Bastadins

 

 

Projects' title

 

 

 

by Emmanuel N. Pitsinos


  • Development of a general synthetic route towards bastadins.
  • Preparation of designed analogues and evaluation of their biological activity.
  • Discover and evaluate new and/or existing synthetic methodology for the construction of polyhalogenated diaryl ethers.

Return to Top.


The development of a general methodology leading to efficient preparation of all members of the bastadin family of natural products constitutes a challenge; the two successful total syntheses of macrocyclic bastadins previously reported are restricted in the preparation of, symmetrically brominated, bastadin-6. Furthermore, most of the available methodology for the synthesis of diaryl ethers is either inappropriate or presents serious shortcomings for the preparation of polybrominated substrates. Thus, continuing our ongoing investigation in the area of biaryl ether natural products, we have initiated the "Bastadins" project with the objective to address the aforementioned unresolved synthetic issues and facilitate further biological studies on this class of natural products.

Return to Top.


BASTADINS, a Brief Introduction

Some macrocyclic Bastadins

Y1

Y2

Y3

W–Z

Bastadin

H

Br

Br

8

H

Br

H

10

Br

Br

H

12

H

H

Br

17

H

Br

Br

4

H

Br

H

7

H

H

Br

11

Br

Br

H

14

H

Br

Br

5

Br

Br

Br

6

H

H

Br

9

Br

Br

H

15

Br

H

Br

16

Bastadins are a family of natural products isolated from the marine sponges Ianthella basta and Psammaplysilla purpurea. Structurally, they are linear or macrocyclic bis-biaryl ether tetrapeptides possessing brominated aryl units and a unique a-oximino amide bond. They exhibit antibacterial, cytotoxic and anti-inflammatory activity. Furthermore, they constitute a new class of chemical probes for studying immunophin/ryanodine-sensitive Ca2+ channel interactions in skeletal muscle albeit their supply from natural sources is limited.

Retrosynthetic Analysis

Retro IDisconnection of the macrocyclic bastadins structure at the two amide bonds leads to two biaryl ether segments: a monoprotected diamine (western part) and a methyl diacid monoester (eastern part). Further disconnection of these advanced intermediates at the diaryl ehter linkages and functional group manipulation leads to an optically active hydroxylamine and a racemic diol respectively. These key intermediates can be prepared in multi-gram scale starting from commercially available p-benzyloxy-benzaldehyde and p-bromo-phenol. For establishing the correct absolute stereochemistry of key intermediate (1), which would determine the chirality of the final product, we rely on Sharpless' assymetric dihydroxylation methodology.

Model Studies

retro II

 

 

 

Model studies have indicated the iodonium salt method as the more appropriate for the construction of the diaryl ether linkages. We have also demonstrated the suitability of the hydroxyl functionality as a flexible common progenitor of all structural variants of bastadins in the W-Z region.

Return to Top.


For the isolation and biological activities of bastadins see:

  1. Kazlauskas, R.; Lidgard, R. O.; Murphy, P. T.; Wells, R. J. Tetrahedron Lett. 1980, 21, 2277-2280.
  2. Kazlauskas, R.; Lidgard, R. O.; Murphy, P. T.; Wells, R. J.; Blount, J. F. Austr. J. Chem. 1981, 34, 765-786.
  3. Miao, S.; Andersen, R. J. J. Nat. Prod. 1990, 53, 1441-1446.
  4. Pordesimo, E. O.; Schmitz, F. J. J. Org. Chem. 1990, 55, 4704-4709.
  5. Butler, M. S.; Lim, T. K.; Capon, R. J.; Hammond, L. S. Austr. J. Chem. 1991, 44, 287-296.
  6. Dexter, A. F.; Garson, M. J. J. Nat. Prod. 1993, 56, 782-786.
  7. Park, S. K.; Jurek, J.; carney, J. R.; Scheuer, P. J. J. Nat. Prod. 1994, 57, 407-410.
  8. Mack, M. M.; Molinski, T. F.; Buck, E. D.; Pessah, I. N. J. Biol. Chem. 1994, 269, 23236-23249.
  9. Franklin, M. A.; Penn, S. G.; Lebrilla, C. B.; Lam, T. H.; Pessah, I. N.; Molinski, T. F. J. Nat. Prod. 1996, 59, 1121-1127.
  10. Pessah, I. N.; Molinski, T. F.; Meloy, T. D.; Wong, P.; Buck, E. D.; Allen, P. D.; Mohr, F. C.; Mack, M. M. Am. J. Physiology-Cell Physiology 1997, 41, C601-C614.
  11. Chen, L.; Molinski, T. F.; Pessah, I. N. J. Biol. Chem. 1999, 274, 32603-32612.

 

  • For synthetic efforts directed towards members of the bastadin family see:

 

  1. Nishiyama, S.; Yamamura, S. Tetrahedron Lett. 1982, 23, 1281-1284.
  2. Nishiyama, S.; Suzuki, T.; Yamamura, S. Tetrahedron Lett. 1982, 23, 3699-3702.
  3. Nishiyama, S.; Suzuki, T.; Yamamura, S. Chem. Lett. 1982, 1851-1852.
  4. Noda, H.; Niwa, M.; Yamamura, S. Tetrahedron Lett. 1981, 22, 3247-3248.
  5. Guo, Z.-W.; Machiya, K.; Salamonczyk, G.M.; Sih, C.J. J. Org. Chem. 1998, 63, 4269-4276.
  6. Couladouros, E.A.; Moutsos, V.I. Tetrahedron Lett. 1999, 40, 7023-7026.
  7. Couladouros, E.A.; Moutsos, V.I. Tetrahedron Lett. 1999, 40, 7027-7030.

  • Other related publications:
  1. Sawyer, J. Scott Tetrahedron 2000, 56, 5045-5065.
  2. Chakraborty, T.K.; Reddy, G.V. J. Org. Chem. 1992, 57, 5462-5469.

 

Return to Top.


  • V. Moutsos
  • E. A. Couladouros

Return to Top.


ALCHIMICA

UNIPHARMA S.A.

National Scholarship Foundation of Greece (I.K.Y.)

 

 

Edited by Emmanuel N. Pitsinos

 


Prof. Elias A. Couladouros
E-Mail: ecoula@chem.demokritos.gr

Last Updated: [1-6-2000]