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1 Introduction

The concurrent development of molecular cloning techniques, DNA sequencing methods, rapid se-
quence comparison algorithms, and computer workstations has revolutionized the role of biological
sequence comparison in molecular biology. As a result, the role of protein sequence data in molec-
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ular biology and biochemistry has dramatically changed. Twenty-five years ago, protein sequence
determination was usually one of the last steps in the characterization of a protein. Now the process
is reversed, so that it is common to clone and sequence a gene of biological interest–e.g., one that is
induced by serum stimulation, or a developmental change, or a chromosomal rearrangement associ-
ated with a disease. This is the fundamental premise of the human genome project—that one can first
sequence all the genes in an organism and then infer their function by sequence analysis.

Today, the most powerful method for inferring the biological function of a gene (or the protein
that it encodes) is by sequence similarity searching on protein and DNA sequence databases. With the
development of rapid methods for sequence comparison, both with heuristic algorithms and powerful
parallel computers, discoveries based solely on sequence homology have become routine. One of the
more dramatic discoveries was the identification of a new tumor suppressor gene in humans that is
related to yeast and E. coli DNA repair enzymes. This discovery, the result of a similarity search, both
told the investigators that they had identified the appropriate gene and demonstrated clearly the nature
of the oncogenic mutation. As entire genomes from bacteria, yeast, and simple eukaryotes become
available, protein sequence comparison will become an even more powerful tool for understanding
biological function.

Protein sequence comparison is our most powerful tool for characterizing protein sequences be-
cause of the enormous amount of information that is preserved throughout the evolutionary process.
For many protein sequences, an evolutionary history can be traced back 1–2 billion years. Proteins
that share a common ancestor are called homologous. Sequence comparison is most informative when
it detects homologous proteins. Homologous proteins always share a common three-dimensional fold-
ing structure and they often share common active sites or binding domains. Frequently homologous
proteins share common functions, but sometimes they do not. Our ability to characterize the biological
properties of a protein based on sequence data alone stems almost exclusively from properties con-
served through evolutionary time. Predictions of common properties for non-homologous proteins—
similarities that have arisen by convergence— are much less reliable.

This tutorial examines how the information conserved during the evolution of a protein molecule
can be used to infer reliably homology, and thus a shared protein fold and possibly a shared active site
or function. We will start by reviewing a geological/evolutionary time scale. Many protein sequences
can be used to infer reliably events that happened more than a billion years ago. Remarkably, some
protein sequences change so slowly that they could be used to “date” events that took place more than
5 billion years ago, had the proteins existed. Next we will look at the evolution of several protein
families. During the tutorial, these families will be used to demonstrate that homologous protein an-
cestry can be inferred with confidence. We will also examine different modes of protein evolution
and consider some hypotheses that have been presented to explain the very earliest events in protein
evolution.

The next part of the tutorial will examine the technical aspects of protein sequence comparison.
Both optimal and heuristic algorithms and their associated parameters that are used to characterize
protein sequence similarities are discussed. Perhaps more importantly, we will survey the statistics
of local similarity scores, and how these statistics can both be used to improved the selectivity of a
search and to evaluate the significance of a match.

We will then examine distantly related members of three protein families, the serine proteases, the
glutathione transferases, and the G-protein-coupled receptors (GCRs). The serine proteases are used
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to emphasize that even when a highly conserved motif is found throughout a family, similarity extends
over a much longer region. The glutathione transferases and GCRs are very diverse families whose
members frequently do not share significant pair-wise similarity. The relative strengths of strategies
to characterize such relationships will be examined.

Finally, we will discuss how sequence similarity can be used to examine internal repeated or mo-
saic structures in proteins. Such repeated structures can arise from either divergence—calmodulin
EF-hand repeats and EGF-domains—or convergence—tropomyosin and transcription factor coiled-
coil.

This tutorial is directed towards examining protein evolution. Most of the algorithms and meth-
ods that are applied to protein evolution can be used with DNA sequences as well. However, in gen-
eral, DNA sequence comparisons are far far less informative than protein sequence comparisons (see
Fig. 8). DNA sequences that do not encode proteins or structural RNAs (e.g. ribosomal RNAs) di-
verge very rapidly, so that it is usually difficult to detect reliably non-coding DNA sequence homolo-
gies for sequences that diverged more than 200 million years ago. In contrast, even the most rapidly
changing protein sequences can detect sequences that are 200 million years old; typically protein se-
quence comparisons detect sequences that diverged 1 billion years ago. Thus, the most important les-
son from this tutorial is, when searching sequence databases for homologous sequences, to use protein
sequences whenever possible.

1.1 Evolutionary time scales

When we search for homologous proteins, we are trying to identify proteins that shared a common
ancestor in the past. Fig. 1 shows a general evolutionary tree that reaches back to the beginning of the
earth’s history. The goal of protein sequence comparison is to take a protein sequence, for example
from a human chromosome, and search a protein database to find homologous sequences, often from
very divergent organisms. Thus, if the similarity search produces significant matches with a protein
found in yeast, then an ancestral protein must have existed in an organism at least 1 billion years ago
and that the descendants of that organism preserved the sequence in modern day humans and yeast.
Likewise, if a yeast protein is homologous to one found in E. coli, that sequence must have existed in
2 billion years ago in the primordial organism that gave rise to bacteria and fungi.

When we examine protein or DNA sequences, we are almost always studying modern (present
day) sequences. Thus, it does not make any sense to say that a yeast or bacterial sequence is more
primitive than a mammalian sequence; all sequences are contemporary. As we will see later, however,
there are examples of sequences that are found only in vertebrates, or only in animals or plants but not
both. Such sequences are less ancient than those found both in mammals and bacteria.

For organisms that diverged within the past 600 My (million years), inferences about divergence
times for modern organisms are taken from geological data; more ancient divergence times are inferred
from extrapolations of evolutionary “clocks.” Evolutionary clocks are based both on slowly changing
protein sequences and on ribosomal RNA sequences; such divergence time estimates require a rate of
change that is constant on average. The oldest fossils are of prokaryotes in rocks about 2.5 billion
years old; this geological age is consistent with that inferred from evolutionary divergence rates.

Table 1 summarizes some important milestones in evolutionary time, and, when considered with
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Figure 1: The tree of life
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Table 1: Some Important dates in history

Origin of the universe -12 Á ÂÄÃ
Formation of the solar system -4.6 ÂÄÅÆ�ÈÇ
First self-replicating system -3.5 ÂÄÅÆ��É
Prokaryotic-eukaryotic divergence -1.8 ÂÄÅÆ��Ê
Plant-animal divergence -1.0
Invertebrate-vertebrate divergence -0.5
Mammalian radiation beginning -0.1

Á Billions of years. From Doolittle et al., 1986.

Table 2, gives a better perspective on the evolutionary horizons provided by different protein families.
The theoretical lookback times in Table 2 are based on the assumption that one can identify proteins
that share about 20% sequence identity throughout their entire length. It will be clear from later exam-
ples that if two protein sequences share 25% identity across their lengths, they are homologous, and
that in some cases, convincing evidence of common ancestry can be deduced from similarities as low
as 20%. These look-back times can be confirmed in practice; for example, with sensitive sequence
comparison algorithms, significant similarity between plant and animal globins can be found.

Table 2: Evolutionary Horizons

PAMs Á /100 residues Theoretical
Protein / ËÌÅÎÍ years Lookback time Ï Horizon

Pseudogenes 400 45 Ð Primates, Rodents
Fibrinopeptides 90 200 Mammalian Radiation
Lactalbumins 27 670 Vertebrates
Ribonucleases 21 850 Animals
Hemoglobins 12 1.5 Ñ Plants/Animals
Acid Proteases 8 2.3 Prokayrotic/Eukarotic
Triosphosphate isomerase 3 6 Archaen
Glutamate dehydrogenase 1 18

Á PAMs, point accepted mutations. Ï Useful lookback time, 360 PAMs, Ë�ÉcÒ identity.Ð Millions of years. Ñ Billions of years. Adapted from Doolittle et al., 1986
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Figure 2: Structural similarity in related proteins – serine proteases

Expectation values (E()), percent identity, the length of the alignment are shown with respect to bovine
trypsin. The last two numbers report the length of the alignment and the length of the library sequence
whose structure is shown.

1.2 Similarity, Ancestry and Structure

The inference of homology — common ancestry — is the most powerful conclusion that one can draw
from a similarity search because homologous proteins share similar three-dimensional structures. This
can be seen in Fig. 2, where the structures of three members of the serine protease superfamily are
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shown. Two of these proteins, bovine chymotrypsin and S. griseus trypsin, share strong sequence
similarity while the third related sequence, S. griseus protease A, does not share significant similarity
(E() ÓÕÔ�Ô ) yet the protein has a very similar structure. Thus, as will be seen throughout this chapter,
homologous proteins need not share statistically significant, or even detectable, sequence similarity.

Endochitinase is an example of a very high-scoring, but unrelated protein whose structure is known.
This high scoring unrelated sequence does not share any structural similarity with trypsin or other ser-
ine proteases. If two proteins are not homologous, one cannot draw any conclusion about their struc-
tural similarity, even though they may have high similarity scores.

1.3 Modes of Evolution

Figure 3: Orthologous sequences — The cytochrome ‘c’ family
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Cytochrome ‘c’s comprise a family of orthologous proteins that are found in all organisms. The se-
quences on this tree are orthologous — two cytochrome ‘c’s are different because they are in different
species.
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1.3.1 Conventional divergence from a common ancestor

Homologous sequences can be divided into two groups: (1) orthologous sequences — sequences that
differ because they are found in different species; and (2) paralogous sequences — sequences that
differ because of a gene duplication event. Fig. 3 shows an evolutionary tree for orthologous cy-
tochrome ‘c’ sequences. The branching pattern, which reflects the differences between cytochrome
‘c’ sequences, matches the evolutionary relationships of the species that express the proteins.

Figure 4: Orthology and paralogy — The globin family

β δ β β α α

Members of the globin oxygen binding protein family have evolved through a series of gene dupli-
cations and speciation events. The human 	 and 
 genes duplicated less than 50 Mya ( 
 chains are
found in primates, but not in other mammals).

In general, the organismal tree and the sequence tree will not match if the sequences are paralo-
gous. Members of the globin oxygen binding protein family are both orthologous — they differ be-
cause of speciation — and paralogous p — they differ because of gene duplications. Thus, human
	 -globin, mouse 	 -globin, and chicken 	 -globin are all orthologs, they differ because of the speci-
ation events that gave rise to humans, rodents, and birds. Mouse � globin and human 	 globin are
paralogous; they differ because of a gene duplication that created the 	 and � subunits some 600 Mya
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(million years ago). An evolutionary tree based on human 	 , chicken 	 , and mouse � would imply
that humans are more closely related to chickens than to mice. While such a mistake is unlikely in a
well-studied family like the globins, it can be quite common in large, diverse, and poorly characterized
families like the G-protein-coupled receptors (Fig. 19).

1.3.2 Sequence similarity and homology, the H
�

ATPase

Our first example of the significant sequence similarity shared by homologous proteins will use one
of the chains of the H

�
-ATPase, or proton-pump, used to convert energy to ATP in the mitochrondria

and chloroplasts of aerobic organisms.

Figure 5: The PAM250 matrix

Cys 12
Ser 0 2
Thr -2 1 3
Pro -1 1 0 6
Ala -2 1 1 1 2
Gly -3 1 0 -1 1 5
Asn -4 1 0 -1 0 0 2
Asp -5 0 0 -1 0 1 2 4
Glu -5 0 0 -1 0 0 1 3 4
Gln -5 -1 -1 0 0 -1 1 2 2 4
His -3 -1 -1 0 -1 -2 2 1 1 3 6
Arg -4 0 -1 0 -2 -3 0 -1 -1 1 2 6
Lys -5 0 0 -1 -1 -2 1 0 0 1 0 3 5
Met -5 -2 -1 -2 -1 -3 -2 -3 -2 -1 -2 0 0 6
Ile -2 -1 0 -2 -1 -3 -2 -2 -2 -2 -2 -2 -2 2 5
Leu -6 -3 -2 -3 -2 -4 -3 -4 -3 -2 -2 -3 -3 4 2 6
Val -2 -1 0 -1 0 -1 -2 -2 -2 -2 -2 -2 -2 2 4 2 4
Phe -4 -3 -3 -5 -4 -5 -4 -6 -5 -5 -2 -4 -5 0 1 2 -1 9
Tyr 0 -3 -3 -5 -3 -5 -2 -4 -4 -4 0 -4 -4 -2 -1 -1 -2 7 10
Trp -8 -2 -5 -6 -6 -7 -4 -7 -7 -5 -3 2 -3 -4 -5 -2 -6 0 0 17

C S T P A G N D E Q H R K M I L V F Y W

The similarity scores in Figs. 6–8 were calculated using the Smith-Waterman algorithm (Smith &
Waterman, 1981,Sec. 2.2), a method that guarantees to calculate the best (optimal) score between any
two protein or DNA sequences, given a scoring matrix and gap penalties. Fig. 5 shows the PAM250
matrix, which was developed almost 20 years ago by Dayhoff and her colleagues (Dayhoff et al.,
1978). The PAM250 matrix, or modern versions such as the BLOSUM50 matrix used here, incor-
porates information about the likelihood that one amino-acid will be mutated into another over evolu-
tionary time. Thus, changes that are very unlikely to occur in evolution, for example the substitution
of the very small glycine residue for the very large tryptophan residue, are given large negative scores
( �� in Fig. 5), while conservative changes, such as the substitution of lysine by arginine (both have
basic side chains), are given positive scores ( �ÄÊ ). The scores for identical matches also vary in the
PAM250 matrix, depending on whether the amino-acids are common (e.g. serine and methionine), and
thus likely to be aligned by chance, or rare (e.g. cysteine and tryptophan). There is a well-developed
statistical theory for substitution matrices (Altschul, 1991), which will be discussed in section 2.3.

Table 3 reports similarity scores and their statistical significance from a search of the PIR annotated
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Figure 6: Searching with human ATP-ase, similarity scores

opt E()
< 20 17 0:= one = represents 22 library sequences
22 0 0:
24 0 0:
26 2 0:=
28 7 3:*
30 7 18:*
32 45 68:===*
34 166 184:========*
36 337 379:================ *
38 581 626:=========================== *
40 869 873:=======================================*
42 1009 1067:============================================== *
44 1276 1177:=====================================================*====
46 1253 1198:======================================================*==
48 1199 1147:====================================================*==
50 1032 1047:===============================================*
52 949 920:=========================================*==
54 838 786:===================================*===
56 578 657:=========================== *
58 467 539:====================== *
60 393 437:================== *
62 339 350:===============*
64 276 278:============*
66 214 220:=========*
68 188 173:=======*=
70 140 136:======*
72 131 106:====*=
74 88 83:===*
76 71 64:==*=
78 48 50:==*
80 43 39:=*
82 38 30:=*
84 27 24:=*
86 21 18:*
88 15 14:*
90 17 11:*
92 7 8:* :=======* = represents 1 library sequence
94 22 7:* :======*===============
96 3 5:* :=== *
98 8 4:* :===*====

100 6 3:* :==*===
102 5 2:* :=*===
104 9 2:* :=*=======
106 4 1:* :*===
108 5 1:* :*====
110 4 1:* :*===
112 4 1:* :*===
114 4 1:* :*===
116 6 0:= *======
118 1 0:= *=

>120 32 0:== *================================
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protein sequence database (PIR1, release 44, March, 1995) using the human H
�

-ATPase as a query
sequence. There is excellent agreement between the expected and actual distributions of similarity
scores. In this search, all of the library sequences related (homologous) to the query sequence ob-
tained scores higher than any of the unrelated sequences. However, a number of unrelated sequences
obtained very high scores; 10 of the 32 sequences with z-scores � ËÌÃ�Å (  standard deviations above
the mean � ) are not members of the H+-ATPase family.

Fig. 6 shows the distribution of similarity scores between human H
�

-ATPase (PIR entry PWHU6)
and each protein sequence in the PIR1 (rel. 44) database. The ‘=’ symbols in the histogram show the
distribution of normalized similarity scores calculated during the search, thus, 393 sequences in the
PIR1 library had scores of 60 or 61. The ‘*’ symbols report the expected number of sequences with
the indicated range of scores for a search of a database of this size, based on random chance. The basis
for the statistical estimates will be discussed in section 3.

While Table 3 shows that all of the members of this family have siginificant similarity with the
human enzyme, Fig. 7 gives a more realistic perspective of the family’s evolutionary history by con-
sidering every possible pairwise alignment. When the E. coli enzyme is used to search the database
for related H

�
-ATPases, the ranking of the different sequences changes, but sequences distant from

the E. coli sequence have more significant similarities than those distant from the human sequence.

1.3.3 Protein families diverge at different rates

For many protein families with a variety of divergence rates, the rate of change over evolutionary time
is relatively constant. These rates can be used to date the divergence events (e.g. plants and animals)
that occurred more than 600 Mya and thus do not have a fossil record. However, different protein
families diverge at different rates, so that, in general, the number of differences between a pair of se-
quences cannot be used to estimate the time the two sequences diverged. This is particularly true for
paralogous sequences; once a sequence has duplicated, it may change very rapidly before selective
pressure on its new function slows its rate of change. Thus, in Table 4 there are several members of
growth hormone superfamily—growth hormone, sommatotropin, and prolactin—with different diver-
gence rates.

�
The z-scores plotted have a mean of 50 and a standard deviation of 10.
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Table 3: Searching with human ATP-ase, high-scoring sequences

The best scores are: s-w z-score E(12805) % len

PWHU6 H+-trans. ATP synth.—human mito. 1400 1767.8 ��������� 100.0 226
PWBO6 H+-trans. ATP synth.—bovine mito. 1157 1460.9 ��������� 77.9 226
PWMS6 H+-trans. ATP synth.—mouse mito. 1118 1411.6 ��������� 75.7 226
PWXL6 H+-trans. ATP synth.—frog mito. 745 940.6 �������! 53.3 226
PWFF6Y H+-trans. ATP synth.—fruit fly mito. 473 597.1 ��������� 37.8 222
PWFF6 H+-trans. ATP synth.—fruit fly mito. 471 594.6 �������� 37.5 224
PWBY3 H+-trans. ATP synth.—yeast mito. 438 551.7 ��������� 36.2 232
PWAS6N H+-trans. ATP synth.—aspergillus mito. 365 459.6 �����#"$� 30.4 230
PWKQ6 H+-trans. ATP synth.—Cochliobolus mito. 353 444.4 �����#"&% 31.3 214
PWWT6 H+-trans. ATP synth.—wheat mito. 309 385.4 ��� �#"$� 28.9 235
PWNT6M H+-trans. ATP synth.—tobacco mito. 309 385.2 �����#"$� 28.3 233
PWZM6M H+-trans. ATP synth.—corn mito. 283 355.0 �����#"$� 31.1 291
LWEC6 H+-trans. ATP synth.—E. coli 178 223.0 ������ 23.3 236
LWRZ6 H+-trans. ATP synth.—rice chloro. 144 180.8 0.00037 24.2 231
PWPMA6 H+-trans. ATP synth.—pea chloro. 143 179.5 0.00044 25.0 232
PWYBAA H+-trans. ATP synth.—Synechocystis 142 177.3 0.00058 26.5 170
PWSPA6 H+-trans. ATP synth.—spinach chloro. 138 173.2 0.00098 24.2 231
PWYCA6 H+-trans. ATP synth.—cyanobacteria 127 158.9 0.0062 26.3 167
LWNT6 H+-trans. ATP synth.—tobacco chloro. 126 158.1 0.0069 22.1 231
LWLV6 H+-trans. ATP synth.—Marchiantia chloro. 126 158.0 0.0069 24.0 167
PWEGAC H+-trans. ATP synth.—Euglena chloro. 123 154.1 0.011 25.7 214

S17420 ubiquinol-cytochrome-c reductase 113 138.0 0.09 23.4 158
S17418 ubiquinol-cytochrome-c reductase 108 131.7 0.20 24.5 208
QXBO2M NADH dehydrogenase (ubiquinone) 107 131.2 0.22 26.1 211
S17415 ubiquinol-cytochrome-c reductase 105 127.9 0.33 27.7 137
DNHUN2 NADH dehydrogenase (ubiquinone) 103 126.1 0.41 20.1 149
QRECAA amino acid trans. protein—E. Coli 104 125.1 0.47 23.4 111
CBHU ubiquinol-cytochrome-c reductase 102 124.1 0.53 26.8 205
S17419 ubiquinol-cytochrome-c reductase 101 122.9 0.63 23.4 158
S17407 ubiquinol-cytochrome-c reductase 99 120.3 0.87 23.6 140
QQBEN5 integral membrane protein—saimiriine herp 98 119.4 0.99 20.8 202

The horizontal line indicates the separation been the lowest scoring related sequences and the highest
scoring unrelated sequence.
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Figure 7: Phylogeny of H ' -ATPases
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An evolutionary tree of H ' -ATPases (subunit 6). Sequences were aligned using the GCG PILEUP
program, distances calculated using the GCG DISTANCES program, and the tree constructed using
the Neighbor-Joining algorithm (GCG GROWTREE). Expectation values from a search with the hu-
man H ' -ATPase (PWHU6, Table 3) and a search with the E. coli sequence are shown.
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Figure 8: Searching with human ATPase, high-scoring alignments

LWEC6 H+-transporting ATP synthase (EC 3.6.1.34) protein - E. coli (271 aa)
z-score: 223.0 Expect: 1.665e-06
Smith-Waterman score: 178; 23.3% identity in 236 aa overlap

10 20 30 40 50 60
PWHU6 MNENLFASFIAPTILGLPAAVLIILFPPLLIPTSKYLINNRLITTQQWLIKLTSKQMMTMHNTKGRT

:.. ..::: ....:: . ... . ... :. . .: ... .. :.. :..
LWEC6 HLNNLQLDLRTFSLVDPQNPPATFWTINIDSMFFSVVLGL---LFLVLFRSVAKKATSG-VPGKFQTAIELVIGFVNGSVKDMYHGKSKL

20 30 40 50 60 70 80 90 100

70 80 90 100 110 120 130
PWHU6 WSLMLVSLIIFIATTNLLGLLP---------HSF-------TPTTQLSMNLAMAIPLWAGTVIMGFRSKIKNALAHFLPQGTPTPL----

. . ....... ::. ::: : . .:.......:.::. .. ... : : .... : . : :.
LWEC6 IAPLALTIFVWVFLMNLMDLLPIDLLPYIAEHVLGLPALRVVPSADVNVTLSMALGVF---ILILFYSIKMKGIGGFTKELTLQPFNHWA

110 120 130 140 150 160 170 180

140 150 160 170 180 190 210 220
PWHU6 -IPMLVIIETISLLIQPMALAVRLTANITAGHLLMHLIGSATLAMSTINLPSTLIIFTILILLTILEIAVALIQAYVFTLLVSLYLHDNT

::. .:.: .::: .:..:..:: .:. ::.:.. ::.. : : :: :::. .::..: .:. .::
LWEC6 FIPVNLILEGVSLLSKPVSLGLRLFGNMYAGELIFILIAGLLPWWSQWILNVPWAIFHILIIT---------LQAFIFMVLTIVYLSMASEEH

190 200 210 220 230 240 250 260 270

================

PWEGAC H+-transporting ATP synthase (EC 3.6.1.34) chain (251 aa)
z-score: 154.1 Expect: 0.01133
Smith-Waterman score: 123; 25.7% identity in 214 aa overlap

10 20 30 40 50 60 70
PWHU6 MNENLFASFIAPTILGLPAAVLIILFPPLLIPTSKYLINNRLITTQQWLIKLTSKQMMTMHNTK-GRT----WSLMLVSL

.::: : : : :.: : . . ...: .:.:... . . .:. :. : .. ..
PWEGAC IANVEVGQHFYWSILGFQIHGQVLINSWIVILIIGF--LSIYTTKNL--TLVPANKQIFIELVTEFITDISKTQIGEKEYSKWVPYIGTM

20 30 40 50 60 70 80 90 100

80 90 100 110 120 130 140 150
PWHU6 IIFIATTNLLG-LLPHSFT--PTTQL---SMNLAMAIPLWAGTVIMGFRSKI-KNALAHFLPQGTPTPLIPMLVIIETISLLIQPMALAV

.:: ..: : :.: .. :. .: . .. . : : . : . . :..:..: :::.. . :.: .. .:..:.
PWEGAC FLFIFVSNWSGALIPWKIIELPNGELGAPTNDINTTAGLAILTSLAYFYAGLNKKGLTYFKKYVQPTPILLPINILEDFT---KPLSLSF

110 120 130 140 150 160 170 180 190

160 170 180 190 200 210 220
PWHU6 RLTANITAGHLLMHLIGSATLAMSTINLPSTLIIFTILILLTILEIAVALIQAYVFTLLVSLYLHDNT

:: .:: : .:.. .. : .: ::. . ::.: .. .. ::: .:. : . :.
PWEGAC RLFGNILADELVVAVLVSL--------VP--LIVPVPLIFLGLF---TSGIQALIFATLSGSYIGEAMEGHH

200 210 220 230 240 250

Alignments of human H ' -ATPase with the E. coli homologue and a plant chloroplast homologue.
Despite the considerable evolutionary distance (both sequences diverged at least 2 Bya), the pairs of
sequence share more than 20% identity across almost their entire lengths. ‘:’ symbols denote iden-
tities; ‘.’ denote conservative substitutions. Searches were performed with the BLOSUM50 matrix
and gap penalties of -12/-2.
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Table 4: Rates of change in protein families

Protein Rate Ù Protein Rate

Fibrinopeptides 90 Thryrotropin beta chain 7.4
Growth hormone 37 Parathyrin 7.3
Ig kappa chain C region 37 Parvalbumin 7.0
Kappa casein 33 BPTI Protease inhibitors 6.2
Ig gamma chain C region 31 Trypsin 5.9
Lutropin beta chain 30 Melanotropin beta 5.6
Ig lambda chain C region 27 Alpha crystallin A chain 5.0
Complement C3a 27 Endorphin 4.8
Lactalbumin 27 Cytochrome b Ú 4.5
Epidermal growth factor 26 Insulin 4.4
Somatotropin 25 Calcitonin 4.3
Pancreatic ribonuclease 21 Neurophysin 2 3.6
Lipotropin beta 21 Plastocyanin 3.5
Haptoglobin alpha chain 20 Lactate dehydrogenase 3.4
Serum albumin 19 Adenylate cyclase 3.2
Phospholipase A Û 19 Triosephosphate isomerase 2.8
Protease inhibitor PST1 type 18 Vasoactive intestinal peptide 2.6
Prolactin 17 Corticotropin 2.5
Pancreatic hormone 17 Glyceraldehyde 3-P DH 2.2
Carbonic anhydrase C 16 Cytochrome C 2.2
Lutropin alpha chain 16 Plant ferredoxin 1.9
Hemoglobin alpha chain 12 Collagen 1.7
Hemoglobin beta chain 12 Troponin C, skeletal muscle 1.5
Lipid-binding protein A-II 10 Alpha crystallin B-chain 1.5
Gastrin 9.8 Glucagon 1.2
Animal lysozyme 9.8 Glutamate DH 0.9
Myoglobin 8.9 Histone H2B 0.9
Amyloid A 8.7 Histone H2A 0.5
Nerve growth factor 8.5 Histone H3 0.14
Acid proteases 8.4 Ubiquitin 0.1
Myelin basic protein 7.4 Histone H4 0.1

Ù percent/100 My
From (Nei, 1987; Dayhoff et al., 1978)
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Figure 9: The limits of sequence similarity
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1.3.4 Mosaic proteins

“Conventional” protein families, e.g. the globins, cytochrome ‘c’s, H Ü -ATPases, in which protein
sequences have diverged from a common ancestor in a direct fashion, typically with only modest
changes in the length of the sequence, have been known for more than 30 years. In the past 10 years,
a more complex type of protein evolution has been observed—proteins that contain multiple domains
from other proteins. These proteins have been called “mosaic” proteins; the domains are frequently
inserted through a process called “exon shuffling.” Table 7 lists a number of human proteins that are
comprised of mosaic domains, but such proteins are not limited to mammals. Similar mosaic struc-
tures are common in DNA binding proteins, both in bacteria and eukaryotes.

Table 5: Classification of Protein Families

I. Ancient Proteins

A. First editions. Direct-line descendacy to human and contemporary prokaryotes. Mostly main-
stream metabolism enzymes. Example: triosphosphate isomerase (44.8% identical over 250 aa,
E(59000) ÝßÞáà>â<ã
ä ).

B. Second edition. Homologous sequences in human and prokaryotic proteins, but apparently differ-
ent functions. Example: human glutathione reductase and pseudomonas mercury reductase (31%
identical over 438 aa, E(59000) ÝåÞ2àæâ<ã
ç ).

II. Middle-age proteins. Proteins found in most eukaryotes but prokaryotic counterparts are unknown. Ex-
ample: actin (human and yeast share 88% identical over 375 aa, E() ÝèÞáà>âêé,ë
ì , other yeast actin ho-
mologs share as little as little as 26.4 % over 489 aa, E() ÝíÞ2àæâ�éîë .

III. Modern proteins

A. Recent vintage. Proteins found in animals or plants but not both. Not found in prokaryotes. Ex-
ample: collagen.

B. Very recent inventions. Proteins found in vertebrates but not elsewhere. Example: plasma albu-
min.

C. Recent mosaics. Modern proteins clearly the result of exon shuffling. Example: LDL receptor.

From Doolittle et al., 1986.

1.4 Introns Early/Late

The occurrence of mosaic proteins and the discovery of the “exon/intron” structure of genes in the late
1970’s led several investigators to suggest that the exon structure of genes reflected the construction of
proteins from modular domains (Gilbert & Glynias, 1993). While acceptance of this proposal is quite
widespread, it is based on very little data. There is no question that many modern mosaic proteins are
constructed by a process of “exon-shuffling” whereby exons from other genes have been combined to
build new structures. In addition, for some proteins exons are associated with well defined structural
elements. The association of exons with structural elements may reflect and ancient construction of
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Table 6: Ancient human proteins

A. First edition type

Human protein Prokaryotic homologue % identity E(59,000)

Triosephosphate isomerase E. coli 46 ÝíÞ2àæâ<ã
ä
Phosphoglyceraldehylde dehydrogenase B. stearothermophilus 52 ÝíÞ2àæâðïòñ
Alkaline phosphatase E. coli 28 ÝíÞ2àæâðçôó
Dihydrofolate reductase E. coli 28 ÝßÞáà>âðä
Superoxide dismutase (Cu-Zn) E. coli 32 ÝßÞáà>âðï
Hypoxanthine-guanine E. coli 34 ÝíÞ2àæâ�é|ï

phosphoribosyl transferase

B. Second edition type

Glutathione reductase Mercuric reductase, Pseudomonas 31 ÝíÞ2àæâ<ã
ç
Glutamate dehydrogenase (NAD) Glutamate dehydrogenase,E. coli 29 ÝíÞ2àæâðçòë
Ornithine transcarbamylase Aspartate transcarbamylase, E. coli 26 ÝíÞ2àæâ�éôé
Adapted from Doolittle et al., 1986

Table 7: Mosaic proteins

A. EGF-type B. C9-type
Epidermal growth factor precursor Complement C9
Tumor growth factors LDL receptor
LDL receptor Notch (Drosophila)
Factor IX lin-12 (C. elegans)
Protein C
Tissue plasminogen activator C. Fibronectin finger
Urokinase Fibronectin
Complement C9 Tissue plasminogen activator
Notch protein (Drosophila)
lin-12 (C. elegans) D. Protease “Kringle”

Plasminogen
Tissue plasminogen activator
Urokinase
Prothrombin

From Doolittle et al., 1986.

proteins from primordial exons. Alternatively, introns are also capable of invading genes; thus, the
association of exons with structures may reflect modern invasions that are less disruptive when they
occur between structural elements.

A recent test of the “introns” early hypothesis suggests there is little evidence to support the asso-
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ciation of introns with structural boundaries (Stoltzfus et al., 1994.

1.5 DNA vs Protein comparison

While all of the comparison methods described below work on either protein or DNA sequences, one’s
ability to identify distantly related sequences is reduced dramatically when DNA sequences are used.
Fig. 8 compares the statistical significance of the best similarity scores obtained in a search of the
GenBank DNA sequence database using a mouse glutathione transferase cDNA clone with the sig-
nificance of the same alignment in a search of the GenPept protein sequence database (GenPept is de-
rived from GenBank by translating DNA sequences into the encoded protein sequences). Many DNA
sequences encoding clearly related proteins, e.g. RABGSTB have similarity scores that are expected
to occur several times by chance in a DNA database search. DNA sequences are far less informative,
both because they lack the inherent biochemical information that is retained in the PAM250 substi-
tution matrix, and because many changes in DNA sequences (third-base changes) do not change the
encoded protein.

Differences in the performance of sequence comparison algorithms are insignificant compared to
the loss of information that occurs when one compares DNA sequences. If the biological sequence of
interest encodes a protein, protein sequence comparison is always the method of choice.

20



Table 8: DNA vs Protein Sequence Comparison

score E(DNA) E(prot) E(tx)

MUSGST Mouse glutathione S-transferase class mu 5090 Þáà â�ç|ãôã Þ2à â�õôó Þáà â�é|çôó
MUSGSTA Mouse, glutathione transferase GT9.3 mu 3693 Þáà>âêé�äôï Þ2à>â�ïòã Þáà>â�é|çôó
HUMGSTAB Homo sapiens glutathione transferase 1930 Þáà>â:ñ�ë Þ2à>â�äôó Þáà>â<ñ
ó
MAMGLUTRA M.auratus mu class GST 399 Þáà>âêé�é Þ2à>â�ïòã Þáà>â�éôé
RATGSTYD Rat glutathione S-transferase Yb subunit 399 Þáà>âêé�é Þ2à>â�ïòë Þáà>â�é|ó
HSGSTM4 H.sapiens GSTM4 gene for GST 390 Þáà>âêé�é Þ2à>â�äôõ Þáà>â�é|ó
RATGSTY Rattus norvegicus GST 372 Þáà>âêé�ó Þ2à>â�ï�é Þáà>â�é|ó
HSGSTM1B H.sapiens GSTM1b gene for GST 358 Þáà>â�õ Þ2à>â�äòã Þáà>â�é|ó
HSGSTMU3 Human GSTmu3 gene for a GST 322 Þáà>â�ï Þ2à>â�çôì Þáà>âðä
BTGST Bovine GST mRNA for GST 249 0.00013 Þ2à>âêé|ä Þáà>âðçôç
HSGSTPI1 Human mRNA for anionic GST 237 0.00049 Þ2à>âêé|ï Þáà>âðç�é
MUSGTF Mus musculus GST mu 196 0.041 Þ2à>â:ë Þáà>âðä
CRUGSTP Chinese hamster GST 196 0.043 Þ2à>âêé|ä Þáà>âðç�é
CRUGSTPIE Cricetulus griseus GST pi 196 0.04 Þ2à>âêé|ä Þáà>âðç�é
HAMGSTPIE Mesocricetus auratus GST pi 191 0.13 Þ2à>âêé|ä Þáà>âðç�é
BTRNAXOR B.taurus xanthine oxidoreductase 184 0.11 ößÞáà öø÷
HUMKAL2 Human glandular kallikrein gene 170 0.59 ößÞáà öø÷
RNGSTYC2F R.norvegicus GST Yc1 170 0.67 Þ2à>â�ä öø÷
MMGLUT M.musculus mRNA for GST 168 1.0 Þ2à>â�ï Þáà>â<ñ
MUSTHYGP Mouse Thy-1.2 glycoprotein 163 1.3 ößÞáà öø÷úùûà
HUMTROPI01 Human troponin I, slow-twitch isoform 161 1.7 ößÞáà öø÷

Expectation values for searches against DNA (score, E(DNA)), protein (E(prot)), and translated DNA (E(tx)
databases. A mouse glutathione transferase cDNA sequence (MUSGST) was used to search either the primate
(GBPRI), rodent (GBROD), and mammalian (GBMAM) divisions of the GenBank DNA sequence database for
the DNA sequence comparisons. Protein expectations (E(prot)) were calculated from a search the translated
cDNA sequence against the GenPept sequence database, which includes all of translated GenBank. Unrelated
sequences are italicized; E(prot) for unrelated sequences are öüö 100.
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2 Alignment methods

A variety of comparison algorithms and scoring parameters can be used to evaluate protein or DNA se-
quence similarity. In general, the choice the of “best” algorithm depends on the problem to be solved.
Thus, algorithms that calculate a local comparison score—i.e., they find the strongest similarity be-
tween the two sequences, ignoring differences outside of the most similar region—are usually most
appropriate for searching protein and DNA databases, Û while global comparison algorithms are more
appropriate when homology has been established, as when building evolutionary trees. Pattern-based,
rather than similarity-based, comparison methods may be preferred when searching for functionally
conserved non-homologous domains.

In searching protein sequence databases to identify distantly related homologous proteins, it is
important to remember that avoiding high similarity scores with unrelated sequences can be more im-
portant as calculating high scores for related sequences. There are more than 50,000 protein sequences
in comprehensive protein databases, while the typical family of proteins has fewer than 100 members.
Thus, comparison algorithms, scoring matrices and gap penalties that produce the best alignments may
not be the most effective for searching protein sequence databases (Pearson, 1995; ?).

2.1 Algorithms

Two general classes of comparison algorithms are used to calculate similarity scores to infer sequence
homology: rigorous algorithms that are guaranteed to calculate an optimal similarity score, e.g. the
NeedlemanWunsch (Needleman & Wunsch, 1970) and SmithWaterman (Smith & Waterman, 1981)
algorithms, and rapid heuristic algorithms that do not guarantee to calculate an optimal score for ev-
ery sequence in a library, e.g. FASTA (Pearson & Lipman, 1988) and BLAST(Altschul et al., 1990).
Table 2.1 summarizes widely used algorithms for biological sequence comparison.

Two optimal algorithms for calculating similarity scores have been described, the Needleman-
Wunsch algorithm (Needleman & Wunsch, 1970), which calculates a “global” similarity score be-
tween two sequences, and the Smith-Waterman algorithm (Smith & Waterman, 1981), which calcu-
lates a “local” similarity score. Global scores require the alignment to begin at the beginning of each
sequence and extend to the end of each sequence. Global alignments cannot be used to detect the
relationship between DNA binding domains in homeobox proteins or the calcium binding domains
shared between calmodulin and calpain. Likewise, global alignment algorithms often do not detect
the relationships between mosaic proteins. Global similarity scores can be calculated with or without
penalties for gaps at the ends of the sequences.

Local alignment algorithms identify the most similar region shared between two sequences. Thus,
homologous calcium binding domains embedded in non-homologous proteins can be detected with
local alignment methods. In addition, a local alignment algorithm can be used to find the exons in
a genomic DNA sequence by aligning it with its encoded mRNA. Local alignment algorithms are
required to identify homologies in mosaic proteins, and they can be used to detect internal domain
duplications as well. Table 10 compares the scores of global, global without end-gap-penalties, and

ý
For genomic DNA sequences, there is no logical alternative.
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Table 9: Algorithms for comparing protein and DNA sequences

algorithm value scoring gap time
calculated matrix penalty required

Needleman- global similarity arbitrary penalty/gap þ ÿ � ç � Needleman and
Wunsch � Wunsch, 1970

Sellers (global) distance unity penalty/residue þ ÿ � ç � Sellers, 1974���
Smith- local similarity ��
	�� Ý à ù à affine þ ÿ � ç � Smith and Waterman, 1981

Waterman �� ��� Gotoh, 1982

FASTA approx. local �� 	�� Ý à ù à limited gap size þ ÿ � ç ����� Lipman and Pearson, 1985
similarity �� ��� Pearson and Lipman, 1988

BLASTP maximum ��
	�� Ý à ù à multiple þ ÿ � ç ����� Altshul et al., 1990
segment score segments

local similarity scores for a variety of related and unrelated proteins.

Rigorous sequence comparison algorithms, like the Smith-Waterman algorithm, require time pro-
portional to ��������� , where � is the length of the query sequence and � is the number of amino
acids in the protein sequence library. Modern high-performance unix workstations can compare a �����
residue protein sequence (human opsin) to the  !�#"$����� entry, 15,000,000 amino acid Swiss-Prot 31
database in less than 10 minutes.

Although very rapid % algorithms are available for calculating optimal global similarity scores be-
tween two sequences, particularly with unit cost scores, such algorithms are rarely appropriate for
biological sequence comparison. Unit cost algorithms must discard the substantial biochemical infor-
mation encoded in the PAM250 matrix. Most rapid optimal algorithms calculate only global similar-
ities; such comparisons are not useful for DNA sequence comparison because the “ends” required for
a global sequence comparison are usually arbitrary.

ý'&)(+*-,�.
, where

*
is the length of a sequence and

,
is the number of differences between the two sequences.
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Table 10: Global and local sequence similarity scores

Similarity Score Distance
PIR Entry Global Local

End No End
Penalty Penalty

HBHU vs HBHU Hemoglobin beta-chain—human 725 725 725 0
HAHU Hemoglobin alpha-chain—human 314 320 322 152
MYHU Myoglobin—Human 121 164 166 212
GPYL Leghemoglobin—Yellow lupin 8 28 43 239
LZCH Lysozyme precursor—Chicken / Þáà�0 16 32 220
NRBO Pancreatic ribonuclease—Bovine / Þ$1�2 16 31 280
CCHU Cytochrome c—Human / Þ$3�à 10 26 321

MCHU vs MCHU Calmodulin—Human 671 671 671 0
TPHUCS Troponin C, skeletal muscle 395 430 438 161
PVPK2 Parvalbumin beta—Pike / ÷�0 103 115 313
CIHUH Calpain heavy chain—Human /41 à�5 ÷ 89 100 2463
AQJFNV Aequorin precursor—Jelly fish /63�÷ 48 76 391
KLSWM Calcium binding protein—Scallop /65�7 45 52 323

QRHULD vs EGMSMG Epidermal growth factor precursor / ÷87úÞ 475 655 2549
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Figure 10: Global and local alignment paths

A. Global

A B D D E F G H I
A \ \ \ \ \ \ \ \ \

1 _-1 -1 -1 -1 -1 -1 -1 -1
B \ ! \ \ \ \ \ \ \

-1 2 _ 0 _-2 -2 -2 -2 -2 -2
D \ ! \ \ \ \ \ \

-1 0 3 _ 1 _-1 _-3 -3 -3 -3
E \ \ ! ! \ \ \ \

-1 -2 1 2 2 _ 0 _-2 _-4 -4
G \ \ ! \ ! \ \ \

-1 -2 -1 0 1 1 1 _-1 _-3
K \ \ \ ! \ ! \ ! \ \ \ \

-1 -2 -3 -2 -1 0 0 0 _-2
H \ \ \ \ ! \ ! \ ! \ \ \

-1 -2 -3 -4 -3 -2 -1 1 _-1
I \ \ \ \ \ ! \ ! \ ! ! \

-1 -2 -3 -4 -5 -4 -3 -1 2

Optimal global alignments (score 2):

A B D D E F G H I (top)
A B D - E G K H I (side)

or A B - D E G K H I

B. Local

A B D D E F G H I
A \

1 0 0 0 0 0 0 0 0
B \

0 2 _ 0 0 0 0 0 0 0
D ! \ \

0 0 3 _ 1 0 0 0 0 0
E ! \ \

0 0 1 2 2 _ 0 0 0 0
G \ ! \ \ \

0 0 0 0 1 1 1 0 0
K \ \ \

0 0 0 0 0 0 0 0 0
H \

0 0 0 0 0 0 0 1 0
I \

0 0 0 0 0 0 0 0 2

Optimal local alignment (score 3):

A B D (top)
A B D (side)

2.2 Dynamic Programming Algorithms

The algorithms used to calculate the maximum similarity scores between two sequences are most eas-
ily visualized with an alignment matrix or path graph. Figs. 10–11 demonstrate the correspondence
between an alignment path graph and an actual alignment. The goal along the path is to maximize the
similarity score for the alignment that ends at each potential vertex. For the figures, similarity scores
are increased by 9;: for diagonal edges if the two residues along the path are identical; if they are
different, the diagonal edge cost is <-: . The cost along either a horizontal or vertical edge, which cor-
responds to an insertion in the top sequence (horizonal edge) or an insertion in the left-side sequence
(vertical edge) is <>= . To produce a global alignment from a path graph, simply begin at the bottom-
right corner of the graph and follow the “active” paths, noted by ? , or ! to the upper-left corner,
aligning the two residues along the diagonal path, or aligning a residue with a gap if a horizontal or
vertical path is taken.

For the global alignment in Fig. 10A, there are two alignments that produce the optimal score. Op-
timal comparison algorithms guarantee to produce the best score, given the match, mismatch, and gap
costs, but frequently there are several optimal alignments for a single score. For the local alignment
in Fig. 10B, there are several sub-optimal alignments with scores of = . Note that the local alignment
in Fig. 10B would extend from one end of each sequence to the other if the gap cost were reduced to<-: .
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Figure 11: An alignment path matrix
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Fig. 11 provides an exercise for the reader.

While there are an exponential number of potential alignments with gaps between two protein or
DNA sequences, dynamic programming algorithms are available that can calculate the optimal score
in �L��MN��� steps. This efficiency is achieved by determining the optimal score for each prefix of each
string, and then extending each prefix by considering the three paths that can be used to extend an
alignment: (1) by extending the alignment by one residue in each sequence; (2) by extending the align-
ment by one residue in the first sequence and aligning it with a gap in the second; or (3) extending the
alignment by one residue in the second sequence and aligning it with a gap in the first. This decision
must be made for each of the MN� prefixes of sequences of length M and � .

The first algorithm for comparing protein sequences (Needleman & Wunsch, 1970) calculates a
“global” similarity score. A simplified global algorithm is shown in Fig. 12. Since a global algorithm
requires that the alignment extend from the beginning to the end of the alignment, it is sufficient to
report the score in the lower right ( O)��MP"$�Q� ) of the scoring matrix.

Local alignment algorithms must consider alignments that begin and end at each of the MN� po-
sitions in the alignment matrix. Despite this added complexity, they only add two additional steps to
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Figure 12: Algorithms for Global and Local similarity scores
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write “Local similarity score is” best

the global alignment algorithm. Since every possible starting position must be considered, similarity
scores cannot fall below zero and a � term is added to the � r!v comparison in Fig. 12. Since they can
end at any position in the matrix, the best score must be saved at each step. In practice, global and
local comparison algorithms require the same amount of computation.

2.3 Scoring methods

The scoring matrices used for protein sequence comparison are much more sophisticated than 9;: for a
match and <-: for a mismatch. The most effective matrices are based on the actual frequency of sub-
stitutions that occur between related proteins. Two different approaches have been used to produce
these matrices. The original PAM250 matrix (Fig. 5) was produced by examining several hundred
alignments between very closely related proteins, and then calculating the frequency with which each
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amino-acid residue changed into each of the others at a very short evolutionary distance—one where
only 1% of the residues had kchanged (Dayhoff et al., 1978). This replacement frequency, when cor-
rected for the amino-acid abundance, can be used to calculate the PAM1 scoring matrix (PAM is “Point
Accepted Mutation”). If the matrix is multiplied against itself 250 times, a PAM250 matrix, which re-
flects the frequency of change for proteins that have diverged 250%. If a two protein sequences have
diverged by 250%, it is expected that they will share about 20% sequence identity (Fig. 9). Since 20%
identity is at the edge of where significant similarity can be detected, the PAM250 matrix has been
widely used. The PAM250 matrix is based on small number of amino acid substitutions; modern ex-
trapolated matrices based both on sequence alignments (Jones et al., 1992) and structural alignments
(Johnson & Overington, 1993) are available.

Substitution matrices have also been calculated directly by examining “blocks” of aligned se-
quences that differ by no more than ��� (Henikoff & Henikoff, 1992). Thus, the BLOSUM62 ma-
trix, which is used by the BLASTP rapid comparison program, is derived from substitution data for
blocks of aligned sequences that are no more than ��=
� identical. BLOSUM62 performs substantially
better than extrapolated matrices with BLASTP and FASTA (Henikoff & Henikoff, 1993), but both
BLOSUM and extrapolated matrices can perform well when used with optimal gap penalties (Pearson,
1995).

Altschul (1991) has provided a information-theory based perspective for evaluating scoring ma-
trices in general for alignments without gaps. Using a statistical theory for such alignments (Karlin
& Altschul, 1990), it is possible to convert any similarity score to a value in “bits” that can be used
to compare scores produced by different alignments. Unfortunately, the analytical formulas that are
used for this conversion cannot easily be applied to alignments that contain gaps. Collins et al., 1988
and Altschul, 1993 have also pointed out that different scoring matrices are optimal at different evolu-
tionary distances. Thus, short proteins sequences that are 50% identical can be more easily identified
with a “shallower” PAM matrix, e.g. PAM60.

2.4 Heuristic Algorithms

Two rapid heuristic algorithms are frequently used for searching protein and DNA sequence databases,
FASTA (Pearson & Lipman, 1988) and BLASTP (Altschul et al., 1990). These methods are 5–50
times faster than the rigorous Smith-Waterman algorithm, and can produce results of similar quality
in many cases.

Fig. 13 summarizes the difference between the FASTA, BLASTP, and Smith-Waterman algorithms.
BLASTP and FASTA are faster than Smith-Waterman because they examine only a portion of the po-
tential alignments between two sequences. FASTA focuses on regions where there are either pairs
(ktup=2) or single aligned ktup=1 identities; BLASTP examines regions that include triples of con-
served amino acids.

2.4.1 BLAST

Advances in the statistical theory of sequence alignments without gaps (Karlin & Altschul, 1990) pro-
vided the theoretical basis for the BLASTP program (Altschul et al., 1990). BLASTP is now the most
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Figure 13: Heuristic strategies for sequence comparison
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Table 11: Sequence similarity with BLASTP

Step 1 For each three amino acids in the query sequence, identify all of the substitutions of each word that have
a similarity score greater than a threshold score ìîí�ï�ï . In practice, word-matches with scores ðñì are
seen on average ïRò8ó times per library sequence.

Step 2 Build a discrete finite automaton (DFA) to recognize the list of identical and substituted three letter words.

Step 3 Use the DFA to identify all of the matching words in sequences in the database. If a match is found, at-
tempt to extend the match both forwards and backwards using the BLOSUM62 matrix to produce a score
that is higher than a threshold score. Save all of the high scoring regions shared by the query sequence
and each library sequence. The best of these scores is reported as the best single MSP (maximal segment
pair) score. These high scoring regions do not contain gaps.

Step 4 Attempt to combine multiple MSP regions. For each “consistent” combination, calculate the probability
of obtaining that may consistent matches using either “poisson” or “sum” statistics.(Karlin & Altschul,
1993) Report the lowest probability score based on statistics used.

Step 5 Report all of the significant alignments. Frequently, a query and library sequence will contain several
MSPs because of the requirement that they do not contain gaps.

widely used program for rapid sequence comparison, in large part because of its accurate estimates
for the statistical significance of similarity scores (see 3. BLASTP, like FASTA, uses a word-based
scanning procedure to identify regions of local similarity (Table 11) with out gaps. BLASTP is effec-
tive because it combines high sensitivity with excellent selectivity. BLASTP combines good sensitiv-
ity with exceptional selectivity. Except when the query sequence contains a low complexity region,
BLASTP rarely calculates scores for unrelated sequences.

2.4.2 FASTA

The current version of FASTA provides several significant improvements over earlier versions. FASTA
now calculates optimized scores (step 4 in Table 12)) for most of the sequences in the database and pro-
vides accurate estimates for statistical significance (3). Calculation of optimized scores improves sub-
stantially the performance of FASTA. Without the calculation, FASTA performs significantly worse
than BLASTP; however, with the calculation of optimized scores (and normalization of the scores
based on library sequence length), FASTA performs significantly better than BLASTP and almost as
well as the Smith-Waterman algorithm (Pearson, 1995). In addition, FASTA now uses the Smith-
Waterman algorithm to produce final alignments; previous versions limited the size of gaps, which
sometimes led to incomplete alignments.

Every database search for members of a diverse protein family involves a tradeoff between sensitivity—
the ability to identify distantly related members of the family—and selectivity—the ability to avoid
high similarity scores for unrelated sequences. Table 3.3 compares how effectively the three algo-
rithms maintain this balance for a large protein family—the G-protein-coupled receptors. Thus, BLASTP
calculates a very highly significant score for the closely related opsin and dopamine D2 receptors, and
a significant score for the more distantly related thromboxane A ô receptor, but it does not detect the
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Table 12: Sequence similarity with FASTAv20

Step 1 Identify regions shared by the two sequences with the highest density of identities (ktup=1) or pairs of
identities (ktup=2).

Step 2 Rescan the ten regions with the highest density of identities using the BLOSUM50 matrix. Trim the ends
of the region to include only those residues contributing to the highest score. Each region is a partial
alignment without gaps.

Step 3 If there are several initial regions with scores greater than the CUTOFF value, check to see whether the
trimmed initial regions can be joined to form an approximate alignment with gaps. Calculate a similarity
score that is the sum of the joined initial regions minus a penalty (usually 20) for each gap (initn). The
score of the single best initial region found in Step 2 is also reported (init1).

Step 4 For sequences with scores greater than a threshold, construct an optimal local alignment of the query
sequence and the library sequence, considering only those residues that lie in a band centered on the best
initial region found in Step 2. For protein searches with ktup=2 a 16 residue band is used by default. A
32 residue band is used with ktup=1. This is the optimized (opt) score.

Step 5 After all (or the first 10–20,000) scores have been calculated, normalize the raw similarity scores by
regressing the similarity score against ln(library-sequence length) and calculating the average variance
in similarity scores. Z-values (normalized scores with mean ó and variance ï ) are calculated, and the
calculation is repeated with library sequences with z-values greater than 5.0 and less than -5.0 removed.
These z-values are used to rank the library sequences.

Step 6 The Smith-Waterman algorithm (without limitation on gap size) is used to display alignments.

similarity between opsin and the very distantly related Dictyostelium cAMP (CAR1) receptor. In ad-
dition, BLASTP would never suggest a relationship between opsin and cytochrome oxidase. FASTA
(ktup=2 does a better job at recognizing the relationship between opsin and thromboxane A2, fails to
detect the cAMP-1 receptor, and is more ambiguous about a possible relationship with cytochrome
oxidase. FASTA with ktup=1 and Smith-Waterman calculate statistically significant relationships be-
tween opsin and cAMP-1, but also good (but not significant) scores for opsin and cytochrome oxidase.

3 The statistics of sequence similarity scores

The development of accurate statistical estimates for local sequence similarity scores (Karlin & Altschul,
1990; Mott, 1992) has allowed dramatic improvement in our ability to reliably recognize distantly re-
lated proteins. The statistical estimates calculated by BLASTP are used widely in large scale sequence
comparison, e.g. to characterize all of the genes on a yeast chromosome or all of the genes in a bacterial
genome. The incorporation of statistical estimates into FASTA and SSEARCH (a Smith-Waterman
implementation) have significantly improved the performance of these programs as well.
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3.1 Sequence alignments without gaps

The statistics of local similarity scores for alignments without gaps but with an arbitrary substitution
matrix have been described by Karlin & Altschul, 1990. Local similarity scores are described by the
extreme value distribution. Using the parameters õ and ö , which can be derived from the scoring ma-
trix and the amino acid composition of the query sequence, the probability that a normalized similarity
score: ÷�øJù õ ÷ûúýü~þ öñÿ�� (1)

(Karlin & Altschul, 1990; Altschul et al., 1994) where ÿ is the length of the query sequence and � is
the length of the library sequence can be calculated as:

��� ÷Uø�����	)ù�
>ú����� � ú�������	
(2)

Since a typical database search typically involves thousands of pairwise comparisons, the expectation
of finding a score

÷ ø ���
for a search of � sequences is: � � ÷ ø ����	-ù � � . (Thus, searches of

highly redundant databases may be less informative, because � is larger but the number of different
sequences is not.)

3.2 Similarity scores increase with sequence length

The normalization in equation 1 shows that scores for alignments without gaps between random se-
quences increase as

ü~þ öñÿ�� , or since ö and ÿ are fixed for a given search,
ü þ � , the length of the

library sequence. This is seen empirically with scores for alignments that contain gaps (Collins et al.,
1988; Mott, 1992) and is shown in Fig. 14. For local similarities, the variance of the score should be
independent of library sequence length. Thus, normalization of similarity scores by fitting a line to the
relationship of similarity score to

ü~þ � will reduce the scores of long, unrelated sequences, and make
it possible to detect more distant relationships (Pearson, 1995).

3.3 Empirical statistics for alignments with gaps

Accurate statistical estimates for alignments with gaps can can be calculated by normalizing similar-
ity scores to remove the

ü~þ � dependence for similarity scores. This can be seen in Fig. 6, where the
‘*’s show the fit of an extreme value distribution to the observed data (‘==’). FASTA and SSEARCH
estimate statistical significance by fitting a line to

÷
vs
ü~þ � and calculating the average variance for

the scores. The regression line and variance are used to calculate

� ú����! #"#�zù � ÷îú �%$'&�( ü~þ � 	)	)*,+ - $ " (3)

The distribution of
� ú���! #"#�

’s should follow the extreme value distribution, so that:

���)�/. ��	)ù�
 ú������ � ú�����021 ô43Rô)5 ��671 8)9)9 ô 	
(4)

and, as before, � �)��. �:	6ù � � .
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Figure 14: Similarity scores and library sequence length
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The distribution of Smith-Waterman similarity scores is plotted as a function of
ü<;>= � � 	 , � is the length

of the library sequence. Filled symbols indicate individual related sequences (only the most distant
related sequences are shown); open symbols show the average and std. error of similarity scores for
unrelated sequences.

3.4 Statistical significance by random shuffling

Statistical estimates derived from database searches measure the difference between an observed sim-
ilarity score and that expected for a sequence with the amino acid composition of the database. Such
tests may overestimate significance in cases where the query sequence’s amino acid composition dif-
fers from that of the database. Thus, membrane proteins with their hydrophobic transmembrane do-
mains may have statistically significant scores with non-homologous membrane proteins. A more
challenging test compares the similarity score between a query and library sequence with the distribu-
tion of scores obtained by comparing the query sequence to random sequences with the same length
and amino acid composition as the library sequence. Such sequences are easily generated by randomly
shuffling the library sequence, either globally, by exchanging randomly each amino acid with any other
position in the sequence, or locally, by performing the exchanges within a window of 10–20 residues.
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Table 13: Search Algorithms and Statistical Significance

algorithm closely related distantly unrelated
related related

dopamine D2 ? thromboxane A2 @ cAMP-1 A cytochrome oxidase B
Smith-Waterman CED 
�F �HG I D 
�F �HJ FHKLF�
 FHKLMON
PRSSP QRD 
�F �S046 
�F �HJ FHKLF>FON FHKUTVM
PRSS(window=20) P QED 
�F � 3 FHKLF�FH
 FHK I C C KLF

fasta, ktup=1, opt CED 
�F �HG N D 
�F �S8
0.02 0.39

fasta, ktup=2, opt
I D 
�F �HW 
�F �HJ I K I

0.36
BLASTP

I D 
�F � ô'ô F�KLFON . 
>KLF . 
>KLF

? D2DR HUMAN, @ TA2R MOUSE, A CAR1 DICDI, B APPC ECOLI

Expected number of times that a similarity score as high or higher than that obtained by the indicated
library sequence would be obtained by chance in a search of Swiss-Prot ( X M Q�Y F>F>F entries) with the
OPSD HUMAN (human opsin) query sequence. P Expected times this score would be obtained after
 Y F>F>F shuffles of the indicated library sequence with either global (prss) or local (window=20) amino
acid exchanges.

Because this Monte Carlo test measures the significance of the order of the two amino acid sequences,
rather than the difference between the highest scoring sequences and the rest of the database, it tends
to be more demanding.

As before, similarity scores for random sequences should follow the extreme value distribution,
and a fit of the distribution of scores can be used to estimate the significance of an unshuffled score.
However, to extrapolate an expectation value from shuffled sequences to that for a library search, the
“E()-value” must be multiplied by the ratio of the number of sequences in the library to the number
of shuffled sequences. Thus, in the example below, an E()-value from

M�F>F
shuffles must be multi-

plied by Q F to be comparable to an E()-value from the
TVF Y F>F>F entry Swiss-Prot. As expected, the

E()-value from the actual search—
I D 
�F �HJ

—is slightly more significant than that from the shuffled
distribution— CZD 
[F �H\

.

Comparison of OOHU (human opsin) with TA2R_MOUSE (thromboxane A2 receptor)
BLOSUM50 matrix, gap penalties: -12,-2
unshuffled s-w score: 160; shuffled score range: 38 - 92

Lambda: 0.15076 K: 0.017357; P(160)= 7.4282e-08
For 500 sequences, a score >=160 is expected 3.71e-05 times

Although accurate statistical estimates can be very valuable in interpreting the results of similarity
searches, they must be evaluated with caution. Distantly related homologous sequences often do not
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Figure 15: Patterns for serine proteases

ID TRYPSIN_HIS; PATTERN.
AC PS00134;
DE Serine proteases, trypsin family, histidine active site.
PA [LIVM]-[ST]-A-[STAG]-H-C.
NR /TOTAL=158(158); /POSITIVE=154(154); /UNKNOWN=2(2); /FALSE_POS=2(2);
NR /FALSE_NEG=11(11);
CC /TAXO-RANGE=??EP?; /MAX-REPEAT=1;
CC /SITE=5,active_site;

ID TRYPSIN_SER; PATTERN.
AC PS00135;
DE Serine proteases, trypsin family, serine active site.
PA G-D-S-G-G.
NR /TOTAL=160(160); /POSITIVE=151(151); /UNKNOWN=1(1); /FALSE_POS=8(8);
NR /FALSE_NEG=16(16);
CC /TAXO-RANGE=??EP?; /MAX-REPEAT=1;
CC /SITE=3,active_site;

Patterns from PROSITE that identify 152/163 (TRYPSIN HIS or 143/159 TRYPSIN SER members
of the serine protease protein family.

share statistically significant similarity. Thus, overreliance on statistical estimates, particularly after
a single search, can miss genuine homologies. Conversely, sequences with low-complexity regions
often share significant similarity but are not homologous. Finally, some structures, such as the coiled-
coil structure in tropomyosin, share statistical significance because of a common repeated structure,
because of convergence (analogy), rather than homology.

4 Identifying distantly related protein sequences

In this section, we will examine similarity searches in three diverse families of protein sequences, ser-
ine proteases, glutathione S-transferases, and the G-protein-coupled receptors. The serine proteases
are considered because they provide a classic example of a family of proteins with a highly conserved
active site; the glutathione transferases are a very diverse family where many members do not share
significant similarity with all other members, while the G-protein-coupled receptors are a very large
and diverse family of membrane proteins.

4.1 Serine proteases

Serine proteases cleave peptide bonds using a “catalytic triad” of histidine, serine, and aspartic acid;
these residues are underlined in Fig. 17. Because these residues are so highly conserved, patterns that
focus on two of the regions (Fig. 15) can be used to identify every member of the serine protease
family. Fig. 16 shows the highest scoring unnormalized similarity scores. As is often the case for di-
vergent protein families, several members of the family do not share statistically significant similarity
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with bovine trypsin. These sequences are italicized in Fig. 16; their membership in the serine pro-
tease family is based on common three-dimensional structures. As expected from the discussion in
section 3.2, several of the highest scoring unrelated sequences are substantially longer than genuine
serine proteases. These scores have much higher (less significant) expectation values when the

ü~þ �
correction is used.

The absolute conservation of residues in the “catalytic triad” might suggest that similarities be-
tween members of this family are limited to those regions. This is not the case, as can be seen in
Fig. 17. Similarity in the serine proteases typically extends from one end of the protein to the other,
with strong conservation throughout the sequence. Indeed, the region around one of the residues in
the catalytic triad—the apartic acid—is not well conserved. While the residues in the catalytic triad is
an essential feature of serine proteases, the serine protease fold (two domains containing anti-parallel]

-barrels) are required to bring these residues together.

The requirement for a common folded structure in homologous proteins usually causes similar-
ities to extend from one end of the protein to the other, or for mosaic proteins, from one end of a
domain to the other. Fig. 18 displays the locally similar regions for the related and unrelated in Ta-
ble 16; the highest scoring unrelated sequences tend to have relatively short ( ^ 
�F�F

residue) regions
of higher similarity ( X_C FO` identical) while related sequences have longer (


!TVF
–
TVF>F

), though some-
times lower (

I MO`
) similarity. In general, shorter, higher similarities are less significant than longer,

lower similarities.
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Figure 16: Serine protease search - high scoring sequences

LOCUS Description len score E(12,000)

TRBOTR trypsin precursor - bovine 229 1559 ïRó#aHb4c
TRRT2 trypsin II precursor - rat 246 1240 ïRó#aHc4d
KQHU tissue kallikrein precursor - 262 669 ïRó#aOe)c
NGMSG 7S NGF gamma chain I 237 645 ïRó#aOe)d
KQRTTN tonin - rat 235 623 ïRó#aOe4f
KYBOA chymotrypsin A precursor - bovine 245 609 ïRó#aOe4f
PLHU plasmin precursor - human 790 580 ïRó aOehg
TRFF trypsin-like proteinase 256 579 ïRó#aOehg
KFHU coagulation factor IXa 461 578 ïRó#aOehg
ELRT2 pancreatic elastase II 271 559 ïRó#aOe)i
KYBOB chymotrypsin B precursor - bovine 245 556 ïRó#aOe)i
KFHU1 coagulation factor XIa 625 547 ïRó#aHj4b
WMMS28 complement factor D homolog 259 541 ïRó#aHj4b
EXBO coagulation factor Xa 492 518 ïRó#aHj4c
DBHU complement factor D 246 517 ïRó#aHj4c
KXBO protein C (activated) 456 515 ïRó#aHj4c
UKHU u-plasminogen activator precu 431 507 ïRó#aHj4d
TBHU thrombin precursor - human (fr 615 472 ïRó#aHjkf
TRSMG trypsin - Streptomyces griseus 221 409 ïRó#aHj4i
C1HURB complement subcomponent C1r p 705 356 ïRó#algmd
HPHU1 haptoglobin-1 precursor - human 347 335 ïRó#algmn
TRPGAZ azurocidin - pig 219 316 ïRó#algof
HPRT haptoglobin - rat (fragments) 297 289 ïRó algmj
C2HU complement C2 - human 752 198 ïRó�a�d
BBHU complement factor B - human 739 169 0.00014
KXBOZ protein Z - bovine 396 142 0.0041
TRYXB4 alpha-lytic proteinase 396 107 0.83

OKBY8W probable protein kinase YCR008W 603 107 1.3
RRIHM2 RNA-directed RNA polymerase 4488 99 37
IJFFTM cadherin-related tumor suppressor 5147 99 42
GNNYE7 genome polyprot. - enterovirus 70 2194 98 20
VGIHHC E2 glycoprotein - coronavirus 1173 96 14
QRRBVD VLDL receptor - rabbit 873 96 10
PRSMBG* proteinase B - S. griseus 185 96 1.9
MMMSB2 laminin chain B2 precursor - mouse 1607 95 23
RERTK renin precursor - rat 402 94 6.0
MMMSA laminin chain A - mouse 3084 93 61
LNRZ lectin precursor - rice 227 90 6.0
PRSMAG* proteinase A - S. griseus 182 89 5.5
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Figure 17: Alignment of serine proteases

TRSMG trypsin (EC 3.4.21.4) precursor - Streptomyces griseus (259 aa)
Smith-Waterman score: 385; 33.6% identity in 247 aa overlap
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Figure 18: Serine protease alignments

TRBOTR 1559 100.0 -------------------------------------------------
TRRT2 1240 74.7 -------------------------------------------------
TRDFS 1070 66.5 -------------------------------------------------
KQHU 669 41.5 ------------------------------------------------
NGMSG 665 39.7 ------------------------------------------------
KQRTTN 623 40.9 ------------------------------------------------
KYBOA 609 42.1 ------------------------------------------------
PLHU 580 39.7 ------------------------------------------------
TRFF 579 42.1 ------------------------------------------------
KFHU 578 40.9 -------------------------------------------------
KYRTB 564 39.5 ------------------------------------------------
ELRT2 559 38.1 -------------------------------------------------
KYBOB 556 37.8 ------------------------------------------------
KFHU1 547 37.6 -----------------------------------------------
WMMS28 541 35.7 ------------------------------------------------
EXBO 518 39.4 ------------------------------------------------
DBHU 517 34.1 ------------------------------------------------
KXBO 515 37.3 -----------------------------------------------
UKHU 507 37.0 ------------------------------------------------
TBHU 472 35.8 ------------------------------------------------
TRSMG 409 35.3 -----------------------------------------------
C1HURB 356 30.4 -------------------------------------------------
HPHU1 335 28.1 ------------------------------------------------
TRPGAZ 316 30.0 ------------------------------------------------
HPRT 289 26.0 -------------------------------------------------
C2HU 198 25.7 -------------------------------------------
BBHU 169 25.1 -----------------------------------------
KXBOZ 142 25.2 ---------------------------------------------
TRYXB4 107 21.5 -------------------------------------------
OKBY8W 107 33.3 -----------------------
RRIHM2 99 25.9 ------------------------------
IJFFTM 99 27.0 ---------------------------
GNNYE7 98 29.9 -----------------
VGIHHC 96 29.8 -------------------------------
QRRBVD 96 25.2 -----------------------
PRSMBG* 96 24.9 --------------------------------------
MMMSB2 95 25.3 --------------------
RERTK 94 23.8 --------------------------------
MMMSA 93 25.6 -----------------------
LNRZ 90 26.1 -----------------------
PRSMAG* 89 25.3 ----------------------------------
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Table 14: Glutathione S-transferases

The best scores are: s-w Z-score E(58,753)

GTM1 MOUSE Glutathione S-transferase GT8.7 1490 1827.8 ïRó�aSgmipg
GTM1 RAT Glutathione S-transferase YB1 1406 1818.9 ïRó�a�b4n
GTM1 HUMAN Glutathione S-transferase 1235 1591.1 ïRó�aVq)j
GTM2 CHICK Glutathione S-transferase 2 954 1232.1 ïRó�a�dpg
GTP1 MOUSE Glutathione S-transferase P 361 463.7 ïRó�aSgmb
GTA2 MOUSE Glutathione S-transferase Ya 229 291.9 ïRó�a�b
SC2 OCTDO S-crystallin 2 (OL2). 224 290.9 ïRó�a�b
GTA1 MOUSE Glutathione S-transferase GT41A 218 277.7 ïRó�aVq
GTC MOUSE Glutathione S-transferase Yc 215 273.9 ïRó�aVq
GTA1 HUMAN Glutathione S-transferase A1-1 206 262.1 ïRó�a�c
GT28 SCHHA Glutathione S-transferase 28 kd 203 258.7 ïRó a�c
GTA3 MOUSE Glutathione S-transferase GST 5.7 183 232.3 ïRó�a�d
GT28 SCHJA Glutathione S-transferase 28 kd 169 214.8 ïRó�a�n
GTS2 DROME Glutathione S-transferase 2 164 213.4 ïRó�aVf
SC1 OCTVU S-crystallin 1. 159 204.1 ïRó�aVf
GTA2 CHICK Glutathione S-transferase, CL-3. 144 183.0 0.00051
SC18 OMMSL S-crystallin SL18. 131 166.9 0.010
GTT1 MUSDO Glutathione S-transferase 1 122 153.8 0.055
GTH1 MAIZE Glutathione S-transferase I 120 150.9 0.056
GTXA TOBAC Auxin-regulated protein 117 146.7 0.130
GT32 MAIZE Glutathione S-transferase III 115 144.1 0.19
GTT1 DROME Glutathione S-transferase 1-1 100 125.2 2.1
GTH1 WHEAT Glutathione S-transferase 1 98 121.7 3.3
GT PROMI Glutathione S-transferase GST-6.0 97 121.6 3.4
DCMA METSP Dichloromethane dehalogenase 98 119.5 4.4
MOD5 YEAST tRNA isopentenyltransferase 100 118.4 5.1
GTY2 ISSOR Glutathione S-transferase Y-2 94 118.3 5.2
GTX2 TOBAC Auxin-induced PGNT35/PCNT111. 93 115.5 7.4
GTT1 RAT Glutathione S-transferase 5 93 114.8 8.1
SPCB HUMAN Spectrin beta chain, erythrocyt (2137) 108 113.5 9.6
DAPF YERPE Diaminopimelate epimerase 90 112.9 10.0
LIGE PSEPA r -etherase 91 110.9 13.0
EF1G HUMAN Elongation factor 1 s 94 110.5 14.0

All of the unitalicized sequences are known to be members of the glutathione transferase family.
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4.2 Glutathione S-transferases

The glutathione transferase family of enzymes is a very diverse family of proteins found, in various
forms, in animals, plants, and prokaryotes. Fortunately, many of the members of this family have a
common enzyme activity so that they can be recognized by name. Table 14 shows that for this family,
there are many homologues that do not show significant similarity when the database is searched with
a single query sequence.

Frequently, clear identification of a distant homology will require several database searches, with
either different algorithms or additional query sequences. For example, in Table 14, one might wish to
test the possibility that glutathione S-transferases share homology with elongation factors, which are
among the high scoring sequences. The result of a search using EF1G HUMAN is shown in Table 15.
Here, there is a clear relationship between this elongation factor and the class-theta glutathione trans-
ferases. An additional search with a class-theta sequence reveals the most distant relationships in this
family more clearly.

Table 15: Distant glutathione transferase homologs

Re-search with LIGE PSEPA

The best scores are: s-w Z-score E(58,762)

LIGE PSEPA r -etherase 1993 2540.6 ïRó#algoetn
GTT1 DIACA Glutathione S-transferase 1 170 210.9 ïRó#aOf
GTX6 SOYBN Probable glutathione S-transferase 168 208.2 ïRó#aOf
GTX3 TOBAC Probable glutathione S-transferase 165 204.5 ïRó#aHn
GTXA ARATH Glutathione S-transferase 161 199.3 0.00016
GTX2 TOBAC Probable glutathione S-transferase 157 194.2 0.00031
GTX1 SOLTU Probable glutathione S-transferase 149 184.2 0.0011
GTX1 TOBAC Probable glutathione S-transferase 147 181.4 0.0016

Re-search with EF1G HUMAN

The best scores are: s-w Z-score E(58,709)

EF1G HUMAN Elongation factor 1 s (EF-1 s ) 2977 3423.6 ïRó algoq%e
EF1G XENLA Elongation factor 1 s (EF-1 s ) 2370 2723.3 ïRó#algof%f
EF1H YEAST Elongation factor 1 s 2 (EF-1 s ) 769 876.9 ïRó#aOf)j
EF1G TRYCR Elongation factor 1 s (EF-1 s ) 715 814.6 ïRó#aOe4q
SYV HUMAN valyl-tRNA synthetase 440 483.4 ïRó#aHj4i
GTH1 MAIZE Glutathione S-transferase I 222 252.0 ïRó#aHc
GTH3 MAIZE Glutathione S-transferase III 193 218.2 ïRó#aHn
GTH1 WHEAT Glutathione S-transferase 1 186 209.8 ïRó#aHn
GTH1 TOBAC Glutathione S-transferase 184 208.1 ïRó#aOf
GTY2 ISSOR Glutathione S-transferase Y-2 175 198.8 0.00017
GTH2 WHEAT Glutathione S-transferase 2 175 192.6 0.00028
GTX6 SOYBN Probable glutathione S-transferase 171 192.6 0.00037
GTX2 TOBAC Probable glutathione S-transferase 169 190.8 0.0005
GTT1 DROME Glutathione S-transferase 1-1 162 182.9 0.0013
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Figure 19: G-protein-coupled receptors
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4.3 G-protein-coupled receptors

The G-protein-coupled receptors (GCRs) are one of the largest known gene families; members of the
family transduce signals from light, peptides, cationic amines, lipid mediators, odors, and many more
small molecules. An evolutionary tree that summarizes the diversity of this family is shown in Fig. 19.
Based on hydrophobicity plots and the structure of bacteriorhodopsin (a protein that does not share
significant similarity with members of this family), the GCRs are thought to contain seven transmem-
brane domains, so that the N-terminus of the proteins is extracellular, while the C-terminus is intra-
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cellular.

Table 16: GCRs distant from human opsin

The best scores are: s-w Z-score E(58,649)

MC3R RAT melanocortin-3 receptor 140 164.4 0.014
OLF6 CHICK olfactory receptor-like protein 139 163.4 0.016
MC3R MOUSE melanocortin-3 receptor 139 163.2 0.016
ML1A XENLA melatonin receptor type 1A 133 161.4 0.02
GU27 RAT gustatory receptor GUST27 137 161.0 0.021
AG2T RAT type-1C angiotensin II receptor 132 159.2 0.027
OLF2 RAT olfactory receptor-like protein F12 135 158.5 0.03
MAS MOUSE MAS proto-oncogene 133 155.9 0.041
PAFR MACMU platelet activating factor receptor 130 155.6 0.043
MAS RAT MAS proto-oncogene. 131 153.5 0.056
OLF2 CHICK olfactory receptor-like protein C 129 151.4 0.074
CAR1 DICDI cyclic AMP receptor 1 130 150.9 0.079
YS96 CAEEL hypothetical 110.4 KD protein 133 147.7 0.12
5H2A CAVPO 5-hydroxytryptamine 2A receptor ( 121 143.5 0.2
PER4 RAT prostaglandin E2 receptor EP4 124 142.1 0.24
CAR3 DICDI cyclic AMP receptor 3 124 142.0 0.25
OLF4 CHICK olfactory receptor-like protein c 121 141.7 0.25
ML1B RAT melatonin receptor type 1B 115 141.6 0.26
UL33 HSV7J G-protein coupled receptor homolog U12 121 141.0 0.28
OLF5 CHICK olfactory receptor-like protein C 120 140.5 0.3
MAS HUMAN MAS proto-oncogene. 120 140.2 0.31
NU2M CHOCR NADH-ubiquinone oxidoreductase chain 2 122 139.5 0.34
PER4 HUMAN prostaglandin E2 receptor EP4 120 137.2 0.45
OLF1 CHICK olfactory receptor-like protein C 117 136.8 0.48

Because GCRs have transmembrane domains, the highest scoring unrelated sequences are fre-
quently other membrane proteins. Table 16 lists sequences from Swiss-Prot that have marginally sig-
nificant matches with a human opsin sequence (there are more than 500 related sequences with ex-
pectations ranging from ý – ý�þ¤ý�ÿ that are not shown). As with most divergent families, the question
becomes, “how do I know that XXX is/is not a GCR?” This is more difficult with the GCRs, because
they have long variable length loops in both their extracellular and intracellular domains.

As before, two strategies can be used to evaluate the hypothesis of homology: re-searching the
library and statistical significance from shuffling. A search of the Swiss-Prot database reveals that
MAS HUMAN shares significant similarity ( ���������	��ý�ý�
� ý þ¤ý�ÿ ) with ��ý�� GCRs; ÿ ý�ý additional scores
with less statistical significance also belong to the GCR family before the first non-GCR is encoun-
tered. In contrast, the highest ranking scores from the NU2M CHOCR are (more than 100 NADH oxi-
doreductase sequences are not shown):

43



The best scores are: s-w Z-score E(58649)
NU2M_CHOCR NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 2 ( 497) 3181 2999.6 1.7e-160
NUON_RHOCA NADH DEHYDROGENASE I CHAIN N (EC 1.6.5. ( 478) 928 877.8 2.6e-42
NU2C_MARPO NADH-PLASTOQUINONE OXIDOREDUCTASE CHAIN ( 501) 827 782.4 5.3e-37
NU2M_PODAN NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 2 ( 556) 788 745.0 6.4e-35
NU2M_ANOGA NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 2 ( 341) 460 439.2 6.9e-18
NU2M_RAT NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 2 (E ( 345) 393 376.1 2.3e-14
NU2M_CROLA NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 2 ( 348) 312 299.7 4.1e-10
NU5M_XENLA NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 5 ( 604) 230 218.9 1.3e-05
NDHF_BACSU NADH DEHYDROGENASE SUBUNIT 5 (EC 1.6.5. ( 505) 190 182.4 0.0014
COX1_LEITA CYTOCHROME C OXIDASE POLYPEPTIDE I ( 549) 154 147.9 0.12
Y825_HAEIN HYPOTHETICAL PROTEIN HI0825. ( 244) 145 144.7 0.17
CCMF_RHIME CYTOCHROME C-TYPE BIOGENESIS PROTEIN CY ( 676) 152 144.7 0.18
NU5M_ANOAR NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 5 ( 266) 145 144.2 0.19
RFBX_SALTY RFBX PROTEIN. ( 430) 148 143.9 0.19
ATP6_OENBE ATP SYNTHASE A CHAIN (EC 3.6.1.34) ( 281) 141 140.0 0.32
YM04_PARTE HYPOTHETICAL 18.8 KD PROTEIN (ORF4). ( 156) 135 138.3 0.4
YC43_ODOSI HYPOTHETICAL 30.1 KD PROTEIN YCF43 (ORF ( 263) 138 137.7 0.43
YJFS_ECOLI HYPOTHETICAL 53.6 KD PROTEIN IN AIDB-RP ( 488) 142 137.4 0.45
NU4M_ANOAR NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 4 ( 221) 135 136.0 0.54
COP_CLOPE COPY NUMBER PROTEIN (ORF4). ( 198) 134 135.7 0.55
YJG2_YEAST HYPOTHETICAL 94.9 KD PROTEIN IN MRPL8-N ( 830) 143 134.8 0.62
CAPE_STAAU CAPE PROTEIN. ( 440) 138 134.3 0.66
OPSD_MOUSE RHODOPSIN. ( 348) 134 132.1 0.89

The results from the MAS HUMAN and NU2M CHOCR, which show that MAS HUMAN is clearly a
member of the GCR family, contrast with the statistical significance calculated with the PRSS pro-
gram. Comparing the OOHUwith RTA RAT score with the distribution of scores calculated after shuf-
fling RTA RAT ÿ�ý�ý�ý times with a local window of � ý suggests that the unshuffled score ( ÿ�ý�� ) is ex-
pected � times in ÿ�ý�ý ý shuffles. In contrast, the NU2M CHOCR score is expected only ÿ�þ�� times in
ÿ�ý ý�ý shuffles. From this perspective, the NU2M CHOCR score is somewhat more significant, but, in
fact, neither similarity score is statistically significant. It is not until MAS HUMAN is compared with
other members of the family, e.g. the angiotensin, fMet-Leu-Phe, thrombin, or substance-P receptors
with E-values from ÿ�ý������ – ÿ�ý���� , that the relationship is apparent.

Table 3.3 compares the statistical significance inferred from database searches with those deter-
mined by Monte-Carlo shuffling. As expected, the significance of the scores when compared with lo-
cally (window) shuffled sequences is ÿ�ý -fold lower than the comparison with globally shuffled scores.
It is unclear how to compare the expectation from shuffles with the expectation from a search. In the ta-
ble, the expectation from a search of a �����{ý�ý�ý entry library is compared to the expectation from ÿ��{ý�ý�ý
shuffles. For global shuffles, the expectations are quite comparable while local shuffles are more con-
servative, yet all but one of the similarity scores judged significant from the database search are still
significant when compared with the local-shuffle distribution.

Nevertheless, these examples show both that current statistical models for the similarity scores of
unrelated sequences are quite accurate, but also that homologous sequences frequently do not share
significant pair-wise similarity scores. Thus, a lack of statistical significance cannot be used to infer
non-homology, but strong statistical significance is a good indicator of common ancestry.
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Figure 20: Internal duplications in calmodulin
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Comparison of human calmodulin with itself. Each diagonal line represents a potential local alignment
of calmodulin with itself. Values below the diagonal lines show the number of identities and length
of the aligned region (e.g. 33/102) and the expectation value for the similarity score of the alignment.

5 Repeated structures in proteins

So far, we have focussed on the identification and statistics of the single most significant similarity
score shared by two sequences. As can be seen in Fig. 10B, however, there are frequently several non-
overlapping local alignments with optimal similarity scores. In addition, there can be non-overlapping
sub-optimal alignments with significant scores that can be used to infer the duplication events that
gave rise to the protein sequence. An algorithm for the best � non-overlapping local alignments was
described by (Waterman & Eggert, 1987).

Figs. 20 and 21 show a graphical plot of the local similarities within the calmodulin calcium bind-
ing protein. Calmodulin contains four EF-hand Ca � -binding domains that are well conserved. The
highest scoring alignment in Fig. 21 aligns domains A-B with C-D; the second highest aligns A-B-C
with B-C-D; the third aligns A with D.

A similar pattern of local similarity can be seen in Fig. 22, which shows the mosaic relationship
between the EGF-precursor and the LDL-receptor.
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Figure 21: Calmodulin internal alignments

Comparison of:
(A) MCHU - Calmodulin - Human, rabbit, bovine, rat, - 148 aa
(B) MCHU - Calmodulin - Human, rabbit, bovine, rat, - 148 aa
using matrix file: BLOSUM50, gap penalties: -14/-4

47.7% identity in 65 aa overlap; score: 214 E(10,000): 3.4e-13

20 30 40 50 60 70
MCHU EFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDADGNGTIDFPEFLTMMARK

:..::: .:::::.: :.. :: :: .::.. :. :...:: :.: ::.: ... ::. ::. :
MCHU EIREAFRVFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIREADIDGDGQVNYEEFVQMMTAK

90 100 110 120 130 140
----------
32.4% identity in 102 aa overlap; score: 177 E(10,000): 1e-09

10 20 30 40 50 60 70
MCHU AEFKEAFSLFDKDGDGTITTKELGTVM-RSLGQNPTEAELQDMINEVDADGNGTIDFPEFLTMMARKMKD

::... .. : ::.::: :. :.: :.. .. .: :... . : :::: :. :. .:. .. .
MCHU AELQDMINEVDADGNGTIDFPEFLTMMARKMKDTDSEEEIREAFRVFDKDGNGYISAAELRHVMT-NLGE

50 60 70 80 90 100 110

80 90 100 110
MCHU TDSEEEIREAFRVFDKDGNGYISAAELRHVMT

..::. : .: : ::.: .. :. ..::
MCHU KLTDEEVDEMIREADIDGDGQVNYEEFVQMMT

120 130 140
----------
34.2% identity in 38 aa overlap; score: 58 E(10,000): 39

10 20 30
MCHU MADQLTEEQIAEF-KEAFSLFDKDGDGTITTKELGTVM

....::.:.. :. .:: : :::: .. .:. .:
MCHU LGEKLTDEEVDEMIREA----DIDGDGQVNYEEFVQMM

120 130 140

----------
40.0% identity in 20 aa overlap; score: 53 E(10,000): 1.1e+02

70 80
MCHU LTMMARKMKDTDSEEEIREA

.: ...:. : . .: ::::
MCHU MTNLGEKLTDEEVDEMIREA

110 120
----------
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Figure 22: Mosaic domains shared by the EGF-precursor and LDL-receptor
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Some non-homologous structures, particularly proteins containing the coiled-coil structure, have
a periodic structure that is easily seen in local similarity plots. Fig. 23 shows local similarities in
tropomyosin. All the alignments shown have local similarity scores greater than 120, and each would
be significant in a conventional database search.

6 Summary

Protein sequence comparison is the most powerful tool available today for inferring structure and func-
tion from sequence because of the constraints of protein evolution—a protein fold into a functional
structure. Protein sequence similarity can routinely be used to infer relationships between proteins
that last shared a common ancestor ÿ – ��þg� billion years ago. Our ability to identify distantly related
proteins has improved over the past five years with the development of accurate statistical estimates,
which have provided better normalization methods, and with the use of optimized scoring parameters.
In using sequence similarity to infer homology, one should remember:

1. Always compare protein sequences if the genes encode proteins. Protein sequence comparison
will typically double the look back time over DNA sequence comparison.

2. While most sequences that share statistically significant similarity are homologous, many dis-
tantly related homologous sequences do not share significant homology. (Low complexity re-
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Figure 23: Coiled-coil structures share local similarity
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gions display significant similarity in the absence of homology). Homologous sequences are
usually similar over an entire sequence or domain. Matches that are more than 50% identical
in a ��ý – �dý amino acid region occur frequently by chance.

3. Homologous sequences share a common ancestor, and thus a common protein fold. Depending
on the evolutionary distance and divergence path, two or more homologous sequences may have
very few absolutely conserved residues. However, if homology has been inferred between A
and B, between B and C, and between C and D, A and D must be homologous, even if they
share no significant similarity.

4. Similarity searching techniques can be improved either by increasing the ability of a method
to recognize distantly related sequences—increased sensitivity—or by lowering scores for un-
related sequences—increased selectivity. Since there are generally ÿ�ý�ý�ý -times more unrelated
than related sequences in a sequence database, improvements that reduce the scores of unrelated
sequences can have dramatic effects. The most dramatic improvements in comparison methods
recently have used this approach.

48



References

Altschul, S. F. (1991). Amino acid substitution matrices from an information theoretic perspective. J.
Mol. Biol. 219, 555–565.

Altschul, S. F. (1993). A protein alignment scoring system sensitive at all evolutionary distances. J.
Mol. Evol. 36, 290–300.

Altschul, S. F., Boguski, M. S., Gish, W. & Wootton, J. C. (1994). Issues in searching molecular
sequence databases. Nature Genet. 6, 119–129.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990). A basic local alignment
search tool. J. Mol. Biol. 215, 403–410.

Collins, J. F., Coulson, A. F. W. & Lyall, A. (1988). The significance of protein sequence similarities.
Comp. Appl. Biosci. 4, 67–71.

Dayhoff, M., Schwartz, R. M. & Orcutt, B. C. (1978). A model of evolutionary change in proteins. In
Atlas of Protein Sequence and Structure, (Dayhoff, M., ed.), vol. 5, supplement 3, pp. 345–352.
National Biomedical Research Foundation Silver Spring, MD.

Doolittle, R. F., Feng, D. F., Johnson, M. S. & McClure, M. A. (1986). Relationships of human protein
sequences to those of other organisms. Cold Spring Harb. Symp. Quant. Biol. 51, 447–455.

Gilbert, W. & Glynias, M. (1993). On the ancient nature of introns. Gene, 135, 137–144.

Henikoff, S. & Henikoff, J. G. (1992). Amino acid substitutions matrices from protein blocks. Proc.
Natl. Acad. Sci. USA, 89, 10915–10919.

Henikoff, S. & Henikoff, J. G. (1993). Performance evalutation of amino-acid substitution matrices.
Proteins, 17, 49–61.

Johnson, M. S. & Overington, J. P. (1993). A structural basis for sequence comparisons. an evaluation
of scoring methodologies. J. Mol. Biol. 233, 716–738.

Jones, D. T., Taylor, W. R. & Thornton, J. M. (1992). The rapid generation of mutation data matrices
from protein sequences. Comp. Appl. Biosci. 8, 275–282.

Karlin, S. & Altschul, S. F. (1990). Methods for assessing the statistical significance of molecular
sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA, 87, 2264–2268.

Karlin, S. & Altschul, S. F. (1993). Applications and statistics for multiple high-scoring segments in
molecular sequences. Proc. Natl. Acad. Sci USA, 90, 5873–5877.

Mott, R. (1992). Maximum-likelihood estimation of the statistical distribution of smith-waterman
local sequence similarity scores. Bull. Math. Biol. 54, 59–75.

Needleman, S. & Wunsch, C. (1970). A general method applicable to the search for similarities in the
amino acid sequences of two proteins. J. Mol. Biol. 48, 444–453.

49



Nei, M. (1987). Molecular Evolutionary Genetics. Columbia Univ. Press, New York, NY.

Pearson, W. R. (1995). Comparison of methods for searching protein sequence databases. Prot. Sci.
4, 1145–1160.

Pearson, W. R. & Lipman, D. J. (1988). Improved tools for biological sequence comparison. Proc.
Natl. Acad. Sci. USA, 85, 2444–2448.

Smith, T. F. & Waterman, M. S. (1981). Identification of common molecular subsequences. J. Mol.
Biol. 147, 195–197.

Stoltzfus, A., Spencer, D. F., Zuker, M., Logsdon, J. M. & Doolittle, W. F. (1994). Testing the intron
theory of genes: the evidence from protein structure. Science, 265, 202–207.

Waterman, M. S. & Eggert, M. (1987). A new algorithm for best subsequences alignment with appli-
cation to tRNA-rRNA comparisons. J. Mol. Biol. 197, 723–728.

50



7 Suggested Reading

7.1 General Protein evolution

R. F. Doolittle, D. F. Feng, M. S. Johnson, and M. A. McClure. Relationships of human protein se-
quences to those of other organisms. Cold Spring Harb. Symp. Quant. Biol., 51:447–455, 1986.

P. Green, D. Lipman, L. Hillier, R. Waterston, D. States, and J. M. Claverie. Ancient conserved regions
in new gene sequences and the protein databases. Science, 259:1711–1716, 1993.

7.1.1 Introns Early/Late

W. Gilbert and M. Glynias. On the ancient nature of introns. Gene, 135:137–144, 1993.

A. Stoltzfus, D. F. Spencer, M. Zuker, J. M. Logsdon, and W. F. Doolittle. Testing the intron theory
of genes: the evidence from protein structure. Science, 265:202–207, 1994.

7.2 Alignment methods

7.2.1 Algorithms

S. Needleman and C. Wunsch. A general method applicable to the search for similarities in the amino
acid sequences of two proteins. J. Mol. Biol., 48:444–453, 1970.

T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. J. Mol. Biol.,
147:195–197, 1981.

W. R. Pearson and W. Miller. Dynamic programming algorithms for biological sequence comparison.
In L. Brand and M. L. Johnson, editors, Meth. Enz., volume 210, pages 575–601. Academic Press,
San Diego, 1992.

D. J. Lipman and W. R. Pearson. Rapid and sensitive protein similarity searches. Science, 227:1435–
1441, 1985.

W. R. Pearson and D. J. Lipman. Improved tools for biological sequence comparison. Proc. Natl.
Acad. Sci. USA, 85:2444–2448, 1988.

W. R. Pearson. Rapid and sensitive sequence comparison with FASTP and FASTA. In R. F. Doolittle,
editor, Meth. Enz., volume 183, pages 63–98. Academic Press, San Diego, 1990.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. A basic local alignment search
tool. J. Mol. Biol., 215:403–410, 1990.

W. R. Pearson. Comparison of methods for searching protein sequence databases. Prot. Sci., 4:1145–
1160, 1995.

W. R. Pearson. Empirical statistical estimates for sequence similarity searches J. Mol. Biol. 276:71–
84, 1998.

51



7.2.2 Scoring methods

M. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary change in proteins. In M. Day-
hoff, editor, Atlas of Protein Sequence and Structure, volume 5, supplement 3, pages 345–352. Na-
tional Biomedical Research Foundation, Silver Spring, MD, 1978.

S. F. Altschul. Amino acid substitution matrices from an information theoretic perspective. J. Mol.
Biol., 219:555–565, 1991.

D. T. Jones, W. R. Taylor, and J. M. Thornton. The rapid generation of mutation data matrices from
protein sequences. Comp. Appl. Biosci., 8:275–282, 1992.

S. Henikoff and J. G. Henikoff. Performance evalutation of amino-acid substitution matrices. Pro-
teins, 17:49–61, 1993.

7.3 Evaluating matches - statistics of similarity scores

R. F. Doolittle. Similar amino acid sequences: chance or common ancestry? Science, 214:149–159,
1981.

W. R. Pearson. Identifying distantly related protein sequences. Cur. Opinion in Struct. Biol., 1:321–
326, 1991.

S. Karlin, P. Bucher, V. Brendel, and S. F. Altschul. Statistical methods and insights for protein and
DNA sequences. Ann. Rev. of Biophys. Biophys. Chem., 20:175–203, 1991.

S. F. Altschul, M. S. Boguski, W. Gish, and J. C. Wootton. Issues in searching molecular sequence
databases. Nature Genet., 6:119–129, 1994.

S. F. Altschul, and W. Gish. Local Alignment Statistics Meth. Enzymol., 266:460–480, 1996.

52


