyl ether. To this end, the secondary alcohol was protected with a suitable protecting group to allow differentiation of the hydroxy groups and pave the way for manipulation of the left hand side of the molecule to construct the A ring.

The adopted sequence is shown in **Scheme 6**. Selective hydrogenation of the double bond with 10% palladium on carbon in ethyl acetate (EtOAc) gave a mixture of diastereomeric esters **28** in quantitative yield. The remaining sequence was carried out with a diastereomeric mixture of compounds. Lithium aluminum hydride reduction of the ethyl ester gave the diol **29** in 95% yield. The primary alcohol was then selectively protected using *tert*-butyldiphenylsilyl chloride (TBDPSCI) in DMF at 0 °C to give the silyl ether **30** in 89% yield. The secondary alcohol was protected as the p-methoxybenzyl ether (PMB) by treatment with potassium hydride (KH) and p-methoxybenzyl chloride in THF at 50 °C in 84% yield. With the right hand side fully protected, it was possible to begin construction of the A ring. Thus, removal of the benzylidene was achieved using 0.25 equiv of CSA in MeOH at 0 °C to give the diol **32** in 86% yield. The primary alcohol in **32** was then differentiated by the following two-step procedure. Silylation of both hydroxy groups with excess

Scheme 6 a

^aReagents and conditions: (a) H_2 , 10% Pd/C, EtOAc, 48 h, 100%; (b) 2.5 equiv of LiAH₄, Et₂O, 0 °C, 0.5 h, 95%; (c) 1.2 equiv of 'BuPh₂SiCl, 1.5 equiv of imidazole, DMF, 0 °C, 0.5 h, 89%; (d) 1.5 equiv of KH, 1.3 equiv of p-MeOC₆H₄: CH₂Cl, THF, 50 °C, 1 h, 84%; (e) 0.25 equiv of CSA, MeOH, 0 °C, 1 h, 86%; (f) 2.5 equiv of 'BuMe₂SiCl, 3.0 equiv of imidazole, DMF, 50 °C, 12 h, 92%; (g) 0.2 equiv of CSA, MeOH, 0 °C, 1 h, 81%.

TBDMSCI in DMF gave the disilylated compound **33** in 92% yield, which was selectively deprotected at the primary position by removal of the TBDMS group with 0.2 equiv of CSA in MeOH at 0 °C furnishing the alcohol **34** in 81% yield.

Elaboration of the generated primary alcohol to the methyl ketone functionality, needed for the Horner-Emmons reaction, is shown in **Scheme 7**. Swern oxidation of alcohol **34** gave the aldehyde **35** in 90% yield which was treated immediately with methylmagnesium bromide in THF at 0 °C to give a 1:1 mixture of diastereomeric alcohols **36** in 91% yield. Reoxidation of this mixture

using the Swern oxidation conditions gave the methyl ketone **37** in 88% yield. The secondary TBDMS ether was then selectively removed in the presence of the primary TBDPS ether by exposure to 1.2 equiv of TBAF in THF at 0 °C to furnish the hydroxy ketone **38** in 90% yield. Dicyclohexylcarbodiimide (DCC) mediated coupling¹⁹ of this alcohol with bromoacetic acid gave the Arbuzov precursor **39** in 89% yield. Treatment of **39** with neat trimethylphosphite at 70 °C for 3 h gave the phosphonate **5** in quantitative yield. Finally, using the Masamune-Rousch²⁰ modification of the Horner-Emmons reaction, phosphonate **5** was converted to the lactone **40** in 92% yield.

*Reagents and conditions: (a) 1.5 equiv oxallyl chloride, 2.0 equiv DMSO, 5.0 equiv of El_2N , CH_2Cl_2 , -78 °C, 1 h, 90%; (b) 1.5 equiv of MeMgBr, THF, 0 °C, 0.5 h, 91%; (c) 1.2 equiv of 10 Bu₄NF, THF, 0 °C, 0.5 h, 90%; (d) 1.2 equiv of 10 Bu₄NF, THF, 0 °C, 0.5 h, 90%; (d) 1.2 equiv of 10 BrCH₂CO₂H, 1.5 equiv of DCC, CH_2Cl_2 , 25 °C, 12 h, 89%; (e) neat (MeO)₃P, 70 °C, 3 h, 100%; (f) 1.3 equiv of Hunigs base, 1.5 equiv of LICI, CH_3CN , 25 °C, 2 h, 92%.

With the ABC ring framework in place, all that remained to complete the synthesis was deoxygenation of the lactone, reconstruction of the ester group on the "right side" and removal of the p-methoxybenzyl protecting group. The successful sequence is shown in **Scheme 8**. Reduction of lactone **40** with DIBAL gave the lactol **41** in quantitative yield. Treatment of the lactol with borontrifluoride etherate and excess triethylsilane in CH₂Cl₂ at -10 °C led to the pyran **42** in 90% yield. Treatment of silyl ether **42** with TBAF in THF at 45 °C furnished the alcohol **43** in 93% yield. Jones oxidation of the alcohol at -15 °C gave the free acid **44** in 84% yield. Compound **44** was identical to an authentic sample prepared previously¹³ by chromatographic and spectroscopic criteria. Esterification of acid **44** with 2-(trimethylsilyl)ethanol gave the ester **45** in 89% yield. Finally, removal of the p-methoxybenzyl ether using DDQ gave the ABC ring system **2** in 85% yield.

Synthesis of the FG ring system 3

The initial steps in preparing the FG ring system 3 are shown in **Scheme 9.** Thus, Swern oxidation of alcohol 8 provided ketone 12 in 89% yield. Introduction of the axial methyl group stereoselectively was achieved by treating ketone 12 with an excess of trimethylaluminum in CH₂Cl₂ at -20 °C to give the tertiary alcohol 46 as a single diastereomer. None of the other isomer was detected. The high stereospecificity of this reaction is understood by inspection of molecular models. Thus, axial attack from the bottom face of the carbonyl group (**Figure 1**) is completely unhindered, whereas equatorial attack from the top face encounters torsional strain,²¹ due to the presence of the 2,6-axial hydrogens.

Scheme 8 a

^aReegents and conditions: (a) 1.5 equiv of DIBAL, CH₂Cl₂, -78 °C, 0.5 h, 100%; (b) 0.8 equiv of BF₃Et₂O, 5.0 equiv of Et₃SH, CH₂Cl₂, -10 °C, 0.5 h, 90%; (c) 1.5 equiv of ⁿBuN₄F, THF, 45 °C, 2.5 h, 93%; (d) excess Jones reegent, acetone, -15 °C, 0.5 h, 84%; (e) 1.2 equiv of Me₃Si(CH₂)₂OH, 1.5 equiv of DCC, CH₂Cl₂ 12 h, 89%; (f) 1.5 equiv of DCD, CH₂Cl₂H₂O (3:1), 25 °C, 0.5 h, 86%.

Scheme 9 *

^aReagents and conditions: (a) 1.8 equiv of oxally chloride, 2.2 equiv of DMSO, 5.0 equiv of Et₃N, CH₂Cl₂ -78 °C, 1.5 h, 89%; (b) 1.6 equiv of AlMe₃, CH₂Cl₂ -20 °C, 2.5 h, 84%.

Completion of the construction of the F ring is shown in **Scheme 10**. Silylation of the tertiary alcohol with 1-(trimethylsilyl) imidazole in CH_2Cl_2 gave **47** in quantitative yield. DIBAL reduction of the α,β -unsaturated ester furnished the allylic alcohol **48** in 96% yield. Sharpless epoxidation with (--)-diethyl tartrate led to the epoxy alcohol **49** in 89% yield. Oxidation of the epoxy alcohol, using SO_3 -pyridine in CH_2Cl_2 :DMSO (4:1) at 0 °C, gave the epoxy aldehyde **50** which was immediately subjected to olefination to give the allylic epoxide **51** in 82% yield. Deprotection of the silyl ether, using TBAF in THF, gave the 6-endo activated epoxy alcohol **11** in 95% yield. Finally, acid induced cyclization of this epoxy alcohol with PPTS in CH_2Cl_2 led to the pyran **52** in 94% yield.

Figure 1: Rational for preferential axial attack at carbonyl of ketone 12

Scheme 10 *

⁸Reagents and conditions: (a) 1.5 equiv of TMS-imidazole, CH₂Cl₂, 25 °C, 0.5 h, 100%; (b) 2.3 equiv of DIBAL, CH₂Cl₂, -78 °C, 0.5 h, 96%, (c) 0.2 equiv of (-)-diethyl tartrate, 0.15 equiv of Ti(O'Pr)₄, 1.5 equiv of 'BuOOH, CH₂Cl₂, -25 °C, 14 h, 89%; (d) 4.0 equiv of SO₃-pyr, 5.0 equiv of Et₃N, CH₂Cl₂:DMSO (4:1), 0 °C, 2.5 h, 93%; (e) 1.5 equiv of CH₃P'Ph₃Br', 1.3 equiv of NaN(SiMe₃)₂, THF, 0 °C, 1 h, 88%, (f) 1.3 equiv of "Bu₄NF, THF, 25 °C, 0.5 h, 95%; (g) 0.8 equiv of PPTS, CH₂Cl₂, 0 →25 °C, 12 h, 94%.

Scheme 11 presents the sequence leading to the construction of the G ring. Silylation of alcohol 52 using TBDMSCI in DMF provided the silyl ether 53 in 95% yield. Hydroboration of the olefin with 9-BBN followed by oxidative work-up gave the alcohol 54 in 93% yield, which was subjected to Swern oxidation leading to aldehyde 55 in 95% yield. Treatment of the crude aldehyde with (carbethoxyethylidene)triphenylphosphorane in the presence of a catalytic amount of benzoic acid in benzene at 50 °C gave the ester 56 in 90% yield. DIBAL reduction of the $\alpha,\beta-$ unsaturated ester led to the allylic alcohol 57 in 97% yield. Sharpless epoxidation of allylic alcohol 57 gave an unfavorable mixture of the two diastereomeric epoxides. In contrast to previous results however, 13 hydroxyl directed epoxidation using m-chloroperbenzoic acid in CH₂Cl₂ at 0 °C provided the desired epoxide 58 in 97% yield as a single compound.

Scheme 11 a

*Reagents and conditions: (a) 1.2 equiv of 'BuMe₂SiCl, 1.5 equiv of imidazale DMF, 50 °C, 12 h, 95%; (b) 1.5 equiv of 9-BBN, THF, 25 °C, then 2.1 equiv of H₂O₂, 2.5 equiv of NaOH, 0 °C, 1 h, 93%; (c) 1.5 equiv of oxalyl chloride, 2.0 equiv of DMSO, 5.0 equiv of E₃N, CH₂Cl₂, -78 °C, 1 h, 95%; (d) 1.1 equiv of Ph₂P=C(Me)CO₂Et, 0.1 equiv of PhCO₂H, C₃H₆, 50 °C, 0.5 h, 90%; (e) 2.2 equiv of DIBAL, CH₂Cl₂, -78 °C, 0.5 h, 97%; (f) 1.2 equiv of mCPBA, CH₂Cl₂, 0 °C, 0.5 h, 97%; (g) 4.0 equiv of SO₃-pyr, 5.0 equiv of Et₃N, CH₂Cl₂DMSO (4.1), 0 °C, 3.5 h, 92%; (h) 1.5 equiv of CH₃P*Ph₃Br, 1.3 equiv of NaN(SIMe₃)₂, THF, 0 °C, 1 h, 88%; (j) 1.2 equiv of "Bu₄NF, THF, 25 °C, 0.5 h, 93%; (k) 0.85 equiv of PPTS, CH₂Cl₂, 0 ~25 °C, 14 h, 92%; (j) 1.5 equiv of benzyl bromide, 1.3 equiv of KH, THF, 45 °C, 1 h, 90%.

Apparently, the presence of the benzylidene ring induces a rigid conformation of the F ring which, in turn results in the observed stereoselectivity. The stereochemistry of epoxide 58 was at this stage tentatively assigned as shown, and was confirmed later as will be described below. Oxidation of the epoxy alcohol 58 using SO₃ pyridine in CH₂Cl₂:DMSO (4:1) at 0 °C gave the epoxy aldehyde 59, which was subjected immediately to olefination to give epoxy olefin 60 in 81% overall yield. Removal of the TBDMS group with TBAF in THF then led to the epoxy alcohol 10 in 93% yield. Cyclization of the epoxy alcohol 10 using PPTS in CH₂Cl₂ proceeded smoothly as expected, leading to compound 61 in 92% yield. Assuming that 6-endo cyclization of 10 occurs through a

chair-like transition state, the stereochemistry assigned to epoxide 58 must be correct since the other isomer requires a boat-like transition state in order to cyclize to the pyran. Final proof of the stereochemical assignments came from X-ray crystallographic data obtained with the benzyl ether 62, prepared from 61 by exposure to benzyl bromide in THF at 45 °C (90%, m.p. 204 °C, ether/hexane). The ORTEP drawing of 62 is shown in Scheme 11.

Elaboration of **62** to the desired FG ring intermediate **3** is shown in **Scheme 12**. Hydroboration of the olefin using 9-BBN gave the alcohol **63** (92% yield), which was benzylated using KH and benzyl bromide, to give the ether **64** (89% yield). Removal of the benzylidene with CSA in MeOH at 0 °C provided the diol **65** in 90% yield. Differentiation of the primary alcohol by disilylation followed by selective monodesilylation as described above gave alcohol **67** in 86% overall yield. Swern oxidation provided aldehyde **68** in 93% yield which was treated with methyl (triphenylphosphoranylidene) acetate in benzene at 50 °C overnight to give the α,β -unsaturated ester **69** in 90% yield. Selective hydrogenation of the double bond was accomplished using 5% palladium on carbon in EtOAc to give the saturated ester **70** in quantitative yield. Finally, saponification of the methyl ester using excess lithium hydroxide in THF:MeOH:H₂O (1:1:1) at 55 °C provided the acid **3** in 95% yield, and completed the synthesis of the FG ring system.

Scheme 12 *

"Reagents and conditions: (a) 1.5 equiv of 9-BBN, THF, 25 °C, 1 h, then 2.1 equiv of H_2O_2 , 2.5 equiv of NaOH, 0 °C, 1 h, 92%; (b) 1.3 equiv of KH, 1.5 equiv of benzyl bromide, THF, 50 °C, 1 h, 99%; (c) 0.2 equiv of CSA, MeOH, 0 °C, 1 h, 90%; (d) 2.5 equiv of I_2O_2 in $I_2O_$

Conclusion

Stereocontrolled and efficient syntheses of the ABC and FG ring systems of brevetoxin B (1) (intermediates 2 and 3) were developed starting from 2-deoxy-D-ribose. The sequences deliver these intermediates in enantiomerically pure forms (2: 38 steps, 3.6% overall yield; 3: 28 steps, 11.5% overall yield). Both routes represent considerable improvements over the previously reported sequences and are, therefore, the preferred ones for preparing large quantities of these key intermediates. These studies are expected to facilitate the projected total synthesis of brevetoxin B (1) and related compounds.

EXPERIMENTAL SECTION

General Techniques. NMR spectra were recorded on a Brucker WM-250. IR spectra were recorded on a Perkin-Elmer Model 781 infrared spectrophotometer.

High-resolution mass spectra (HRMS) were recorded on a VG 7070 HS mass spectrometer under chemical ionization (CI) conditions or on a VC ZAB E instrument under FAB conditions.

All reactions were monitored by thin-layer chromatography carried out on 0.25-mm E. Merck silica gel plates (60F-254) by using UV light and 7% ethanolic phosphomolybdic acid-heat as a developing reagent. Preparative layer chromatography was preformed on 0.5 or 0.25 mm x 20 cm x 20 cm E. Merck silica gel plates (60F-254). E. Merck silica gel (60, particle size 0.040-0.063 mm) was used for flash chromatography.

All reactions were carried out under an argon atmosphere with dry, freshly distilled solvents under anhydrous conditions unless otherwise specified. Yields refer to chromatographically and spectroscopically (¹H NMR) homogeneous materials, unless otherwise stated.

Triol 13.

A mixture of 2-deoxy-D-ribose (25 g, 186.5 mmol) and (carbethoxyethylidene) triphenylphosphorane (75 g, 205 mmol) in THF (370 mL) was refluxed for 3 h. Concentration and flash chromatography (silica, $5\rightarrow 20\%$ MeOH in CH₂Cl₂) gave the triol 13 (39.6 g, 97%). 13: oil; TLC, Rf= 0.31 (silica, 10% MeOH in CH₂Cl₂); IR (neat) n_{max} 3460-3280(OH), 2940, 1710(C=O), 1650, 910 cm⁻¹; ¹H NMR (CDCl₃) d 6.80 (dt, J=7.5, 1.4 Hz, 1 H, HC=C), 4.17 (q, J=7.2 Hz, 2 H, CH₃CH₂O₂C), 3.87, 3.78, 3.64 (m, 4 H, CH-O, CH₂O), 2.75 (bs, 1 H, OH), 2.49 (bs, 1 H, OH), 2.44 (t, J=6.6 Hz, 2 H, CH₂), 1.85 (d, J=1.25 Hz, 3 H, CH₃C=C), 1.28 (t, J=7.2 Hz, 3 H, CH₃CH₂O₂C); HRMS, calcd for C₁OH₁9O₅ (M+H): 219.1232, found: 219.1261.

Ester 8.

A mixture of triol 13 (39 g, 179.0 mmoi), benzaldehyde dimethylacetal (35.3 g, 232.6 mmol) and camphorsulfonic acid (8.3 g, 35.8 mmol) in CH₂Cl₂ (600 mL) was stirred for 12 h at 25 °C. The reaction mixture was quenched with triethylamine (6 mL), concentrated and the residue subjected to flash chromatography (silica, $10 \rightarrow 70\%$ ether in petroleum ether) to afford the benzylidene 8 (52.8 g, 96%). 8: solid; m.p. 89–91 °C; TLC, Rf=0.42 (silica, 60% ether in petroleum ether); IR (CDCl₃) v_{max} 3600, 3450, 2980, 2870, 1700(C=O), 1650, 1460, 1385, 1370, 1280, 1230, 1115, 1075, 1030, 980, 910, 650 cm⁻¹; ¹H NMR (CDCl₃) δ 7.45, 7.34 (2 x m, 5 H, aromatic), 6.92 (dt, J=7.3, 1.4 Hz, 1 H, CH=C), 5.47 (s, 1 H, CHAr), 4.24 (m, 1 H, CH-O), 4.17 (q, J=7.2 Hz, 2 H, CH₃CH₂O₂C), 3.65 (m, 3 H, CH-O, CH₂O), 2.75 (dd, J=14.1, 7.4 Hz, 1 H, CH₂), 2.56 (m, 1 H, CH₂), 1.95 (bs, 1 H, OH), 1.86 (d, J=0.96 Hz, 3 H, CH₃C=C), 1.27 (t, J=7.2 Hz, 3 H, CH₃CH₂O₂C); HRMS, calcd for C₁7H₂3O₅ (M+H): 307.1545, found: 307.1532.

Silyl ether 14.

To a stirred solution of **8** (52.3 g, 170.9 mmol) and imidazole (17.4 g, 256 mmol) in DMF (285 mL) at 25 °C was added *tert*-butyldimethylsilyl chloride (33.5 g, 222.2 mmol) in one portion. The reaction mixture was stirred at 25 °C for 5 h. After cooling to room temperature, the reaction mixture was quenched with MeOH (9.4 mL), diluted with ether (1 L) and washed with water (2 x 300 mL). Drying (MgSO4), concentration and flash chromatography (silica, 10% ether in petroleum ether) gave the silyl ether **14** (71.1 g, 98%). **14**: oil; TLC, Rf=0.78 (silica, 10% ether in petroleum ether); IR (neat) v_{max} 2960, 2940, 2870, 1715(C=O), 1655, 1470, 1395, 1370, 1280, 1270, 1110, 1030, 980, 840, 780, 750, 715, 700, 680 cm⁻¹; ¹H NMR (CDCl₃) δ 7.51, 7.38 (2 x m, 5 H, aromatic), 6.93 (dt, J=7.3, 1.4 Hz, 1 H, CH=C), 5.47 (s, 1 H, CHAr), 4.17 (q, J=7.2 Hz, 2 H, CH₃CH₂O₂C), 3.58 (m, 4 H, CH-O, CH₂O), 2.75 (dd, J=14.1, 7.4 Hz, 1 H, CH₂), 2.38 (m, 1 H, CH₂), 1.84 (d, J=1.1 Hz, 3 H, CH₃C=C), 1.55 (t, J=7.2 Hz, 3 H, CH₃CH₂O₂C), 0.88 (s, 9 H, (CH₃)₃CSi), 0.09, 0.07 (2 x s, 2 x 3H, CH₃Si); HRMS, calcd for C₂3H₄0O₅NSi (M+NH₄): 438.2676, found: 438.2637.

Allylic alcohol 15.

To a stirred solution of **14** (71.0 g, 168.6 mmol) in CH₂Cl₂ (190 mL) at -78 °C was added DIBAL (370 mL, 370 mmol, 1.0 M in CH₂Cl₂) over a 20 min period. After 40 min, the mixture was quenched with MeOH (5 mL), the cooling bath was removed, and the reaction mixture was allowed to reach room temperature. The mixture was diluted with EtOAc (400 mL) and washed with aqueous saturated sodium potassium tartrate (300 mL). The aqueous phase was extracted with EtOAc (2 x 100 mL). The combined organic layers were dried (MgSO₄), concentrated and subjected to flash chromatography (silica, 30% ether in petroleum ether) to give the allylic alcohol **15** (62.1 g, 98%). **15**: oil; TLC, Rf=0.27 (silica, 30% ether in petroleum ether); IR (neat) v_{max} 3460(OH), 2960, 2860, 1465, 1300, 1250, 830, 775, 745, 715, 690, 670, 640 cm⁻¹; ¹H NMR (CDCl₃) δ 7.41, 7.32 (2 x m, 5 H, aromatic), 5.62 (dt, J=7.3, 1.4 Hz, 1 H, CH=C), 5.45 (s, 1 H, CHAr), 4.18 (m, 1 H, CH-O), 4.01 (d, J=4.1 Hz, 2 H, CH₂O), 3.55 (m, 3 H, CH-O, CH₂O), 2.62 (dd, J=14.1, 7.4 Hz, 1 H, CH₂), 2.29 (m, 1 H,

 $C_{\underline{H}2}$), 1.68 (s, 3 H, $C_{\underline{H}3}C=C$), 1.50 (bs,1 H, $O_{\underline{H}}$), 0.89 (s, 9 H, $(C_{\underline{H}3})_3CSi$), 0.09, 0.07 (2 x s, 2 x 3 H, $C_{\underline{H}3}Si$); HRMS, calcd for $C_{21}H_{35}O_4Si$ (M+H): 379.2305, found: 379.2317.

Epoxide 16.

A solution of alcohol 15 (61.9 g, 163.8 mmol) in CH₂Cl₂ (380 mL) was added dropwise over 20 min to a cooled (-27 °C) mixture of diethyl-D-tartrate (6.9 mL, 40.9 mmol), 4 Å molecular sieves (20 g), and titanium (IV) isopropoxide (10.8 mL, 36.1 mmol) in CH₂Cl₂ (120 mL). After 30 min, *tert*-butylhydroperoxide (81.9 mL, 245.7 mmol, 3.0 M in 2,2,4-trimethylpentane) was added and the reaction mixture stored at -20 °C for 14 h. The cooling was removed and the reaction mixture filtered. The filtrate was diluted with EtOAc (500 mL), washed with saturated aqueous sodium sulfate (500 mL), dried (MgSO₄) and filtered through a celite pad. The filtrate was concentrated and subjected to flash chromatography (silica, 30% ether in petroleum ether) to give the epoxide 16 (57.4 g, 89%). 16: oil; TLC, Rf=0.21 (silica, 30% ether in petroleum ether); IR (neat) v_{max} 3440(OH), 2950, 2920, 2850, 1460, 1390, 1250, 1100, 1030, 975, 880, 845, 835, 775, 755, 700, 675, 650 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.33 (2 x m, 5 H, aromatic), 5.49 (s, 1 H, CHAr), 4.19 (dd, J=10.0, 6.4 Hz,1 H, CH-O), 3.69-3.53 (m, 5 H, CH-O, CH₂O), 3.33 (t, J=6.2 Hz, 1 H, H-epox.), 2.01 (m, 1 H, CH₂), 1.64 (dd, J=8.4, 4.8 Hz, 1 H, CH₂), 1.55 (s, 3 H, CH₃-epox.), 0.87 (s, 9 H, (CH₃)₃CSi), 0.10, 0.08 (2 x s, 2 x 3 H, CH₃Si); HRMS, calcd for C₂1H₃₈O₅NSi (M+NH₄): 412.2519, found: 412.2493.

Olefin 18.

To a stirred mixture of alcohol 16 (57.1 g, 144.9 mmol), dry DMSO (80 mL) and triethylamine (100 mL, 725 mmol) in CH₂Cl₂ (300 mL) at 0 °C was added sulfur trioxide-pyridine complex (69.2 g, 435 mmol) in four portions. After 3.5 h the reaction mixture was diluted with ether (600 mL), washed with saturated aqueous ammonium chloride solution (500 mL), dried (MgSO₄) and concentrated to give the epoxy aldehyde 17 (54 g, 94%) which was used directly. To a stirred solution of methyl triphenylphosphonium bromide (77.7 g, 217.5 mmol) in THF (50 mL) at 0 °C was dropwise added sodium bis(trimethylsilyl)amide (174 mL, 174 mmol, 1.0 M in THF) over 20 min. After stirring for 10 min, the bright yellow ylide was treated with the crude aldehyde 17 (54 g, 137.7 mmol) in THF (350 mL) dropwise over a period of 20 min. After 15 min, the reaction mixture was quenched with acetone (5 mL), diluted with ether (500 mL), washed with water (400 mL), dried (MgSO₄) and concentrated. The residue was triturated with 25% ether in petroleum ether, followed by filtration to remove triphenylphosphonium oxide. After solvent removal and flash chromatography (silica, 5→10% ether in petroleum ether), the olefin 18 was obtained (48 g, 88%). 18: oil; TLC, Rf=0.33 (silica, 10% ether in petroleum ether); IR (neat) vmax 2950, 2920, 2850, 1640, 1460, 1385, 1360, 1295, 1250, 1100, 1020, 985, 915, 870, 840, 830, 775, 750, 700, 680, 660 cm⁻¹; ¹H NMR (CDCl₃) & 7.46, 7.33 (2 x m, 5 H, aromatic), 5.68 (dd, J=17.4, 10.6 Hz, 1 H, CH=CH₂), 5.51 (s, 1 H, CHAr), 5.30 (dd, J=17.4, 1.1 Hz, 1 H, CH₂=CH), 5.17 (dd, J=10.6, 1.1 Hz, 1 H, CH₂=CH), 4.20 (dd, J=10.0, 6.4 Hz,1 H, CH-O), 3.70 (m, 2 H, CH-O), 3.57 (m, 1 H, CH-O), 3.16 (t, J=6.2 Hz, 1 H, H-epox.), 2.02 (m, 2 H, CH₂), 1.42 (s, 3 H, CH₃-epox.), 0.89 (s, 9 H, (CH₃)₃CSi), 0.12, 0.10 (2 x s, 2 x 3 H, CH₃Si); HRMS, calcd for C₂₂H₃₅O₄Si (M+H): 391.2304, found: 391.2325.

Epoxy alcohol 7.

To a stirred solution of olefin 18 (47.9 g, 122.8 mmol) in THF (225 mL) at 25 °C was added dropwise tetrabutylammonium fluoride (185 mL, 185.0 mmol, 1.0 M in THF) over 10 min. After 20 min, the reaction mixture was diluted with ether (500 mL), washed with water (450 mL), dried (MgSO₄) and the solvent evaporated. Flash chromatography (silica, $30 \rightarrow 70\%$ ether in petroleum ether) gave the epoxy alcohol 7 (33.2 g, 98%). 7: oil; TLC, Rf=0.49 (silica, 50% ether in petroleum ether); IR (neat) v_{max} 3440(OH), 2960, 2920, 2850, 1450, 1400, 1075, 1020, 920, 830, 760, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.33 (2 x m, 5 H, aromatic), 5.68 (dd, J=17.4, 10.6 Hz, 1 H, CH=CH₂), 5.50 (s, 1 H, CHAr), 5.30 (dd, J=17.4, 1.1 Hz, 1 H, CH₂=CH), 5.17 (dd, J=10.6, 1.1 Hz, 1 H, CH₂=CH), 4.30 (dd, J=10.0, 6.4 Hz,1 H, CH-O), 3.91 (m, 1 H, CH-O), 3.79 (m, 1 H, CH-O), 3.61 (t, J=10.5 Hz, 1 H, CH-O), 3.18 (dd, J=7.9, 3.8 Hz, 1 H, H-epox.), 2.29 (d, J=4.7 Hz, 1 H, OH), 2.20 (m, 1 H, CH₂), 2.01 (m, 1 H, CH₂), 1.42 (s, 3 H, CH₃-epox.); HRMS, calcd for C₁₆H₂1O₄ (M+H): 277.1440, found: 277.1409.

Pyran 19.

A solution of epoxide **7** (33.1 g, 119.9 mmol) in CH₂Cl₂ (1.1 L) at 0 °C was treated with pyridinium p-toluenesulfonate (23.9 g, 95.2 mmol) in one portion. After 3 h, triethylamine (16.6 mL, 120 mmol) was added and the solvent evaporated. Flash chromatography (silica, 70% ether in petroleum ether) gave the cyclized product **19** (28.5 g, 86%). **19**: solid; m.p. 97°C; TLC, Rf=0.53 (silica, 50% ether in petroleum ether); IR (neat) v_{max} 3450(OH), 2990, 2960, 2870, 1470, 1290, 1190, 1100, 1020, 760, 700, 655 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.33 (2 x m, 5 H, aromatic), 5.68 (dd, J=17.4, 10.6 Hz, 1 H, CH=CH₂), 5.52 (s, 1 H, CHAr), 5.33 (dd, J=17.4, 1.1 Hz, 1 H, CH₂=CH), 5.16 (dd, J=10.6, 1.1 Hz, 1 H, CH₂=CH), 4.26 (m,1 H, CH-O), 3.69-3.42 (m, 4 H, CH-O, CH₂O), 2.29 (m, 1 H, CH₂), 1.83 (q. J=11.6 Hz, 1 H, CH₂), 1.71 (d, J=4.7 Hz, 1 H, OH), 1.36 (s, 3 H, CH₃); HRMS, calcd for C₁₆H₂1O₄ (M+H): 277.1440, found: 277.1418.

Silyl ether 20.

To a stirred solution of pyran 19 (28.4 g, 102.9 mmol) and imidazole (10.5 g, 154.3 mmol) in DMF (200 mL) at 25 °C was added *tert*-butyldimethylsilyl chloride (18.4 g, 122.4 mmol) in one portion. The reaction mixture was heated at 50 °C and stirred for 10.5 h. After cooling to room temperature the reaction mixture was quenched with MeOH (9 mL), diluted with ether (500 mL) and washed with water (300 mL). Drying (MgSO₄), concentration and flash chromatography (silica, 10% ether in petroleum ether) gave the silyl ether **20** (39 g, 97%). **20**: oil; TLC, Rf=0.36 (silica, 10% ether in petroleum ether); IR (neat) v_{max} 2960, 2940, 2860, 1480, 1410, 1370, 1300, 1260, 1195, 1100, 1030, 930, 840, 790, 700, 675, 650 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.33 (2 x m, 5 H, aromatic), 5.68 (dd, J=17.4, 10.6 Hz, 1 H, CH=CH₂), 5.51 (s, 1 H, CHAr), 5.33 (dd, J=17.4, 1.1 Hz, 1 H, CH₂=CH), 5.16 (dd, J=10.6, 1.1 Hz, 1 H, CH₂=CH), 4.26 (m,1 H, CH=O), 3.69-3.42 (m, 4 H, CH=O, CH₂O), 2.17 (m, 1 H, CH₂), 1.83 (q, J=11.6 Hz, 1 H, CH₂), 1.31 (s, 3 H, CH₃), 0.85 (s, 9 H, (CH₃)₃CSi), 0.04, 0.02 (2 x s, 2 x 3 H, CH₃Si); HRMS, calcd for C₂2H₃5O₄Si (M+H): 391.2304, found: 391,2281.

Alcohol 21.

A stirred solution of olefin **20** (38.9 g, 99.7 mmol) in THF (80 mL) at 25 °C was treated with 9-BBN (300 mL, 150 mmol, 0.5 M in THF) over 30 min. After 40 min, the reaction mixture was cooled to 0 °C and treated dropwise with 3 N NaOH (75 mL, 225 mmol) and 30% hydrogen peroxide (20 mL, 165 mmol) over 20 min. The cooling bath was removed and the reaction mixture was stirred for another 30 min. The reaction mixture was diluted with ether (500 mL), washed with water (300 mL), dried (MgSO₄), and concentrated. Flash chromatography (silica, 20 \rightarrow 50% ether in petroleum ether) gave the alcohol 21 (38 g, 93%). 21: oil; TLC, Rf=0.28 (silica, 50% ether in petroleum ether); IR (neat) v_{max} 3460(OH), 2960, 2940, 2860, 1475, 1390, 1370, 1260, 1100, 840, 780, 700, 670, 650 cm⁻¹; ¹H NMR (CDCl₃) δ 7.41, 7.32 (2 x m, 5 H, aromatic), 5.49 (s, 1 H, CHAr), 4.19 (d, J=5.7 Hz, 1 H, CH₂O), 3.84-3.39 (m, 6 H, CH-O, CH₂O), 2.19 (m, 1 H, CH₂), 1.88-1.63 (m, 3 H, CH₂), 1.56 (s, 3 H, CH₃), 1.50 (bs, 1 H, OH), 0.84 (s, 9 H, (CH₃)₃CSi), 0.06, 0.04 (2 x s, 2 x 3 H, CH₃Si); HRMS, calcd for C₂₂H₃₇O₅Si (M+H): 409.2410, found: 409.2401.

Aldehyde 22.

A solution of alcohol **21** (37.9 g, 92.9 mmol) in CH₂Cl₂ (365 mL) was added dropwise to a mixture of oxalyl chloride (12.2 mL, 139.4 mmol) and DMSO (13.1 mL, 185.8 mmol) in CH₂Cl₂ (85 mL) at -78 °C over 25 min. After 40 min, triethylamine (65 mL, 464.5 mmol) was added slowly and the cooling bath removed. When the reaction mixture reached 0 °C, it was diluted with ether (500 mL) and washed with saturated aqueous ammonium chloride (450 mL), dried (MgSO₄) and concentrated. The crude aldehyde **22** (37.5 g, 98%) was taken to the next step without purification. **22**: oil; TLC, Rf=0.82 (silica, 50% ether in petroleum ether); IR (neat) v_{max} 2960, 2940, 2860, 1720 (C=O), 1470, 1390, 1370, 1260, 1100, 1030, 840, 780, 700, 670, 650 cm⁻¹; ¹H NMR (CDCl₃) δ 9.83 (t, J= 2.9 Hz, 1 H, H-aldehyde), 7.46, 7.32 (2 x m, 5 H, aromatic), 5.49 (s, 1 H, CHAr), 4.21 (m, 1 H, CH-O), 3.74-3.36 (m, 4 H, CH-O, CH₂-O), 2.52 (2 x d, J=2.9 Hz, 2 x 1 H, CH₂C=O), 2.16 (m, 1 H, CH₂), 1.82 (q, J=11.6 Hz, 1 H, CH₂), 1.36 (s, 3 H, CH₃), 0.85 (s, 9 H, (CH₃)₃CSi), 0.06, 0.058 (2 x s, 2 x 3 H, CH₃Si); HRMS, calcd for C₂2H₃5O₅Si (M+H): 407.2251, found: 407.2291.

Unsaturated ester 23.

A mixture of the crude aldehyde **22** (37.4 g, 92.1 mmol), methyl (triphenylphosphoranylidene) acetate (36.9 g, 110.5 mmol) and benzoic acid (0.2 g) in benzene (185 mL) was stirred at 50 °C for 30 min. Concentration and flash chromatography (silica, 15% ether in petroleum ether) gave the α,β -unsaturated ester **23** (37.6 g, 88%). **23**: oil; TLC, Rf=0.42 (silica, 20% ether in petroleum ether); IR (neat) ν_{max} 2960, 2940, 2860, 1730(C=O), 1660, 1470, 1435, 840, 780, 700, 680, 660 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.32 (2 x m, 5 H, aromatic), 6.94 (m, 1 H, CH=CH), 5.84 (d, J=15.8 Hz, 1 H, CH=CH), 5.49 (s, 1 H, CHAr), 4.21 (dd, J=10.0, 6.4 Hz, 1 H, CH=O), 3.73 (s, 3 H, CH₃O₂C), 3.69-3.37 (m, 4 H, CH=O), CH₂-O), 2.41 (m, 2 H, CH₂), 2.14 (m, 1 H, CH₂), 1.82 (m, 1 H, CH₂), 1.20 (s, 3 H, CH₃), 0.86 (s, 9 H, (CH₃)₃CSi), 0.046, 0.043 (2 x s, 2 x 3 H, CH₃Si); HRMS, calcd for C₂5H₃9O₆Si (M+H): 463.2516, found: 463.2479.

Alcohol 24.

DIBAL (178.6 mL, 178.6 mmol, 1.0 M in CH₂Cl₂) was added dropwise to a stirred solution of ester 23 (37.5 g, 81.2 mmol) in CH₂Cl₂ (100 mL) at -78 °C over 20 min. After 15 min, the mixture was quenched with MeOH (5 mL), the cooling bath removed, and the reaction mixture was allowed to reach room temperature. The mixture was diluted with EtOAc (400 mL) and washed with aqueous saturated sodium potassium tartrate (350 mL). The aqueous phase was extracted with EtOAc (2 x 1000 mL). The combined organic layers were dried (MgSO₄), concentrated and subjected to flash chromatography (silica, 60% ether in petroleum ether) to give the allylic alcohol 24 (34.8 g, 98%). 24: oil; TLC, Rf=0.43 (silica, 60% ether in petroleum ether); IR (neat) v_{max} 3390(OH), 2950, 2860, 1465, 1365, 1255, 835, 780, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.32 (2 x m, 5 H, aromatic), 5.71 (m, 2 H, CH=CH), 5.49 (s, 1 H, CHAr), 4.21 (dd, J=10.0, 6.4 Hz, 1 H, CH-O), 4.12 (t, J=5.3 Hz, 1 H, CH-O), 3.64-3.38 (m, 5 H, CH-O, CH₂O), 2.36-2.04 (m, 3 H, CH₂), 1.79 (m, 1 H, CH₂), 1.16 (s, 3 H, CH-O), 3.64-3.38 (m, 5 H, CH-O, CH₂O), 2.36-2.04 (m, 3 H, CH₂), 1.79 (m, 1 H, CH₂), 1.16 (s, 3 H, CH₃), 0.86 (s, 9 H, (CH₃)₃CSi), 0.04 (s, 6 H, (CH₃)₂Si); HRMS, calcd for C₂4H₃9O₅Si (M+H): 435.2567, found: 435.2532.

Epoxide 25.

A solution of alcohol 24 (34.7 g, 80.0 mmol) in CH₂Cl₂ (200 mL) was added dropwise over 10 min to a cooled (-28 °C) mixture of diethyl-D-tartrate (3.4 mL, 20.0 mmol), 4 Å molecular sieves (12 g), and titanium (IV) isopropoxide (4.8 mL, 16.0 mmol) in CH₂Cl₂ (60 mL). After 30 min, *tert*-butylhydroperoxide (40 mL, 120.0 mmol, 3.0 M in 2,2,4-trimethylpentane) was added and the reaction mixture was stored at -20 °C for 14 h. Cooling was stopped and the reaction mixture was filtered. The filtrate was diluted with EtOAc (400 mL), washed with saturated aqueous sodium sulfate (320 mL), dried (MgSO₄) and filtered through a celite pad. The filtrate was concentrated and subjected to flash chromatography (silica, 50% ether in petroleum ether) to give the epoxide 25 (31.3 g, 87%). 25: oil; TLC, Rf=0.38 (silica, 60% ether in petroleum ether); IR (neat) v_{max} 3450 (OH), 2960, 2850, 1470, 1395, 1265, 850, 780, 700, 670, 665 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.32 (2 x m, 5 H, aromatic), 5.50 (s, 1 H, CHAr), 4.21 (m, 1 H, CH-O), 3.94-3.72 (m, 2 H, CH-O, CH₂O), 3.68-3.41 (m, 4 H, CH-O, CH₂O), 3.18 (m, 1 H, H-epox.), 2.86 (m, 1 H, H-epox.), 2.17 (m, 1 H, CH₂), 1.78 (m, 3 H, CH₂), 1.24 (s, 3 H, CH₃), 0.83 (s, 9 H, (CH₃)₃CSi), 0.06, 0.05 (2 x s, 2 x 3 H, CH₃Si); HRMS, calcd for C₂4H₃9O₆Si (M+H): 435.2567, found: 435.2532.

Unsaturated ester 26.

To a stirred mixture of alcohol 25 (31.2 g, 69.3 mmol), dry DMSO (50 mL) and triethylamine (48 mL, 345 mmol) in CH_2Cl_2 (250 mL) at 0 °C was added sulfur trioxide-pyridine complex (33.1 g, 208 mmol) in four portions. After 3 h, the reaction mixture was diluted with ether (350 mL), washed with saturated aqueous ammonium chloride solution (250 mL), dried (MgSO₄) and concentrated to give the crude epoxy aldehyde 25a (30.3 g, 93%) which was used directly. The crude aldehyde was taken up in benzene (140 mL), treated with (carbethoxyethylidene) triphenylphosphorane (30.4 g, 83.2 mmol) and catalytic benzoic acid (0.2 g) and stirred for 30 min at 25 °C. Concentration and flash chromatography (silica, 20% ether in petroleum ether) gave the α,β -unsaturated ester 26

(30.1 g, 88%). **26**: oil; TLC, Rf=0.34 (silica, 20% ether in petroleum ether); IR (neat) v_{max} 2960, 2860, 1720(C=O), 1660, 1465, 1370, 1250, 1100, 915, 840, 780, 750, 700, 680, 660 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.32 (2 x m, 5 H, aromatic), 6.28 (d, J=8.8 Hz, 1 H, CH=C), 5.50 (s, 1 H, CHAr), 4.20 (m, 3 H, CH-O, CH₃CH₂O₂C), 3.82 (m, 1 H, CH-O), 3.61-3.39 (m, 3 H, CH-O, CH₂O), 3.31 (dd, J=8.8, 2.2 Hz, 1 H, H-epox.), 3.18 (m, 1 H, H-epox.), 2.18 (m, 1 H, CH₂), 1.98 (d, J=1.3 Hz, 3 H, CH₃C=C), 1.83-1.72 (m, 3 H, CH₂), 1.27 (t, J=7.2 Hz, 3 H, CH₃CH₂O₂C), 1.24 (s, 3 H, CH₃), 0.84 (s, 9 H, (CH₃)₃CSi), 0.07 (s, 6 H, CH₃Si); HRMS, calcd for C₂9H₄5O₇Si (M+H): 533.2934, found: 533.2941.

Epoxy ester 6.

To a stirred solution of ester **26** (30.0 g, 56.4 mmol) in THF (105 mL) at 25 °C was added dropwise tetrabutylammonium fluoride (84.6 mL, 84.6 mmol, 1.0 M in THF) over 10 min. After 20 min, the reaction mixture was diluted with ether (200 mL), washed with water (250 mL), dried (MgSO₄) and the solvent evaporated. Flash chromatography (silica, $30\rightarrow70\%$ ether in petroleum ether) gave the epoxy alcohol 6 (21.7 g, 95%). 6: oil; TLC, Rf=0.31 (silica, 60% ether in petroleum ether); IR (neat) v_{max} 3490(OH), 2990, 1710(C=O), 1470, 920, 700, 640 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.32 (2 x m, 5 H, aromatic), 6.28 (d, J=8.8 Hz, 1 H, CH=C), 5.51 (s, 1 H, CHAr), 4.20 (m, 3 H, CH-O, CH₃CH₂O₂C), 3.94 (m, 1 H, CH-O), 3.59 (m, 3 H, CH-O, CH₂O), 3.38 (dd, J=8.8, 2.2 Hz, 1 H, H-epox.), 3.22 (m, 1 H, H-epox.), 2.21 (m, 1 H, CH₂), 1.98 (d, J=1.3 Hz, 3 H, CH₃C=C), 1.92-1.64 (m, 3 H, CH₂), 1.28 (t, J=7.2 Hz, 3 H, CH₃CH₂O₂C), 1.25 (s, 3 H, CH₃); HRMS, calcd for C₂3H₃1O₇ (M+H): 419.2070, found: 419.2072.

Bicycle 27.

A solution of epoxide 6 (21.6 g, 51.7 mmol) in CH₂Cl₂ (520 mL) at 25 °C was treated with pyridinium p-toluenesulfonate (10.4 g, 41.3 mmol) in one portion. After 13 h, triethylamine (7.2 mL) was added and the solvent evaporated. Flash chromatography (silica, 60% ether in petroleum ether) gave the cyclized product **27** (18.1 g, 84%). **27**: oil; TLC, Rf=0.28 (silica, 60% ether in petroleum ether); IR (neat) v_{max} 3490(OH), 2990, 2950, 2870, 1715(C=O), 1660, 1460, 1375, 1310, 1265, 1100, 1030, 920, 735, 700, 650 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.32 (2 x m, 5 H, aromatic), 6.61 (d, J=8.8 Hz, 1 H, CH=C), 5.52 (s, 1 H, CHAr), 4.20-3.96 (m, 4 H, CH-O, CH₃CH₂O₂C), 3.80-3.49 (m, 4 H, CH-O), 3.30 (dd, J=8.8, 2.2 Hz, 1 H, CH-O), 2.23 (m, 2 H, CH₂), 1.96 (d, J=1.3 Hz, 3 H, CH₃C=C), 1.81 (m, 2 H, CH₂), 1.34 (s, 3 H, CH₃), 1.28 (t, J=7.2 Hz, 3 H, CH₃CH₂O₂C); HRMS, calcd for C₂₃H₃₁O₇ (M+H): 419.2070, found: 419.2066.

Saturated ester 28.

10% palladium on carbon (3.6 g, 20% by wt.) was added to a stirred solution of ester 27 (18.0 g, 43.1 mmol) in EtOAc (140 mL). A hydrogen atmosphere was introduced using a hydrogen-filled balloon by repeated evacuations (water aspirator). After 48 h, the hydrogen was replaced by argon and the reaction mixture was filtered through a celite pad. The filtrate was concentrated to give a diastereomeric mixture of esters 28 (18.0 g, 100%.). 28: oil; TLC, Rf=0.21 (silica, 60% ether in

petroleum ether); IR (neat) v_{max} 3480(OH), 2990, 2940, 2860, 1725(C=O), 1470, 1380, 920, 740, 705, 655 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.32 (2 x m, 5 H, aromatic), 5.52 (s, 1 H, CHAr), 4.26-4.02 (m, 3 H, CH-O, CH₃CH₂O₂C), 3.69-3.35 (m, 4 H, CH-O, CH₂O), 3.14 (m, 2 H, CH-O), 2.72 (m, 1 H, CHCH₃), 2.19 (m, 2 H, CH₂), 1.93-1.51 (m, 4 H, CH₂), 1.29 (s, 3 H, CH₃), 1.19 (m, 3 H, CH₃CH₂O₂C), 1.04 (d, J=6.6 Hz, 3 H, CH₃CH); HRMS, calcd for C₂3H₃3O₇ (M+H): 421.2226, found: 421.2246.

Diol 29.

A stirred solution of ester **28** (17.9 g, 42.6 mmol) in ether (140 mL) at 0 °C was treated with small portions of lithium aluminum hydride (1.62 g, 42.6 mmol) over 15 min. After 30 min, water (2 mL) and 3 N NaOH (2 mL) were added slowly. The reaction mixture was diluted with EtOAc (200 mL) and MgSO₄ (12 g) was added. After 10 min, the reaction mixture was filtered through a celite pad and the solids were washed well with EtOAc. Concentration of the filtrate gave the diol **29** (15.3 g, 95%). **29**: oil; TLC, Rf=0.23 (silica, 100% EtOAc); IR (neat) v_{max} 3420(OH), 2970, 2860, 1455, 1370, 1110, 1090, 1060, 1020, 850, 695 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.32 (2 x m, 5 H, aromatic), 5.50 (s, 1 H, CHAr), 4.22 (m, 1 H, CH-O), 3.68 (m, 2 H, CH-O, CH₂O), 3.60-3.33 (m, 4 H, CH-O), 3.23 (m, 2 H, CH-O, CH₂O), 2.52 (m, 1 H, OH), 2.18 (m, 2 H, CH₂), 1.93-1.42 (m, 5 H, CH₂, CHCH₃), 1.28 (s, 3 H, CH₃), 0.94 (d, J=6.6 Hz, 3 H, CH₃CH); HRMS, calcd for C₂₁H₃₁O₆ (M+H): 379.2120, found: 379.2141.

Silyl ether 30.

To a stirred solution of diol **29** (15.2 g, 40.2 mmol) and imidazole (4.1 g, 60.3 mmol) in DMF (80 mL) at 0 °C was added *tent*-butyldiphenylsilyl chloride (12.5 mL, 48.2 mmol) in one portion. After 20 min, the reaction mixture was quenched with MeOH (2 ml), diluted with ether (300 mL) and washed with water (200 mL). Drying (MgSO4), concentration and flash chromatography (silica, $50 \rightarrow 70\%$ ether in petroleum ether) gave the silyl ether **30** (22.0 g, 89%). **30**: oil; TLC, Rf=0.68 (silica, 70% ether in petroleum ether); IR (neat) v_{max} 3470(OH), 2960, 2870, 1470, 1430, 1390, 1295, 1195, 1100, 915, 825, 740, 705, 650, 620 cm⁻¹; ¹H NMR (CDCl₃) δ 7.67, 7.46, 7.32 (3 x m, 15 H, aromatic), 5.51 (s, 1 H, CHAr), 4.21 (m, 1 H, CH-O), 3.69-3.41 (m, 6 H, CH-O, CH₂O), 3.14-2.95 (m, 2 H, CH-O), 2.19-1.38 (m, 7 H, CH₂, CHCH₃), 1.23 (s, 3 H, CH₃), 1.09 (s, 9 H, (CH₃)₃CSi), 0.94 (d, J=6.6 Hz, 3 H, CH₃CH); HRMS, calcd for C₃7H₄9O₆Si (M+H): 617.3298, found: 617.3355.

p-Methoxy benzyl ether 31.

To a stirred solution of alcohol **30** (21.9 g, 35.6 mmol) in THF (70 mL) at 50 °C was added potassium hydride (4.9 g, 42.7 mmol, 35% by wt. in mineral oil). After 40 min, p-methoxybenzyl chloride (6.3 mL, 46.3 mmol) was added dropwise over 1 min. After 10 min, MeOH (2 mL) was added and the reaction mixture was diluted with ether (120 mL), washed with water (100 mL), dried (MgSO₄) and concentrated. Flash chromatography (silica, $5\rightarrow$ 20% ether in petroleum ether) gave the benzyl ether **31** (22.0 g, 84%). **31**: oil; TLC, Rf=0.52 (silica, 30% ether in petroleum ether); IR (neat) v_{max} 2950, 2860, 1610, 1590, 1515, 1465 1430, 1390, 1300, 1250, 1175, 1090, 1030, 910,

820, 735, 700, 650, 610 cm⁻¹; ¹H NMR (CDCl₃) δ 7.67, 7.46, 7.32 (3 x m, 15 H, aromatic), 7.20, 6.82 (2 x m, 4 H, C₆H₄OMe), 5.52 (s, 1 H, CHAr), 4.50, 4.37 (2 x d, J=11.1 Hz, 2 x 1 H, CHAr), 4.22 (m, 1 H, CH-O), 3.77 (s, 3 H, OCH₃), 3.69-3.05 (m, 8 H, CH-O, CH₂O), 2.30-1.29 (m, 7 H, CH₂, CHCH₃), 1.23 (s, 3 H, CH₃), 1.05 (s, 9 H, (CH₃)₃CSi), 0.96 (d, J=6.6 Hz, 3 H, CH₃CH); HRMS, calcd for C₄5H₅7O₇Si (M+H): 737.3873, found: 737.3807.

Diol 32.

Camphorsulfonic acid (1.7 g, 7.45 mmol) was added to a stirred solution of benzylidene **31** (21.9 g, 29.8 mmol) in MeOH (200 mL) at 0 °C. After 1 h, triethylamine (1.3 mL, 9 mmol) was added and the solvent evaporated. Flash chromatography (silica, $30\rightarrow100\%$ ether in petroleum ether) gave the diol **32** (16.6 g, 86%). **32**: oil; TLC, Rf=0.21 (silica, 100% ether); IR (neat) v_{max} 3410(OH), 2900, 2860, 1615, 1590, 1515, 820, 745, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.65, 7.34 (m, 10 H, aromatic), 7.18, 6.80 (2 x m, 4 H, C₆H₄OMe), 4.50, 4.37 (2 x d, J=11.1 Hz, 2 x 1 H, CHAr), 3.77 (s, 3 H, OCH₃), 3.74 (m, 3 H, CH-O, CH₂O), 3.62-3.41 (m, 3 H, CH-O, CH₂O), 3.19 (m, 2 H, CH-O), 2.92 (m, 1 H, CH₂), 2.23 (m, 1 H, CH₂), 1.94 (m, 4 H, CH₂, CHCH₃), 1.59-1.20 (m, 4 H, CH₂, OH), 1.14 (s, 3 H, CH₃), 1.02 (s, 9 H, (CH₃)₃CSi), 0.98 (d, J=6.6 Hz, 3 H, CH₃CH); HRMS, calcd for C₃₈H₅₆NO₇Si (M+NH₄): 666.3826, found: 666.3781.

Bis-silyl ether 33.

To a stirred solution of diol **32** (16.5 g, 25.5 mmol) and imidazole (5.2 g, 76.5 mmol) in DMF (50 mL) at 25 °C was added *tert*-butyldimethylsilyl chloride (9.6 g, 63.8 mmol) in one portion. The reaction mixture was heated at 50 °C for 12 h. The reaction mixture was cooled and quenched with MeOH (5 mL), diluted with ether (300 mL) and washed with water (200 mL). Drying (MgSO₄), concentration and flash chromatography (silica, 10% ether in petroleum ether) gave the bis-silyl ether **33** (20.6 g, 92%). **33**: oil; TLC, Rf=0.78 (silica, 20% ether in petroleum ether); IR (neat) v_{max} 2960, 2880, 1615, 1520, 1470, 1255, 1070, 940, 830, 780, 705 cm⁻¹; ¹H NMR (CDCl₃) δ 7.65, 7.34 (m, 10 H, aromatic), 7.20, 6.82 (2 x m, 4 H, C₆H₄OMe), 4.50, 4.37 (2 x d, J=11.1 Hz, 2 x 1 H, CHAr), 3.77 (s, 3 H, OCH₃), 3.71-2.86 (m, 9 H, CH-O, CH₂O), 2.26 (m, 1 H, CH₂), 2.07-1.38 (m, 6 H, CH₂, CHCH₃), 1.12 (d, J=6.6Hz, 3 H, CH₃CH), 1.02 (s, 3 H, CH₃), 0.87, 0.86, 0.85 (3 x s, 3 x 9 H, (CH₃)₃CSi), 0.05, 0.03, 0.02, 0.01 (4 x s, 4 x 3 H, CH₃Si); HRMS, calcd for C₅0H₈0O₇Si₃Na (M+Na): 899.5110, found: 899.5227.

Alcohol 34.

Camphorsulfonic acid (0.8 g, 3.5 mmol) was added to a stirred solution of the silyl ether **33** (20.5 g, 23.4 mmol) in MeOH (200 mL) at 0 °C. After 1 h, triethylamine (0.6 mL, 4.2 mmol) was added and the solvent evaporated. Flash chromatography (silica, $20\rightarrow50\%$ ether in petroleum ether) gave the alcohol **34** (14.4 g, 81%). **34**: oil; TLC, Rf=0.53 (silica, 50% ether in petroleum ether); IR (neat) v_{max} 3500 (OH), 2980, 2860, 1615, 1595, 1520, 1465, 1430, 1390, 1365, 1265, 1070, 840, 780, 740, 705, 615 cm⁻¹; ¹H NMR (CDCl₃) δ 7.65, 7.34 (m, 10 H, aromatic), 7.20, 6.82 (2 x m, 4 H, C₆H₄OMe), 4.50, 4.37 (2 x d, J=11.1 Hz, 2 x 1 H, CHAr), 3.81 (m, 1 H, CH-O), 3.78 (s, 3 H, OCH₃), 3.70-2.92 (m,

8 H, CH-O, CH₂O), 2.26 (m, 1 H, CH₂), 2.07-1.38 (m, 7 H, CH₂, CHCH₃, OH), 1.12 (d, J=6.6Hz, 3 H, CH₃CH), 1.07 (s, 3 H, CH₃), 0.87, 0.86 (2 x s, 2 x 9 H, (CH₃)₃CSi), 0.05, 0.03 (2 x s, 2 x 3 H, CH₃Si); HRMS, calcd for C₄₄H₆₆O₇Si₂Na (M+Na): 785.4245, found: 785.4298.

Methyl alcohol 36.

A solution of alcohol 34 (14.3 g, 18.8 mmol) in CH₂Cl₂ (120 mL) was added dropwise to a mixture of oxalyl chloride (2.5 mL, 28.2 mmol) and DMSO (2.7 mL, 37.6 mmol) in CH2Cl2 (80 mL) at -78 °C over 25 min. After 40 min, triethylamine (13.1 mL, 94 mmol) was added slowly and the cooling bath removed. When the reaction mixture reached 0 °C, it was diluted with ether (200 mL), washed with saturated aqueous ammonium chloride (300 mL), dried (MgSO₄) and concentrated. The crude aldehyde 35 (13 g, 90%) was taken to the next step without purification. A cooled (0 °C) solution of the aldehyde in THF (50 mL) was treated with methylmagnesium bromide (7.4 mL, 22.2 mmol, 3.0 M in THF) dropwise over 5 min. After 30 min, MeOH (2 mL) was added and the reaction mixture was diluted with ether (100 mL), washed with water (100 mL), dried (MgSO₄) and concentrated. Flash chromatography (silica, 30% ether in petroleum ether) gave the methyl alcohol 36 (11.9 g, 91%). 36: oil; TLC, Rf=0.37 (silica, 30% ether in petroleum ether); IR (neat) v_{max} 3500(OH), 2980, 2860, 1615, 1595, 1440, 1390, 1260, 1070, 830, 780, 740, 705, 615 cm⁻¹; ¹H NMR (CDCl₃) δ 7.65, 7.34 (m, 10 H, aromatic), 7.20, 6.82 (2 x m, 4 H, C_6H_4OMe), 4.50, 4.37 (2 x d, J=11.1 Hz, 2 x 1 H, CHAr), 3.81 (m, 1 H, CH-O), 3.78 (s, 3 H, OCH₃), 3.70-2.92 (m, 7 H, CH-O, CH₂O), 2.26 (m, 1 H, CH₂), 2.07-1.38 (m, 7 H, C_{H2} , C_{HCH3} , O_{H1}), 1.12 (m, 2 x 3 H, $C_{H3}CH$), 1.07 (s, 3 H, C_{H3}), 0.87, 0.86 (2 x s, 2 x 9 H, (CH₃)₃CSi), 0.05, 0.03 (2 x s, 2 x 3 H, CH₃Si); HRMS, calcd for C₄5H₆8O₇Si₂Na (M+Na): 799.4402, found: 799.4434.

Methyl ketone 37.

A solution of alcohol **36** (11.8 g, 15.2 mmol) in CH₂Cl₂ (120 mL) was added dropwise to a mixture of oxalyl chloride (2.0 mL, 22.8 mmol) and DMSO (2.2 mL, 30.4 mmol) in CH₂Cl₂ (80 mL) at -78 °C over 25 min. After 60 min, triethylamine (10.6 mL, 76 mmol) was added slowly and the cooling bath removed. When the reaction mixture reached 0 °C, it was diluted with ether (200 mL), washed with saturated aqueous ammonium chloride (300 mL), dried (MgSO₄) and concentrated. Flash chromatography (silica, 20% ether in petroleum ether) gave the methyl ketone **37** (10.4 g, 88%). **37**: oil; TLC, Rf=0.69 (silica, 30% ether in petroleum ether); IR (neat) v_{max} 2970, 2860, 1735(C=O), 1615, 1590, 1520, 1470, 1430, 1370, 1305, 1255, 1100, 840, 780, 740, 705, 615 cm⁻¹; ¹H NMR (CDCl₃) δ 7.65, 7.34 (m, 10 H, aromatic), 7.20, 6.82 (2 x m, 4 H, C₆H₄OMe), 4.50, 4.37 (2 x d, J=11.1 Hz, 2 x 1 H, CHAr), 3.83 (m, 1 H, CH-O), 3.78 (s, 3 H, OCH₃), 3.61-2.88 (m, 6 H, CH-O, CH₂O), 2.26 (m, 1 H, CH₂), 2.18 (s, 3 H, CH₃C=O), 2.16-1.38 (m, 6 H, CH₂, CHCH₃), 1.03 (s, 3 H, CH₃), 1.02, (s, 9 H, (CH₃)₃CSi), 0.97 (d, J=6.6Hz, 3 H, CH₃CH), 0.83 (s, 9 H, (CH₃)₃CSi), 0.05, 0.03 (2 x s, 2 x 3 H, CH₃Si); HRMS, calcd for C45H₆6O₇Si₂Na (M+Na): 797.4245, found: 797.4317.

Alcohol 38.

To a stirred solution of methyl ketone **37** (9.5 g, 12.3 mmol) in THF (25 mL) at 0 °C was added dropwise tetrabutylammonium fluoride (15 mL, 15 mmol, 1.0 M in THF) over 10 min. After 20 min, the reaction mixture was diluted with ether (100 mL), washed with water (100 mL), dried (MgSO₄) and the solvent evaporated. Flash chromatography (silica, $30\rightarrow70\%$ ether in petroleum ether) gave the alcohol **38** (7.3 g, 90%). **38**: oil; TLC, Rf=0.64 (silica, 70% ether in petroleum ether); IR (neat) v_{max} 3500(OH), 2960, 2860, 1720(C=O), 1615, 1590, 1520, 1430, 1260, 1110, 1085, 1040, 825, 730, 705, 615 cm⁻¹; ¹H NMR (CDCl₃) δ 7.65, 7.34 (m, 10 H, aromatic), 7.20, 6.82 (2 x m, 4 H, C₆H₄OMe), 4.50, 4.37 (2 x d, J=11.1 Hz, 2 x 1 H, C_HAr), 3.78 (s, 3 H, OCH₃), 3.72-2.84 (m, 7 H, C_HO, CH₂O), 2.18 (s, 3 H, CH₃C=O), 2.26-1.19 (m, 8 H, CH₂, CHCH₃, OH), 1.03 (s, 3 H, CH₃), 1.02 (s, 9 H, (CH₃)₃CSi), 0.97 (d, J=6.6Hz, 3 H, CH₃CH); HRMS, calcd for C₃9H₅2O₇SiNa (M+Na): 683.3380, found: 683.3301.

Bromo ester 39.

A solution of alcohol **38** (7.2 g, 10.9 mmol), bromoacetic acid (1.7 g, 12 mmol) and dimethylamino pyridine (0.27 g, 2.2 mmol) in CH₂Cl₂ (25 mL) at 25 °C was treated with 1,3-dicyclohexylcarbodiimide (3.4 g, 16.4 mmol) in one portion. After 12 h, the reaction mixture was diluted with ether (50 mL) and filtered through a celite pad. Concentration and flash chromatography (silica, 30% ether in petroleum ether) gave bromoester **39** (7.6 g, 89%). **39**: oil; TLC, Rf=0.78 (silica, 70% ether in petroleum ether); IR (neat) v_{max} 2950, 1740(C=O), 1615, 1515, 910, 830, 740, 705, 610 cm⁻¹; ¹H NMR (CDCl₃) δ 7.65, 7.34 (m, 10 H, aromatic), 7.20, 6.82 (2 x m, 4 H, C₆H₄OMe), 4.90 (m, 1 H, CH₀O₂C), 4.50, 4.37 (2 x d, J=11.1 Hz, 2 x 1 H, CHAr), 3.83 (m, 1 H, CHO), 3.78 (s, 3 H, OCH₃), 3.75 (s, 2 H, CH₂Br), 3.69-2.92 (m, 5 H, CH-O, CH₂O), 2.18 (s, 3 H, CH₃C=O), 2.26-1.21 (m, 7 H, CH₂, CHCH₃), 1.03 (s, 3 H, CH₃), 1.02 (s, 9 H, (CH₃)₃CSi), 0.97 (d, J=6.6Hz, 3 H, CH₃CH); HRMS, calcd for C₄1H₅3O₈BrSiNa (M+Na): 803.2591, found: 803.2683.

Phosphonate 5.

A stirred solution of bromoester **39** (7.5 g, 9.6 mmol) and trimethyl phosphite (22.6 mL, 192 mmol) was heated at 70 °C for 3 h. Excess trimethyl phosphite was removed at reduced pressure and the resulting phosphonate **5** (7.8 g, 100%) was used without purification. **5**: oil; TLC, Rf=0.32 (silica, 100% EtOAc); IR (neat) v_{max} 2950, 2920, 2850, 1740(C=O), 1610, 1585, 1510, 1460, 1430, 1385, 1360, 1250, 1180, 1050, 820, 740, 700, 610 cm⁻¹; ¹H NMR (CDCl₃) δ 7.65, 7.34 (m, 10 H, aromatic), 7.20, 6.82 (2 x m, 4 H, C₆H₄OMe), 4.91 (m, 1 H, C_HO₂C), 4.50, 4.37 (2 x d, J=11.1 Hz, 2 x 1 H, C_HAr), 3.83 (m, 1 H, C_H-O), 3.79 (s, 3 H, OC_{H₃}O), 3.76, 3.75 (2 x s, 2 x 3 H, (C_{H₃}O)₂P=O), 3.75 (s, 2 H, C_{H₂}P=O), 3.74-2.86 (m, 5 H, C_H-O, C_{H₂}O), 2.18 (s, 3 H, C_{H₃}C=O), 2.26-1.20 (m, 7 H, C_{H₂}C_HCH₃), 1.03 (s, 3 H, C_{H₃}O), 1.02 (s, 9 H, (C_{H₃}O)₃CSi), 0.97 (d, J=6.6Hz, 3 H, C_{H₃}CH); HRMS, calcd for C43H59O₁₁PSiNa (M+Na): 833.3462, found: 833.3441.

Lactone 40.

A stirred solution of phosphonate 5 (7.7 g, 9.5 mmol) and dry lithium chloride (0.81 g, 19 mmol) in CH₃CN (100 mL) at 25 °C was treated dropwise with diisopropylethyl amine (3.3 mL, 19 mmol) over 5 min. After 2 h, the reaction mixture was diluted with ether (200 mL), washed with water (100 mL), dried (MgSO₄) and concentrated. Flash chromatography (silica, 50% ether in petroleum ether) gave the lactone **40** (5.9 g, 92%). **40**: oil; TLC, Rf=0.52 (silica, 30% EtOAc in petroleum ether); IR (neat) v_{max} 2960, 2860, 1730(C=O), 1620, 1590, 1520, 1470, 1430, 1385, 1310, 1250, 1080, 910, 825, 740, 705, 615 cm⁻¹; ¹H NMR (CDCl₃) δ 7.65, 7.34 (m, 10 H, aromatic), 7.20, 6.82 (2 x m, 4 H, C₆H₄OMe), 5.71 (bs, 1 H, CH=CMe), 4.50, 4.37 (2 x d, J=11.1 Hz, 2 x 1 H, CHAr), 4.21 (m, 1 H, CHO₂C), 3.94 (m, 1 H, CH-O), 3.79 (s, 3 H, OCH₃), 3.58-2.94 (m, 5 H, CH-O, CH₂O), 2.32 (s, 1 H, CH₂), 2.14 (m, 1 H, CH₂), 1.98 (bs, 3 H, CH₃C=C), 1.82-1.16 (m, 5 H, CH₂, CHCH₃), 1.03 (s, 3 H, CH₃), 1.02 (s, 9 H, (CH₃)₃CSi), 0.97 (d, J=6.6Hz, 3 H, CH₃CH); HRMS, calcd for C₄₁H₅₂O₇SiNa (M+Na): 707.3380, found: 707.3336.

Lactol 41.

DIBAL (12.7 mL, 12.7 mmol, 1.0 M in CH_2Cl_2) was added dropwise to a stirred solution of lactone 40 (5.8 g, 8.5 mmol) in CH_2Cl_2 (25 mL) at -78 °C over 10 min. After 15 min, the mixture was quenched with MeOH (1 mL), the cooling bath removed, and the reaction mixture was allowed to reach room temperature. The mixture was diluted with EtOAc (100 mL) and washed with aqueous saturated sodium potassium tartrate (150 mL). The aqueous phase was extracted with EtOAc (2 x 50 mL). The combined organic layers were dried (MgSO₄) and concentrated to give the lactol 41 (5.8 g, 100%). 41: oil; TLC, Rf=0.49 (silica, 30% EtOAc in petroleum ether); IR (neat) v_{max} 3420(OH), 2960, 2860, 1680, 1615, 1590, 1520, 1465, 1430, 1385, 1305, 1255, 1180, 1100, 910, 825, 740, 700, 610 cm⁻¹; ¹H NMR (CDCl₃) δ 7.65, 7.34 (m, 10 H, aromatic), 7.20, 6.82 (2 x m, 4 H, $C_{6H_4}OMe$), 5.46 (bs, 1 H, $C_{H_2}CMe$), 5.32 (m, 1 H, $C_{H_3}CHe$), 0.450, 4.37 (2 x d, J=11.1 Hz, 2 x 1 H, CHAr), 3.83 (m, 1 H, CH-O), 3.79 (s, 3 H, OCH₃), 3.70-2.94 (m, 6 H, CH-O, CH₂O), 2.32 (m, 1 H, CH₂), 1.92 (m, 2 H, CH₂, CHCH₃), 1.73 (bs, 3 H, CH₃C=C), 1.67-1.19 (m, 5 H, CH₂), 1.03 (s, 3 H, CH₃), 1.02 (s, 9 H, (CH₃)₃CSi), 0.97 (d, J=6.6Hz, 3 H, CH₃CH); HRMS, calcd for C4₁H₅4O₇SiNa (M+Na): 709.3536, found: 709.3509.

Tricycle 42.

A stirred solution of lactol **41** (5.7 g, 8.3 mmol) and triethylsilane (6.6 mL, 41.5 mmol) in CH₂Cl₂ (30 mL) at -10 °C was treated with borontrifluoride etherate (1.0 mL, 8.3 mmol) dropwise over 5 min. After 20 min, triethylamine (1.4 mL, 10.0 mmol) was added, the reaction mixture was diluted with ether (80 mL), washed with water (50 mL), dried (MgSO₄) and concentrated. Flash chromatography (silica, 20% ether in petroleum ether) gave the tricycle **42** (5.0 g, 90%). **42**: oil; TLC, Rf=0.57 (silica, 30% ether in petroleum ether); IR (neat) v_{max} 2960, 2860, 1680, 1615, 1590, 1520, 1465, 1430, 1385, 1305, 1255, 1180, 1100, 910, 825, 740, 700, 610 cm⁻¹; ¹H NMR (CDCl₃) δ 7.65, 7.34 (m, 10 H, aromatic), 7.20, 6.82 (2 x m, 4 H, C₆H₄OMe), 5.33 (bs, 1 H, CH=CMe), 4.50, 4.37 (2 x d, J=11.1 Hz, 2 x 1 H, CHAr), 4.18 (m, 2 H, CH(O)C=C), 3.94 (m, 1 H, CH-O), 3.79 (s, 3 H, OCH₃), 3.58-3.09

(m, 6 H, C $\underline{\text{H}}$ -O, C $\underline{\text{H}}$ ₂O), 2.36 (m, 1 H, C $\underline{\text{H}}$ ₂), 2.07 (m, 1 H, C $\underline{\text{H}}$ ₂), 1.91-1.40 (m, 5 H, C $\underline{\text{H}}$ ₂, C $\underline{\text{H}}$ CH₃), 1.69 (s, 3 H, C $\underline{\text{H}}$ ₃C=C), 1.20 (s, 3 H, C $\underline{\text{H}}$ ₃), 1.04 (s, 9 H, (C $\underline{\text{H}}$ ₃)₃CSi), 0.90 (d, J=6.6Hz, 3 H, C $\underline{\text{H}}$ ₃CH); HRMS, calcd for C₄₁H₅₅O₆Si (M+H): 671.3768, found: 671.3659.

Alcohol 43.

To a stirred solution of tricycle **42** (4.9 g, 7.3 mmol) in THF (20 mL) at 45 °C was added dropwise tetrabutylammonium fluoride (11 mL, 11 mmol, 1.0 M in THF) over 1 min. After 2.5 h, the reaction mixture was diluted with ether (50 mL), washed with water (50 mL), dried (MgSO₄) and the solvent evaporated. Flash chromatography (silica, $50\rightarrow80\%$ ether in petroleum ether) gave the alcohol **43** (2.9 g, 93%). **43**: oil; TLC, Rf=0.47 (silica, 100% ether); IR (neat) v_{max} 3450(OH), 2940, 2865, 1610, 1520, 1465, 1380, 1300, 1240, 1000, 980, 820, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.20, 6.82 (2 x m, 4 H, C₆H₄OMe), 5.33 (bs, 1 H, CH=CMe), 4.50, 4.37 (2 x d, J=11.1 Hz, 2 x 1 H, CHAr), 4.18 (m, 2 H, CH₂(O)C=C), 3.94 (m, 1 H, CH-O), 3.79 (s, 3 H, OCH₃), 3.58-3.12 (m, 6 H, CH-O, CH₂O), 2.36 (m, 1 H, CH₂), 2.07 (m, 1 H, CH₂), 1.91-1.40 (m, 6 H, CH₂, CHCH₃, OH), 1.69 (s, 3 H, CH₃C=C), 1.20 (s, 3 H, CH₃), 0.90 (d, J=6.6Hz, 3 H, CH₃CH); HRMS, calcd for C₂5H₃7O₆ (M+H): 433.2590, found: 433.2578.

Acid 44.

A stirred solution of alcohol 43 (2.5 g, 5.8 mmol) in acetone (20 mL) at -15 °C was treated with Jones reagent (3.6 mL, prepared from 11 g of CrO₃, 9.6 mL of conc. H₂SO₄ and 25 mL of H₂O) dropwise over 5 min. After 20 min, isopropyl alcohol (2 mL) was added slowly, the reaction mixture was diluted with ether (100 mL), washed with water (3 x 50 mL), dried (MgSO₄) and concentrated to give the free acid 44 (2.2 g, 84%). 44: oil; TLC, Rf=0.74 streak (silica, 50% EtOAc in petroleum ether); IR (neat) v_{max} 3500-2600, 1740, 1710, 1615, 1520, 1480, 1385, 1305, 1255, 1175, 1100, 1040, 825, 710 cm⁻¹; ¹H NMR (CDCl₃) δ 7.20, 6.82 (2 x m, 4 H, C₆H₄OMe), 5.34 (bs, 1 H, CH=CMe), 4.50, 4.37 (2 x d, J=11.1 Hz, 2 x 1 H, CHAr), 4.25, 4.14 (2 x bd, J=16.0 Hz, 2 x 1 H, CH₂(O)C=C), 3.94 (m, 1 H, CH=O), 3.79 (s, 3 H, OCH₃), 3.40-3.11 (m, 4 H, CH=O, CH₂O), 2.69 (m, 1 H, CHCH₃), 2.40-2.21 (m, 2 H, CH₂), 2.15-1.35 (m, 4 H, CH₂), 1.70 (s, 3 H, CH₃C=C), 1.20 (s, 3 H, CH₃), 1.16 (d, J=6.6Hz, 3 H, CH₃CH); HRMS, calcd for C₂5H₃5O₇ (M+H): 447.2383, found: 447.2328.

Ester 45.

A stirred solution of acid 44 (2.1 g, 4.7 mmol), 2-(trimethylsilyl)ethanol (0.8 mL, 5.6 mmol), dimethylamino pyridine (0.17 g, 1.4 mmol) and camphorsulfonic acid (0.33 g, 1.4 mmol) in CH_2Cl_2 (10 mL) at 25 °C was treated with 1,3-dicyclohexyl carbodiimide (1.5 g, 7.1 mmol) in one portion. After 12 h, ether (20 mL) was added and the reaction mixture was filtered through a celite pad. Concentration and flash chromatography (silica, 20% ether in petroleum ether) gave ester 45 (2.3 g, 89%). 45: oil; TLC, Rf=0.68 (silica, 50% ether in petroleum ether); IR (neat) v_{max} 2960, 2880, 1730, 1520, 1480, 1385, 1305, 1255, 1175, 1100, 1040, 825, 710 cm⁻¹; ¹H NMR (CDCl₃) δ 7.20, 6.82 (2 x m, 4 H, $C_{eH_4}OMe$), 5.34 (bs, 1H, $C_{eH_2}CMe$), 4.50, 4.37 (2 x d, J=11.1 Hz, 2 x 1 H, $C_{eH_2}CMe$),

4.13 (m, 4 H, $CH_2(O)C=C$, CH_2O_2C), 3.92 (m, 1 H, CH_2O), 3.79 (s, 3 H, OCH_3), 3.36-3.04 (m, 4 H, CH_2O), 2.64 (m, 1 H, $CHCH_3$), 2.43-1.36 (m, 6 H, CH_2), 1.70 (bs, 3 H, $CH_3C=C$), 1.20 (s, 3 H, CH_3), 1.16 (d, J=6.6Hz, 3 H, CH_3CH), 0.94 (m, 2 H, $CH_2Si(CH_3)_3$), 0.06 (s, 9 H, CH_3O_3Si); HRMS, calcd for $C_3O_1H_4O_7Si$ (M+H): 547.3091, found: 547.3062.

ABC system 2.

A stirred solution of ester **45** (2.2 g, 4.0 mmol) in CH₂Cl₂ (10 mL) and H₂O (3 mL) was treated with DDQ (1.2 g, 5.2 mmol) at 25 °C. After 40 min, ether (50 mL) was added and the reaction mixture was washed with saturated aqueous sodium bicarbonate solution (4 x 50 mL), dried (MgSO₄) and concentrated. Flash chromatography (silica, 30 \rightarrow 70% ether in petroleum ether) gave the alcohol **2** (1.45 g, 85%). **2**: oil; TLC, Rf=0.27 (silica, 50% ether in petroleum ether); IR (neat) v_{max} 3460(OH), 2960, 2880, 1730, 1540, 1490, 830, 770, 695 cm⁻¹; ¹H NMR (CDCl₃) δ 5.34 (bs, 1 H, CH=CMe), 4.18 (m, 4 H, CH₂(O)C=C, CH₂O₂C), 3.93 (m, 1 H, CH=O), 3.51 (m, 1 H, CH=O), 3.21-3.01 (m, 3 H, CH=O), 2.74 (m, 2 H, CH₂CO₂), 2.24-1.41 (m, 8 H, CH₂, CHCH₃, OH), 1.70 (bs, 3 H, CH₃C=C), 1.21 (s, 3 H, CH₃), 1.17 (m, 3 H, CH₃CH), 0.94 (m, 2 H, CH₂Si(CH₃)₃), 0.06 (s, 9 H, (CH₃)₃Si); HRMS, calcd for C₂₂H₄₁O₆Si (M+H): 429.2672, found: 429.2646.

Ketone 12.

A solution of alcohol **8** (45 g, 146.6 mmol) in CH₂Cl₂ (550 mL) was added dropwise to a mixture of oxalyl chloride (19.2 mL, 220 mmol) and DMSO (20.7 mL, 293 mmol) in CH₂Cl₂ (200 mL) at -78 °C over 25 min. After 60 min, triethylamine (102 mL, 730 mmol) was added slowly and the cooling bath removed. When the reaction mixture reached 0 °C, it was diluted with ether (1 L), washed with saturated aqueous ammonium chloride (2 x 450 mL), dried (MgSO₄) and concentrated to give the crude ketone **12** (39.8 g, 89%) which was used without purification. **12**: oil; TLC, Rf=0.78 streak (silica, 70% ether in petroleum ether); IR (CDCl₃) v_{max} 3600, 3450, 2980, 2870, 1700(C=O), 1650, 1460, 1385, 1370, 1280, 1230, 1115, 1075, 1030, 980, 910, 650 cm⁻¹; ¹H NMR (CDCl₃) δ 7.45, 7.34 (2 x m, 5 H, aromatic), 6.83 (dt, J=7.3, 1.4 Hz, 1 H, CH=C), 5.96 (s, 1 H, CHAr), 4.55 (dd, J= Hz, 1 H, CH(O)C=O), 4.43 (s, 2 H, CH₂(O)C=O), 4.17 (q, J=7.2 Hz, 2 H, CH₃CH₂O₂C), 2.84 (m, 1 H, CH₂C=C), 2.69 (m, 1 H, CH₂C=C), 1.86 (d, J=1.4 Hz, 3 H, CH₃C=C), 1.27 (t, J=7.2 Hz, 3 H, CH₃CH₂O₂C); HRMS, calcd for C₁7H₂1O₅ (M+H): 305.1389, found: 305.1356.

Methyl alcohol 46.

A stirred solution of ketone 12 (39.7 g, 130.2 mmol) at -20 °C was treated dropwise with trimethylaluminum (78 mL, 156 mmol, 2.0 M in hexanes) over 15 min. After 2 h, MeOH (4 mL) was added and the cooling bath removed. Work up was carried out as for 41. Flash chromatography (silica, 70% ether in petroleum ether) gave methyl alcohol 46 (35 g, 84%). 46: oil; TLC, Rf=0.31 (silica, 70% ether in petroleum ether); IR (CDCl3) v_{max} 3470(OH), 2980, 2870, 1715(C=O), 1655, 1460, 1375, 1280, 1105, 1030, 750, 720, 700 cm⁻¹; ¹H NMR (CDCl3) δ 7.45, 7.34 (2 x m, 5 H, aromatic), 6.85 (dt, J=7.3, 1.4 Hz, 1 H, CH=C), 5.48 (s, 1 H, CHAr), 4.17 (q, J=7.2 Hz, 2 H, CH₃CH₂O₂C), 3.88 (d, J=10.7 Hz, 1 H, CH=O), 3.67 (m, 2 H, CH=O), 2.61 (m, 1 H, CH₂C=C), 2.39

(m, 1 H, $C\underline{H}_2C=C$), 1.85 (d, J=1.4 Hz, 3 H, $C\underline{H}_3C=C$), 1.70 (s, 1 H, $O\underline{H}$), 1.42 (s, 3 H, $C\underline{H}_3$), 1.27 (t, J=7.2 Hz, 3 H, $C\underline{H}_3CH_2O_2C$); HRMS, calcd for $C_18H_25O_5$ (M+H): 321.1702, found: 321.1646.

Silyl ether 47.

A stirred solution of alcohol **46** (34.9 g, 109.1 mmol) in CH₂Cl₂ (200 mL) at 25 °C was treated dropwise with 1-(trimethylsilyl)imidazole (20.8 mL, 141.7 mmol) over 5 min. After 15 min, MeOH (4 mL) was added and the solvent evaporated to give the crude silyl ether **47** (42.7 g, 100%) that was used without purification. **47**: oil; TLC, Rf=0.67 (silica, 20% ether in petroleum ether); IR (CDCl₃) v_{max} 2980, 2880, 1715(C=O), 1650, 1455, 1370, 1265, 1100, 1030, 845, 750, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.45, 7.34 (2 x m, 5 H, aromatic), 6.85 (dt, J=7.3, 1.4 Hz, 1 H, CH=C), 5.48 (s, 1 H, CHAr), 4.17 (q, J=7.2 Hz, 2 H, CH₃CH₂O₂C), 3.88 (d, J=10.7 Hz, 1 H, CH-O), 3.65 (m, 2 H, CH-O), 2.62 (m, 1 H, CH₂C=C), 2.39 (m, 1 H, CH₂C=C), 1.85 (d, J=1.4 Hz, 3 H, CH₃C=C), 1.42 (s, 3 H, CH₃), 1.27 (t, J=7.2 Hz, 3 H, CH₃CH₂O₂C), 0.12 (s, 9 H, (CH₃)₃Si); HRMS, calcd for C₂1H₃3O₅Si (M+H): 393.2097, found: 393.2101.

Alcohol 48.

DIBAL (240 mL, 240 mmol, 1.0 M in CH₂Cl₂) was added dropwise to a stirred solution of ester 47 (42.6 g, 108.7 mmol) in CH₂Cl₂ (120 mL) at -78 °C over 20 min. After 15 min, the mixture was quenched with MeOH (3 mL), the cooling bath removed, and the reaction mixture was allowed to reach room temperature. The mixture was diluted with EtOAc (400 mL) and washed with aqueous saturated sodium potassium tartrate (2 x 150 mL). The aqueous phase was extracted with EtOAc (2 x 500 mL). The combined organic layers were dried (MgSO₄), concentrated and subjected to flash chromatography (silica, 30% ether in petroleum ether) to give the alcohol 48 (36.5 g, 96%). 48: oil; TLC, Rf=0.47 (silica, 50% ether in petroleum ether); IR (CDCl₃) v_{max} 3380(OH), 2970, 2930, 2860, 1405, 1255, 1100, 1030, 845, 755, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.45, 7.34 (2 x m, 5 H, aromatic), 5.56 (dt, J=7.3, 1.4 Hz, 1 H, CH=C), 5.46 (s, 1 H, CHAr), 3.98 (bs, 2 H, CH₂OH), 3.85 (d, J=10.7 Hz, 1 H, CH-O), 3.60 (m, 2 H, CH-O), 2.50 (m, 1 H, CH₂C=C), 2.22 (m, 1 H, CH₂C=C), 1.91 (s, 1 H, OH), 1.68 (s, 3 H, CH₃C=C), 1.40 (s, 3 H, CH₃), 0.12 (s, 9 H, (CH₃)₃Si); HRMS, calcd for C₁9H₃1O₄Si (M+H): 351.1991, found: 351.1990.

Epoxide 49.

A solution of alcohol 48 (36.4 g, 104 mmol) in CH₂Cl₂ (280 mL) was added dropwise over 20 min to a cooled (-25 °C) mixture of diethyl-D-tartrate (4.5 mL, 26 mmol), 4 Å molecular sieves (11 g), and titanium (IV) isopropoxide (6.5 mL, 20.8 mmol) in CH₂Cl₂ (90 mL). After 30 min, *tert*-butylhydroperoxide (52 mL, 156 mmol, 3.0 M in 2,2,4-trimethylpentane) was added and the reaction mixture was stored at -20 °C for 14 h. Cooling was stopped and the reaction mixture was filtered. The filtrate was diluted with EtOAc (400 mL), washed with saturated aqueous sodium sulfate (2 x 200 mL), dried (MgSO₄) and filtered through a celite pad. The filtrate was concentrated and subjected to flash chromatography (silica, 30% ether in petroleum ether) to give the epoxide 49 (33.9 g, 89%). 49: oil; TLC, Rf=0.42 (silica, 50% ether in petroleum ether); IR (CDCl₃) vmax

3440(OH), 2950, 2930, 2850, 1450, 1385, 1310, 1250, 1155, 1110, 1025, 980, 860, 840, 750, 695, 655 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.33 (2 x m, 5 H, aromatic), 5.50 (s, 1 H, CHAr), 3.93 (d, J=10.5 Hz, 1 H, CH-O), 3.66 (m, 4 H, CH-O, CH₂O), 3.28 (t, J=6.2 Hz, 1 H, H-epox.), 1.90 (m, 2 H, CH₂), 1.70 (bs, 1 H, OH), 1.42 (s, 3 H, CH₃-epox.), 1.30 (s, 3 H, CH₃), 0.12 (s, 9 H, (CH₃)₃Si); HRMS, calcd for C₁9H₂9O₅Si (M-H): 365.1784, found: 365.1791.

Olefin 51.

To a stirred mixture of alcohol 49 (33.8 g, 92.3 mmol), dry DMSO (90 mL) and triethylamine (64 mL, 462 mmol) in CH₂Cl₂ (370 mL) at 0 °C was added sulfur trioxide-pyridine complex (44.0 g, 277 mmol) in four portions. After 2 h, the reaction mixture was diluted with ether (500 mL), washed with saturated aqueous ammonium chloride solution (2 x 400 mL), dried (MgSO₄) and concentrated to give the epoxy aldehyde 50 (31.6 g, 93%) which was used directly. To a stirred solution of methyl triphenylphosphonium bromide (46.5 g, 130.2 mmol) in THF (50 mL) at 0 °C was added dropwise sodium bis(trimethylsilyI)amide (108.5 mL, 108.5 mmol, 1.0 M in THF) over 20 min. After stirring for 10 min, the bright yellow ylide was treated with the crude aldehyde 50 (31.6 g, 86.8 mmol) in THF (280 mL) dropwise over 20 min. After 35 min, the reaction mixture was guenched with acetone (5 mL), diluted with ether (500 mL), washed with water (400 mL), dried (MgSO₄) and concentrated. The residue was triturated with 25% ether in petroleum ether, followed by filtration to remove triphenylphosphonium oxide. After solvent removal and flash chromatography (silica, 5→10% ether in petroleum ether), the olefin 51 was obtained (26.7 g, 88%). 51: oil; TLC, Rf=0.72 (silica, 20% ether in petroleum ether); IR (neat) v_{max} 2960, 2920, 2860, 1460, 1390, 1255, 1065, 1015, 925, 840, 755, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.33 (2 x m, 5 H, aromatic), 5.58 (dd, J=17.4, 10.6 Hz, 1 H, CH=CH₂), 5.50 (s, 1 H, CHAr), 5.34 (dd, J=17.4, 1.1 Hz, 1 H, CH₂=CH), 5.18 (dd, J=10.6, 1.1 Hz, 1 H, CH₂=CH), 3.94 (d, J=10.0 Hz, 1 H, CH-O), 3.64 (m, 2 H, CH-O), 3.17 (t, J=6.2 Hz, 1 H, Hepox.), 1.91 (m, 2 H, CH₂), 1.44 (s, 3 H, CH₃-epox.), 1.42 (s, 3 H, CH₃), 0.12 (s, 9 H, (CH₃)₃Si); HRMS, calcd for C₂₀H₃₁O₄Si (M+H): 363.1991, found: 363.2019.

Alcohol 11.

To a stirred solution of olefin **51** (26.6 g, 73.5 mmol) in THF (130 mL) at 25 °C was added dropwise tetrabutylammonium fluoride (110 mL, 110.0 mmol, 1.0 M in THF) over 10 min. After 20 min, the reaction mixture was diluted with ether (250 mL), washed with water (200 mL), dried (MgSO₄) and the solvent evaporated. Flash chromatography (silica, $30\rightarrow70\%$ ether in petroleum ether) gave the epoxy alcohol **11** (20.2 g, 95%). **11**: oil; TLC, Rf=0.32 (silica, 70% ether in petroleum ether); IR (neat) v_{max} 3310, 3060, 2970, 2860, 1590, 1440, 1310, 1180, 1100, 1030, 990, 920, 740, 720, 700, 640 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.33 (2 x m, 5 H, aromatic), 5.63 (dd, J=17.4, 10.6 Hz, 1 H, CH=CH₂), 5.49 (s, 1 H, CHAr), 5.30 (dd, J=17.4, 1.1 Hz, 1 H, CH₂=CH), 5.16 (dd, J=10.6, 1.1 Hz, 1 H, CH₂=CH), 3.87 (d, J=10.0 Hz, 1 H, CH-O), 3.74 (dd, J=8.7, 3.7 Hz, 1 H, CH-O), 3.66 (d, J=10.5 Hz, 1 H, CH₂O), 3.08 (t, J=6.2 Hz, 1 H, H-epox.), 1.99-1.85 (m, 3 H, CH₂, OH), 1.40 (s, 3 H, CH₃-epox.), 1.39 (s, 3 H, CH₃); HRMS, calcd for C₁7H₂3O₄ (M+H): 291.1596, found: 291.1604.

Pyran 52.

A solution of epoxide 11 (20.1 g, 69.3 mmol) in CH₂CI₂ (650 mL) at 0 °C was treated with pyridinium p-toluenesulfonate (13.9 g, 55.4 mmol) in one portion. After 12 h, triethylamine (9.3 mL) was added and the solvent evaporated. Flash chromatography (silica, 70% ether in petroleum ether) gave the cyclized product **52** (19 g, 94%). **52**: solid; m.p. 86-88 °C; TLC, Rf=0.36 (silica, 70% ether in petroleum ether); IR (neat) v_{max} 3460(OH), 2980, 2860, 1445, 1385, 755, 695 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.33 (2 x m, 5 H, aromatic), 5.89 (dd, J=17.4, 10.6 Hz, 1 H, CH=CH₂), 5.56 (s, 1 H, CHAr), 5.35 (dd, J=17.4, 1.1 Hz, 1 H, CH₂=CH), 5.15 (dd, J=10.6, 1.1 Hz, 1 H, CH₂=CH), 3.91 (d, J=10.0 Hz, 1 H, CH-O), 3.74-3.48 (m, 3 H, CH-O, CH₂O), 2.11 (m, 1 H, CH₂), 1.95 (q, J=11.5 Hz, 1 H, CH₂), 1.79 (d, J=5.1 Hz, 1 H, OH), 1.57 (s, 3 H, CH₃), 1.40 (s, 3 H, CH₃); HRMS, calcd for C₁₇H₂₃O₄ (M+H): 291.1596, found: 291.1587.

Silyl ether 53.

To a stirred solution of **52** (18.9 g, 65.2 mmol) and imidazole (6.7 g, 97.8 mmol) in DMF (130 mL) at 25 °C was added *tert*-butyldimethylsilyl chloride (12.8 g, 84.8 mmol) in one portion. The reaction mixture was heated at 50 °C for 12 h. The reaction mixture was cooled and quenched with MeOH (5 mL), diluted with ether (300 mL) and washed with water (240 mL). Drying (MgSO₄), concentration and flash chromatography (silica, 10% ether in petroleum ether) gave the silyl ether **53** (25 g, 95%). 53: solid; m.p. 91 °C; TLC, Rf=0.64 (silica, 20% ether in petroleum ether); IR (neat) vmax 2950, 2850, 1470, 1375, 1255, 1095, 855, 835, 775, 755, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.33 (2 x m, 5 H, aromatic), 5.89 (dd, J=17.4, 10.6 Hz, 1 H, CH=CH₂), 5.51 (s, 1 H, CHAr), 5.37 (dd, J=17.4, 1.1 Hz, 1 H, CH₂=CH), 5.19 (dd, J=10.6, 1.1 Hz, 1 H, CH₂=CH), 3.92-3.70 (m, 2 H, CH-O), 3.58 (m, 2 H, CH-O, CH₂O), 2.04-1.71 (m, 2 H, CH₂), 1.53 (s, 3 H, CH₃), 1.33 (s, 3 H, CH₃), 0.84 (s, 9 H, CH₃)₃Si), 0.07, 0.04 (2 x s, 2 x 3 H, (CH₃)₂Si); HRMS, calcd for C₂3H₃7O₄Si (M+H): 405.2461, found: 405.2419.

Alcohol 54.

A stirred solution of olefin **53** (24.9 g, 61.6 mmol) in THF (50 mL) at 25 °C was treated with 9-BBN (185 mL, 92.5 mmol, 0.5 M in THF) over 30 min. After 40 min, the reaction mixture was cooled to 0 °C and treated dropwise with 3 N NaOH (46 mL, 139 mmol) and 30% hydrogen peroxide (12.4 mL, 102 mmol) over 10 min. The cooling bath was removed and the reaction mixture was stirred for another 30 min. The reaction mixture was diluted with ether (300 mL), washed with water (200 mL), dried (MgSO₄), and concentrated. Flash chromatography (silica, 20 \rightarrow 50% ether in petroleum ether) gave the alcohol **54** (24.2 g, 93%). **54**: oil; TLC, Rf=0.27 (silica, 30% ether in petroleum ether); IR (neat) v_{max} 3440(OH), 2920, 2850, 1465, 1370, 1250, 1200, 1085, 1020, 850, 830, 770, 750, 690, 660 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.33 (2 x m, 5 H, aromatic), 5.54 (s, 1 H, CHAr), 3.88-3.69 (m, 4 H, CH-O, CH₂O), 3.55 (m, 2 H, CH-O, CH₂O), 2.38 (m, 1 H, CH₂), 2.09-1.54 (m, 3 H, CH₂), 1.53 (s, 3 H, CH₃), 1.33 (s, 3 H, CH₃), 0.84 (s, 9 H, (CH₃)₃Si), 0.07, 0.04 (2 x s, 2 x 3 H, (CH₃)₂Si); HRMS, calcd for C23H42O5NSi (M+NH₄): 440.2832, found: 440.2903.

Aldehyde 55.

A solution of alcohol 54 (24.1 g, 57.1 mmol) in CH₂Cl₂ (200 mL) was added dropwise to a mixture of oxalyl chloride (7.4 mL, 85.7 mmol) and DMSO (8.1 mL, 114.2 mmol) in CH₂Cl₂ (85 mL) at -78 °C over 25 min. After 40 min, triethylamine (38 mL) was added slowly and the cooling bath removed. When the reaction mixture reached 0 °C, it was diluted with ether (400 mL), washed with saturated aqueous ammonium chloride (350 mL), dried (MgSO₄) and concentrated. The crude aldehyde 55 (22.9 g, 95%) was taken to the next step without purification. 55: oil; TLC, Rf=0.55 (silica, 30% ether in petroleum ether); IR (neat) vmax 2960, 2860, 1720(C=O), 1470, 1390, 1260, 1100, 1030, 840, 780, 700, 670 cm⁻¹; ¹H NMR (CDCl₃) δ 9.81 (t, J= 2.9 Hz, 1 H, H-aldehyde), 7.46, 7.32 (2 x m, 5 H, aromatic), 5.50 (s, 1 H, CHAr), 4.21 (m, 1 H, CH-O), 3.76-3.36 (m, 3 H, CH-O, CH₂-O), 2.51 (2 x d, J=2.9 Hz, 2 x 1 H, CH₂C=O), 2.16 (m, 1 H, CH₂), 1.85 (q, J=11.6 Hz, 1 H, CH₂), 1.36, 1.19 (2 x s, 2 x 3 H, CH₃), 0.87 (s, 9 H, (CH₃)₃CSi), 0.06, 0.05 (2 x s, 2 x 3 H, CH₃Si); HRMS, calcd for C₂₃H₃₇O₅Si (M+H): 421.2410, found: 421.2422.

Ester 56.

A mixture of the crude aldehyde **55** (22.8 g, 54.3 mmol), (carbethoxyethylidene) triphenylphosphorane (23.8 g, 65.1 mmol) and benzoic acid (0.1 g) in benzene (110 mL) was heated at 50 °C for 30 min. Concentration and flash chromatography (silica, 15% ether in petroleum ether) gave the α,β -unsaturated ester **56** (29.5 g, 90%). **56**: oil; TLC, Rf=0.61 (silica, 30% ether in petroleum ether); IR (neat) v_{max} 2950, 2860, 1715(C=O), 1475, 1380, 1255, 1100, 860, 840, 775, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.33 (2 x m, 5 H, aromatic), 6.90 (dt, J=7.0, 1.4 Hz, 1 H, CH=CCO₂), 5.55 (s, 1 H, CHAr), 4.19 (q, J=7.2 Hz, 2 H, CH₃CH₂O₂C), 3.84 (d, J=10.0 Hz, 1 H, CH₂O), 3.68 (dd, J=10.3, 5.5 Hz, 1 H, CH-O), 3.53 (m, 2 H, CH-O, CH₂O), 2.49-1.90 (m, 4 H, CH₂), 1.80 (d, J=1.0 Hz, 3 H, CH₃C=C), 1.51, 1.26 (2 x s, 2 x 3 H, CH₃), 1.30 (t, J=7.2 Hz, 3 H, CH₃CH₂O₂C), 0.86 (s, 9 H, (CH₃)₃Si), 0.06, 0.04 (2 x s, 2 x 3H, CH₃Si); HRMS, calcd for C₂₈H₄₈O₆NSi (M+NH₄): 522.3250, found: 522.3281.

Allylic alcohol 57.

DIBAL (128 mL, 128 mmol, 1.0 M in CH₂Cl₂) was added dropwise to a stirred solution of ester 56 (29.4 g, 58.3 mmol) in CH₂Cl₂ (80 mL) at -78 °C over 20 min. After 15 min, the mixture was quenched with MeOH (3 mL), the cooling bath removed, and the reaction mixture was allowed to reach room temperature. The mixture was diluted with EtOAc (300 mL) and washed with aqueous saturated sodium potassium tartrate (2 x 150 mL). The aqueous phase was extracted with EtOAc (2 x 50 mL). The combined organic layers were dried (MgSO₄), concentrated and subjected to flash chromatography (silica, 30% ether in petroleum ether) to give the alcohol 57 (26.4 g, 97%). 57: oil; TLC, Rf=0.52 (silica, 60% ether in petroleum ether); IR (neat) v_{max} 3400(OH), 2930, 2860, 1480, 1380, 1250, 1100, 840, 775, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.33 (2 x m, 5 H, aromatic), 5.55 (bs, 2 H, CHAr, CH=C), 4.02 (s, 2 H, CH₂O), 3.74 (m, 1 H, CHO), 3.68 (m, 1 H, CH-O), 3.52 (m, 2 H, CH-O, CH₂O), 2.35-1.70 (m, 5 H, CH₂, OH), 1.64 (s, 3 H, CH₃C=C), 1.50, 1.22 (2 x s, 2 x 3 H, CH₃).

0.86 (s, 9 H, $(C_{H_3})_3S_i$), 0.06, 0.04 (2 x s, 2 x 3 H, $(C_{H_3})_2S_i$); HRMS, calcd for C₂₆H₄₃O₅Si (M+H): 463.2880, found: 463.2861.

Epoxide 58.

m-Chloroperbenzoic acid (14.7 g, 68.3 mmol, 80% by wt.) was added in five portions to a stirred, cooled (0 °C) solution of allylic alcohol **57** (26.3 g, 56.9 mmol) in CH₂Cl₂ (200 mL). After 30 min, dimethyl sulfide (3 mL) and triethylamine (15 mL) were added and the reaction mixture was concentrated. Flash chromatography (silica, 50% ether in petroleum ether) gave the epoxy alcohol **58** (26.4 g, 97%) as a single diastereomer. **58**: oil; TLC, Rf=0.48 (silica, 60% ether in petroleum ether); IR (neat) v_{max} 3440(OH), 2930, 2860, 1475, 1380, 1255, 1100, 860, 840, 780, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.33 (2 x m, 5 H, aromatic), 5.56 (s, 1 H, CHAr), 3.95 (dd, J=10.6, 5.2 Hz, 1 H, CH-O), 3.84 (d, J=10.0 Hz, 1 H, CH₂O), 3.71-3.49 (m, 4 H, CH-O, CH₂O), 3.28 (t, J=6.3 Hz, 1 H, H-epox.), 2.01-1.63 (m, 5 H, CH₂, OH), 1.53 (s, 3 H, CH₃-epox.), 1.26, 1.24 (2 x s, 2 x 3 H, CH₃), 0.84 (s, 9 H, (CH₃)₃Si), 0.06, 0.04 (2 x s, 2 x 3 H, (CH₃)₂Si); HRMS, calcd for C₂₆H₄3O₆Si (M+H): 479.2829, found: 479.2853.

Olefin 60.

To a stirred mixture of 58 (26.g, 55.0 mmol), dry DMSO (55 mL) and triethylamine (38 mL, 275 mmol) in CH₂Cl₂ (220 mL) at 0 °C was added sulfur trioxide pyridine complex (26.2 g, 165 mmol) in four portions. After 3.5 h, the reaction mixture was diluted with ether (300 mL), washed with saturated aqueous ammonium chloride solution (250 mL), dried (MgSO₄) and concentrated to give the epoxy aldehyde 59 (25 g, 92%) which was used directly. To a stirred solution of methyl triphenylphosphonium bromide (28.4 g, 79.4 mmol) in THF (50 mL) at 0 °C was added dropwise sodium bis(trimethylsilyl)amide (68.8 mL, 68.8 mmol, 1.0 M in THF) over 20 min. After stirring for 10 min, the bright yellow ylide was treated with the crude aldehyde 59 (25 g, 52.9 mmol) in THF (100 mL) dropwise over 20 min. After 10 min, the reaction mixture was quenched with acetone (5 mL), diluted with ether (250 mL), washed with water (200 mL), dried (MgSO₄) and concentrated. The residue was triturated with 25% ether in petroleum ether, followed by filtration to remove triphenylphosphonium oxide. After solvent removal and flash chromatography (silica, $5\rightarrow 10\%$ ether in petroleum ether), the olefin 60 was obtained (22.6 g, 88%). 60: oil; TLC, Rf=0.81 (silica, 20% ether in petroleum ether); IR (neat) v_{max} 2960, 2930, 2860, 1475, 1380, 1255, 1100, 860, 840, 780, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.33 (2 x m, 5 H, aromatic), 5.65 (dd, J=17.4, 10.6 Hz, 1 H, CH=CH₂), 5.56 (s, 1 H, CHAr), 5.35 (dd, J=17.4, 1.1 Hz, 1 H, CH₂=CH), 5.18 (dd, J=10.6, 1.1 Hz, 1 H, CH₂=CH), 3.96 (dd, J=10.6, 5.2 Hz, 1 H, CH-O), 3.83 (d, J=10.0 Hz, 1 H, CH₂O), 3.55 (m, 2 H, CH-O, CH₂O), 3.07 (t, J=6.2 Hz, 1 H, H-epox.), 2.04-1.68 (m, 4 H, CH₂), 1.52 (s, 3 H, CH₃-epox.), 1.34, 1.26 (2 x s, 2 x 3 H, CH₃), 0.84 (s, 9 H, (CH₃)₃CSi), 0.09 (s, 6 H, (CH₃)₂Si); HRMS, calcd for C₂₇H₄₃O₅Si (M+H): 475.2880, found: 475.2864.

Alcohol 10.

To a stirred solution of olefin **60** (22.5 g, 47.5 mmol) in THF (100 mL) at 25° C was added dropwise tetrabutylammonium fluoride (71.3 mL, 71.3 mmol, 1.0 M in THF) over 10 min. After 20 min, the reaction mixture was diluted with ether (200 mL), washed with water (100 mL), dried (MgSO₄) and the solvent evaporated. Flash chromatography (silica, $30\rightarrow70\%$ ether in petroleum ether) gave the epoxy alcohol **10** (15.9 g, 93%). **10**: oil; TLC, Rf=0.29 (silica, 30% ether in petroleum ether); IR (neat) vmax 3440(OH), 2960, 2930, 2870, 1475, 1390, 910, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.33 (2 x m, 5 H, aromatic), 5.65 (dd, J=17.4, 10.6 Hz, 1 H, CH=CH₂), 5.57 (s, 1 H, CHAr), 5.32 (dd, J=17.4, 1.1 Hz, 1 H, CH₂=CH), 5.20 (dd, J=10.6, 1.1 Hz, 1 H, CH₂=CH), 4.07 (m, 1 H, CH-O), 3.84 (d, J=10.0 Hz, 1 H, CH₂O), 3.58 (m, 2 H, CH-O, CH₂O), 3.07 (dd, J=7.6, 3.3 Hz, 1 H, H-epox.), 2.30 (bs, 1 H, OH), 2.12-1.61 (m, 4 H, CH₂), 1.54 (s, 3 H, CH₃-epox.), 1.38, 1.32 (2 x s, 2 x 3 H, CH₃); HRMS, calcd for C21H29O5 (M+H): 361.2015, found: 361.2029.

Bicycle 61.

A solution of epoxide 11 (15.8 g, 43.9 mmol) in CH_2Cl_2 (400 mL) at 0 °C was treated with pyridinium p-toluenesulfonate (9.4 g, 37.3 mmol) in one portion. After 14 h, triethylamine (6.2 mL) was added and the solvent evaporated. Flash chromatography (silica, 70% ether in petroleum ether) gave the cyclized product 61 (14.5 g, 92%). 61: oil; TLC, Rf=0.24 (silica, 30% EtOAc in petroleum ether); IR (neat) vmax 3470(OH), 2950, 2930, 2870, 1460, 1385, 735, 700, 650 cm⁻¹; ^{1}H NMR (CDCl₃) 5 7.46, 7.33 (2 x m, 5 H, aromatic), 5.95 (dd, J=17.4, 10.6 Hz, 1 H, CH=CH₂), 5.57 (s, 1 H, CHAr), 5.37 (dd, J=17.4, 1.1 Hz, 1 H, CH₂=CH), 5.18 (dd, J=10.6, 1.1 Hz, 1 H, CH₂=CH), 3.84 (d, J=10.0 Hz, 1 H, CH₂O), 3.74 (m, 2 H, CH-O, CH₂O), 3.56 (d, J=10.0 Hz, 1 H, H-epox.), 3.54 (m, 1 H, CH-O), 2.00 (m, 5 H, CH₂, OH), 1.59 (s, 3 H, CH₃), 1.37, 1.34 (2 x s, 2 x 3 H, CH₃); HRMS, calcd for C21H29O5 (M+H): 361.2015, found: 361.2019.

Benzyl ether 62.

To a stirred solution of alcohol **61** (14.4 g, 40.0 mmol) in THF (85 mL) at 45 °C was added potassium hydride (6.9 g, 52 mmol, 35% by wt. in mineral oil). After 40 min, benzyl bromide (7.0 mL, 60 mmol) was added dropwise over 1 min. After 10 min, the reaction mixture was cooled and MeOH (2 mL) was added. The reaction mixture was diluted with ether (150 mL), washed with water (100 mL), dried (MgSO₄) and concentrated. Flash chromatography (silica, 5 \rightarrow 20% ether in petroleum ether) gave the benzyl ether **62** (16.2 g, 90%). **62**: colorless plates; m.p. 204 °C (ether/hexane); TLC, Rf=0.58 (silica, 20% ether in petroleum ether); IR (neat) v_{max} 2980, 2950, 2870, 1455, 1385, 1100, 1030, 995, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.33 (2 x m, 10 H, aromatic), 6.00 (dd, J=17.4, 10.6 Hz, 1 H, CH=CH₂), 5.57 (s, 1 H, CHAr), 5.35 (dd, J=17.4, 1.1 Hz, 1 H, CH₂=CH), 5.10 (dd, J=10.6, 1.1 Hz, 1 H, CH₂=CH), 4.55, 4.40 (2 x d, J=11.7 Hz, 2 x 1 H, CH₂Ar), 3.85 (d, J=10.0 Hz, 1 H, CH₂O), 3.70 (m, 1 H, CH-O), 3.52 (m, 3 H, CH-O, CH₂O), 2.15 (dd, J=11.7, 5.4 Hz, 1 H, CH₂), 1.92 (m, 3 H, CH₂), 1.58 (s, 3 H, CH₃), 1.37, 1.34 (2 x s, 2 x 3 H, CH₃); HRMS, calcd for C28H35O5 (M+H): 451.2484, found: 451.2506.

Alcohol 63.

A stirred solution of olefin **61** (16.1 g, 35.8 mmol) in THF (80 mL) at 25 °C was treated with 9-BBN (108 mL, 54 mmol, 0.5 M in THF) over 30 min. After 40 min, the reaction mixture was cooled to 0 °C and treated dropwise with 3 N NaOH (30 mL, 89.5 mmol) and 30% hydrogen peroxide (8.1 mL, 66.5 mmol) over 20 min. The cooling bath was removed and the reaction mixture was stirred for another 30 min. The reaction mixture was diluted with ether (200 mL), washed with water (2 x 100 mL), dried (MgSO₄), and concentrated. Flash chromatography (silica, 20 \rightarrow 50% ether in petroleum ether) gave the alcohol **63** (15.4 g, 92%). **63**: oil; TLC, Rf=0.19 (silica, 50% ether in petroleum ether); IR (neat) v_{max} 3460(OH), 2940, 1465, 1385, 1085, 750, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.33 (2 x m, 10 H, aromatic), 5.56 (s, 1 H, CHAr), 4.60, 4.35 (2 x d, J=11.7 Hz, 2 x 1 H, CH₂Ar), 3.84 (d, J=10.0 Hz, 1 H, CH₂O), 3.71-3.48 (m, 6 H, CH-O, CH₂O), 2.19 (dd, J=11.7, 5.4 Hz, 1 H, CH₂), 1.92-1.70 (m, 6 H, CH₂OH), 1.57 (s, 3 H, CH₃), 1.35, 1.34 (2 x s, 2 x 3 H, CH₃); HRMS, calcd for C₂₈H₃₇O₆ (M+H): 469.2590 found: 469.2566.

Benzyl ether 64.

To a stirred solution of alcohol **63** (15.3 g, 32.7 mmol) in THF (85 mL) at 50 °C was added potassium hydride (5.2 g, 39.2 mmol, 35% by wt. in mineral oil). After 60 min, benzyl bromide (5.3 mL, 45.8 mmol) was added dropwise over 1 min. After 10 min, the reaction mixture was cooled and MeOH (2 mL) was added. The reaction mixture was diluted with ether (150 mL), washed with water (100 mL), dried (MgSO₄) and concentrated. Flash chromatography (silica, $5\rightarrow20\%$ ether in petroleum ether) gave the benzyl ether **64** (16.2 g, 89%). **64**: oil; TLC, Rf=0.74 (silica, 30% ether in petroleum ether); IR (neat) v_{max} 2960, 2880, 1460, 1390, 1100, 915, 735, 700, 645 cm⁻¹; ¹H NMR (CDCl₃) δ 7.46, 7.33 (m, 15 H, aromatic), 5.57 (s, 1 H, CHAr), 4.57, 4.38 (2 x d, J=11.7 Hz, 2 x 1 H, CH₂Ar), 4.46 (s, 2 H, CH₂Ar), 3.87 (d, J=10.0 Hz, 1 H, CH₂O), 3.72-3.44 (m, 6 H, CH-O, CH₂O), 2.14 (dd, J=11.7, 5.4 Hz, 1 H, CH₂), 2.00-1.70 (m, 5 H, CH₂), 1.57 (s, 3 H, CH₃), 1.29, 1.27 (2 x s, 2 x 3 H, CH₃); HRMS, calcd for C₃5H₄3O₆ (M+H): 559.3059 found: 559.3037.

Diol 65.

Camphorsulfonic acid (1.3 g, 5.8 mmol) was added to a stirred solution of benzylidene **64** (16.1 g, 28.9 mmol) in MeOH (150 mL) at 0 °C. After 1 h, triethylamine (1.0 mL) was added and the solvent evaporated. Flash chromatography (silica, $50\rightarrow100\%$ ether in petroleum ether) gave the diol **65** (12.2 g, 90%). **65**: oil; TLC, Rf=0.19 (silica, 100% ether); IR (neat) v_{max} 3420(OH), 2940, 2880, 1500, 910, 735, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.30 (m, 10 H, aromatic), 4.55, 4.37 (2 x d, J=11.7 Hz, 2 x 1 H, CH₂Ar), 4.44 (s, 2 H, CH₂Ar), 3.94 (dd, J=11.6, 6.7 Hz, 1 H, CH-O), 3.64-3.20 (m, 6 H, CH-O, CH₂O), 2.25 (bs, 1 H, OH), 2.07 (dd, J=11.7, 5.4 Hz, 1 H, CH₂), 1.96-1.60 (m, 5 H, CH₂), 1.42 (t, J=12.1 Hz, 1 H, OH), 1.22, 1.19, 1.18 (3 x s, 3 x 3 H, CH₃); HRMS, calcd for C₂₈H₃₉O₆ (M+H): 471.2746 found: 471.2731.

Bis-silyl ether 66.

To a stirred solution of diol 65 (12.1 g, 25.7 mmol) and imidazole (5.3 g, 77.2 mmol) in DMF (50 mL) at 25 °C was added *tert*-butyldimethylsilyl chloride (9.7 g, 64.3 mmol) in one portion. The reaction mixture was heated at 50 °C for 14 h. The reaction mixture was cooled and quenched with MeOH (2 mL), diluted with ether (300 mL) and washed with water (140 mL). Drying (MgSO₄), concentration and flash chromatography (silica, 10% ether in petroleum ether) gave the silyl ether **65** (16.5 g, 95%). **65**: oil; TLC, Rf=0.69 (silica, 20% ether in petroleum ether); IR (neat) v_{max} 2960, 2930, 2860, 1475, 1385, 1260, 1080, 840, 780, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.30 (m, 10 H, aromatic), 4.56, 4.37 (2 x d, J=11.7 Hz, 2 x 1 H, CH₂Ar), 4.44 (s, 2 H, CH₂Ar), 4.09 (m, 1 H, CH-O), 3.58 (m, 3 H, CH-O, CH₂O), 3.25 (m, 3 H, CH-O, CH₂O), 2.07-1.88 (m, 2 H, CH₂), 1.74-1.39 (m, 4 H, CH₂), 1.42 (t, J=12.1 Hz, 1 H, OH), 1.21, 1.16, 1.04 (3 x s, 3 x 3 H, CH₃), 0.88, 0.84 (2 x s, 2 x 9 H, (CH₃))3Si), 0.06, 0.04, 0.03, 0.01 (4 x s, 4 x 3 H, CH₃Si); HRMS, calcd for C40H67O6Si2 (M+H): 699.4476 found: 699.4491.

Alcohol 67.

Camphorsulfonic acid (1.1 g, 4.7 mmol) was added to a stirred solution of the silyl ether **66** (16.4 g, 23.5 mmol) in MeOH (100 mL) at 0 °C. After 1 h, triethylamine (1.0 mL) was added and the solvent evaporated. Flash chromatography (silica, $20\rightarrow60\%$ ether in petroleum ether) gave the primary alcohol **67** (12.9 g, 94%). **67**: oil; TLC, Rf=0.21 (silica, 30% ether in petroleum ether); IR (neat) v_{max} 3500(OH), 2960, 2930, 2860, 1460, 1385, 1085, 870, 840, 780, 735, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.30 (m, 10 H, aromatic), 4.56, 4.37 (2 x d, J=11.7 Hz, 2 x 1 H, CH₂Ar), 4.44 (s, 2 H, CH₂Ar), 4.00 (m, 1 H, CH-O), 3.59 (m, 3 H, CH-O, CH₂O), 3.27 (m, 3 H, CH-O, CH₂O), 2.07 (m, 2 H, CH₂), 1.95 (t, J=6.9 Hz, 2 H, CH₂), 1.78-1.38 (m, 3 H, CH₂, OH), 1.23, 1.19, 1.10 (3 x s, 3 x 3 H, CH₃), 0.85 (s, 9 H, (CH₃)₃Si), 0.07, 0.06 (2 x s, 2 x 3 H, CH₃Si); HRMS, calcd for C₃₄H₅₃O₆Si (M+H): 585.3611 found: 585.3594.

Aldehyde 68.

A solution of alcohol **67** (16.3 g, 27.9 mmol) in CH₂Cl₂ (120 mL) was added dropwise to a mixture of oxalyl chloride (3.7 mL, 41.9 mmol) and DMSO (4.0 mL, 55.8 mmol) in CH₂Cl₂ (80 mL) at -78 °C over 25 min. After 40 min, triethylamine (19.5 mL, 139.5 mmol) was added slowly and the cooling bath removed. When the reaction mixture reached 0 °C, it was diluted with ether (250 mL) and washed with saturated aqueous ammonium chloride (200 mL), dried (MgSO₄) and concentrated to give the crude aldehyde **68** (15.1 g, 93%) which was used directly. **68**: oil; TLC, Rf=0.78 streak (silica, 30% ether in petroleum ether); IR (neat) v_{max} 2960, 2940, 2860, 1720(C=O), 1470, 1390, 1370, 1260, 1100, 1030, 840, 780, 700, 670, 650 cm⁻¹; ¹H NMR (CDCl₃) δ 9.83 (s, 1 H, Haldehyde), 7.30 (m, 10 H, aromatic), 4.56, 4.37 (2 x d, J=11.7 Hz, 2 x 1 H, CH₂Ar), 4.44 (s, 2 H, CH₂Ar), 4.00 (m, 1 H, CH-O), 3.59 (m, 2 H, CH-O), 3.27 (m, 2 H, CH-O), 2.07 (m, 2 H, CH₂), 1.95 (t, J=6.9 Hz, 2 H, CH₂), 1.78-1.38 (m, 2 H, CH₂), 1.23, 1.19, 1.10 (3 x s, 3 x 3 H, CH₃), 0.85 (s, 9 H, (CH₃)₃Si), 0.07, 0.06 (2 x s, 2 x 3 H, CH₃Si); HRMS, calcd for C₃₄H₅₀O₆Si (M+): 584.3533, found: 584.3551.

Unsaturated ester 69.

A mixture of the crude aldehyde **68** (15 g, 25.8 mmol), methyl (triphenylphosphoranylidene) acetate (10.4 g, 31.0 mmol) and benzoic acid (0.2 g) in benzene (55 mL) was heated at 50 °C for 12 h. Concentration and flash chromatography (silica, 15% ether in petroleum ether) gave the α,β -unsaturated ester **69** (14.8 g, 90%). **69**: oil; TLC, Rf=0.58 (silica, 5% EtOAc in benzene); IR (neat) v_{max} 2960, 2930, 2860, 1735(C=O), 1660, 1365, 855, 830, 780, 735, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.30 (m, 10 H, aromatic), 6.95, 6.00 (2 x d, J=15.6 Hz, 2 x 1 H, CH=CHCO₂Me), 4.56, 4.37 (2 x d, J=11.7 Hz, 2 x 1 H, CH₂Ar), 4.45 (s, 2 H, CH₂Ar), 3.72 (s, 3 H, CH₃O₂C), 3.60 (m, 4 H, CH-O, CH₂O), 3.31 (m, 1 H, CH-O), 2.11 (dd, J=11.7, 5.4 Hz, 1 H, CH₂), 1.95 (t, J=6.9 Hz, 2 H, CH₂), 1.78-1.44 (m, 3 H, CH₂), 1.33, 1.23, 1.21 (3 x s, 3 x 3 H, CH₃), 0.88 (s, 9 H, (CH₃)₃Si), 0.06, 0.05 (2 x s, 2 x 3 H, CH₃Si); HRMS, calcd for C₃7H₅5O₇Si (M+H): 639.3717 found: 639.3752.

Saturated ester 70.

5% palladium on carbon (2.9 g, 20% by wt.) was added to a stirred solution of ester **69** (14.7 g, 23 mmol) in EtOAc (100 mL). A hydrogen atmosphere was introduced using a hydrogen-filled balloon by repeated evacuations (water aspirator). After 6 h, the hydrogen was replaced by argon and the reaction mixture was filtered through a celite pad. The filtrate was concentrated to give pure ester **70** (14.7 g, 100%). **70**: oil; TLC, Rf=0.56 (silica, 5% EtOAc in benzene); IR (neat) v_{max} 2970, 2930, 2840, 1745(C=O), 1460, 1385, 1255, 1085, 865, 835, 775, 735, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 7.30 (m, 10 H, aromatic), 4.56, 4.37 (2 x d, J=11.7 Hz, 2 x 1 H, CH₂Ar), 4.43 (s, 2 H, CH₂Ar), 3.62 (s, 3 H, CH₃O₂C), 3.61-3.49 (m, 4 H, CH-O, CH₂O), 3.20 (m, 1 H, CH-O), 2.39 (t, J=7.7 Hz, 2 H, CH₂CO₂Me), 2.01-1.61 (m, 8 H, CH₂), 1.22, 1.17, 1.12 (3 x s, 3 x 3 H, CH₃), 0.84 (s, 9 H, (CH₃)₃Si), 0.06, 0.04 (2 x s, 2 x 3 H, CH₃Si); HRMS, calcd for C₃7H₅7O₇Si (M+H): 641.3873 found: 641.3861.

FG ring system 3.

A stirred solution of ester **70** (14.6 g, 22.8 mmol) in THF:MeOH:H₂O 1:1:1 (45 mL) was treated with lithium hydroxide (1.1 g, 45.6 mmol) in one portion and heated at 55 °C for 2.5 h. The reaction mixture was cooled, diluted with EtOAc (100 mL) and carefully acidified with 2 N HCl until pH 5. The organic layer was separated and the aqueous layer extracted with EtOAc (2 x 50 mL). The extracts were combined, dried (MgSO₄) and concentrated to give the acid **3** (13.6 g, 95%). **3**: oil; TLC, Rf=0.61 streak (silica, 30% ether in petroleum ether); IR (neat) v_{max} 3420, 2900, 1720(C=O) cm⁻¹; ¹H NMR (CDCl₃) δ 7.30 (m, 10 H, aromatic), 4.56, 4.37 (2 x d, J=11.7 Hz, 2 x 1 H, CH₂Ar), 4.42 (s, 2 H, CH₂Ar), 3.55 (m, 4 H, CH-O, CH₂O), 3.22 (m, 1 H, CH-O), 2.48 (m, 2 H, CH₂CO₂H), 1.94-1.62 (m, 8 H, CH₂), 1.21, 1.18, 1.14 (3 x s, 3 x 3 H, CH₃), 0.83 (s, 9 H, (CH₃)₃Si), 0.05, 0.03 (2 x s, 2 x 3 H, CH₃Si); HRMS, calcd for C₃6H₅5O₇Si (M+H): 627.3717 found: 627.3689.

Acknowledgement. We thank Drs. George Furst, Patrick Carrol, and John Dykins for their superb assistance as Directors of NMR, X-ray, and mass spectroscopic facilities at the University of

Pennsylvania. Financial support for this work was provided by the National Institute of Health, Merck Sharp & Dohme, Hoffman LaRoche, and Smith Kline Beckman, USA.

References

- (a) Shimizu, Y. Marine Natural Products; Scheuer, P.J., Ed.; Academic Press: New York, 1978; Vol 1, Chapter 1. (b) International Symposium on Red Tides 1987, Okaichi, T.; Anderson, D.M.; Nemoto, T. Eds.; Elsevier: New York, 1989. (c) Toxic Dinoflagellates, Anderson, D.M.; White, A.W.; Baden, D.G., Eds.; Elsevier: New York, 1985.
- 2. (a) Baden, D.G. *FASEB*, **1989**, *3*, 1807 and references cited therein. (b) *Toxicon* **1985**, *23*, 4.
- Lee, M.S.; Qin, G.-W.; Nakanishi, K.; Zagorski, M.G. J. Amer. Chem. Soc. 1989, 111, 6234;
 Chou, H.-N.; Shimizu, Y. J. Amer. Chem. Soc. 1987, 109, 2184; Lee, M.S.; Repeta, D.J.;
 Nakanishi, K.; Zagorski, M.G. J. Amer. Chem. Soc. 1986, 108, 7875.
- 4. Wu, C.H.; Narahashi, T. Ann. Rev. Pharmacol. Toxicol. 1988, 28, 141.
- Shimizu, Y.; Chou, H.N.; Bando, H.; Van Duyne, G.; Clardy, J.C. J. Amer. Chem. Soc. 1986, 108, 514.
- 6. Prasad, A.V.K.; Shimizu, Y. J. Amer. Chem. Soc. 1989, 111, 6476.
- Murata, M.; Legrand, A.M.; Yoshihiko, I.; Yasumoto, T. J. Amer. Chem. Soc. 1989, 111, 8929.
- 8. Lin, Y.-Y.; Risk, M.; Ray, S.M.; Engen, D.V.; Clardy, J.C.; Golik, G.; James, J.C.; Nakanishi, K. *J. Amer. Chem. Soc.* **1981**, *103*, 6773.
- 9. Harada, N. and Nakanishi, K. Acc. Chem. Res. 1972, 5, 257.
- 10. Nicolaou, K.C.; Prasad, C.V.C.; Somers, P.K.; Hwang, C.-K. *J. Amer. Chem. Soc.*, **1989**, *111*, 5330.
- Nicolaou, K.C.; Hwang, C.-K.; Nugiel, D.A. J. Amer. Chem. Soc. 1989, 111, 4136;
 Nicolaou, K.C.; Prasad, C.V.C.; Somers, P.K.; Hwang, C.-K. J. Amer. Chem. Soc. 1989, 111, 5335;
 Nicolaou, K.C.; Hwang, C.-K.; Nugiel, D.A. Angew. Chem. Int. Ed. Engl. 1988, 27, 1362.
- Nicolaou, K.C.; Prasad, C.V.C.; Hwang, C.-K.; Duggan, M.E.; Veale, C. A. J. Amer. Chem. Soc. 1989, 111, 5321; Nicolaou, K.C.; McGarry, D.G.; Somers, P.K.; Veale, C.A.; Furst, G.T. J. Amer. Chem. Soc. 1987, 109, 2504.
- 13. Nicolaou, K.C.; Duggan, M.E.; Hwang, C.-K. J. Amer. Chem. Soc. 1989, 111, 6666.
- 14. Nicolaou, K.C.; Duggan, M.E.; Hwang, C.-K. J. Amer. Chem. Soc. 1989, 111, 6676.
- 15. Nicolaou, K.C.; Hwang, C.-K.,; Duggan, M.E. J. Amer. Chem. Soc. 1989, 111, 6682.
- 16. Katsuki, T.; Sharpless, K.B. J. Amer Chem. Soc. 1980, 102, 5976.
- 17. Parkih, J.R.; Doering, W.E. J. Amer. Chem. Soc. 1967, 89, 5505.
- 18. Huang, S.L.; Mancuso, A.J.; Swern, D. J. Org. Chem. 1978, 63, 2480.
- 19. Neises, B.; Steglich, W. Angew. Chem. Int. Ed. Engl. 1978, 17, 522.
- 20. Senfield, A.P.; Masamune, S.; Roush, W.R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183.
- 21. Cherest, M., Felkin, H. Tetrahedron Lett. 1971, 12, 379.