Protein sequence comparison and Protein evolution

Tutorial - ISMB98

William R. Pearson®

Department of Biochemistry,
Jordan Hall,#440
University of Virginia, Charlottesville, VA 22908, USA

June, 1998

Contents

1

2

Introduction

1.1 Evolutionarytimescales . . . . . . . . . ...

1.2 Similarity, Ancestry and Structure . . . . . . ...

1.3 Modesof Evolution . . . . . . . ...
1.3.1 Conventional divergencefromacommonancestor . . ... ... .. ...
1.3.2 Sequencesimilarity and homology, theHt ATPase . . . . . ... ... ..
1.3.3 Proteinfamiliesdivergeat differentrates . . . . . . ... ... ... ...
134 Mosacproteins . . . . . ... e

14 IntronsEarly/Late . . . . . . . . . ..

15 DNAvsProteincomparison . . . . . . . . . . .. ..

Alignment methods
21 Algorithms . . . . . . ..
2.2 Dynamic Programming Algorithms . . . . . . .. . .. .. ... ...

23 Scoringmethods . . . . . . .. L

*FAX: (804) 924-5069; email: wrp@virginia.EDU

© o0 N BN

10
12
18
18
20



24 HeurigticAlgorithms . . . . . . . . . . L 28
241 BLAST . . e 28

242 FASTA . . e 30

3 Thedtatistics of sequence similarity scores 31
3.1 Sequencedignmentswithoutgaps . . . . . . . .. ... ... 32
3.2 Similarity scoresincreasewith sequencelength . . . . . . . .. ... ... ... 32
3.3 Empirical dtatiticsfor alignmentswithgaps . . . . . .. .. ... ... ... ... 32
34 Satidtical significanceby randomshuffling . . . . . .. .. ... oL L. 33

4 ldentifying distantly related protein sequences 35
41 Serineproteases . . . . . . ot e e e e e e e 35
4.2 CGlutathioneStransferases . . . . . . . . . . . ... o 41
4.3 G-protein-coupledreceptors . . . . . . . .. L. 42

5 Repeated structuresin proteins 45
6 Summary 47
References 49
7 Suggested Reading 51
7.1 Genera Proteinevolution . . . . . . . . ... 51
711 IntronsEarly/Late . . . . . . . ... 51

7.2 Alignmentmethods . . . . . . . . . ... 51
721 Algorithms. . . . . . . . . 51

722 Scoringmethods . . . ... L. 52

7.3 Evauating matches - statisticsof smilarityscores . . . . . . ... ... ... ... 52

1 Introduction

The concurrent development of molecular cloning techniques, DNA sequencing methods, rapid se-
guence comparison algorithms, and computer workstations has revolutionized the role of biological
sequence comparison in molecular biology. Asaresult, the role of protein sequence data in molec-



ular biology and biochemistry has dramatically changed. Twenty-five years ago, protein sequence
determination was usually one of the last stepsin the characterization of a protein. Now the process
isreversed, so that it is common to clone and sequence a gene of biological interest—e.g., onethat is
induced by serum stimulation, or a developmental change, or a chromosomal rearrangement associ-
ated with adisease. Thisisthe fundamental premise of the human genome project—that one can first
sequence all the genesin an organism and then infer their function by sequence analysis.

Today, the most powerful method for inferring the biological function of a gene (or the protein
that it encodes) is by sequence similarity searching on protein and DNA sequence databases. With the
devel opment of rapid methods for sequence comparison, both with heuristic algorithms and powerful
parallel computers, discoveries based solely on sequence homology have become routine. One of the
more dramatic discoveries was the identification of a new tumor suppressor gene in humans that is
related to yeast and E. coli DNA repair enzymes. Thisdiscovery, theresult of asimilarity search, both
told theinvestigatorsthat they had identified the appropriate gene and demonstrated clearly the nature
of the oncogenic mutation. As entire genomes from bacteria, yeast, and simple eukaryotes become
available, protein sequence comparison will become an even more powerful tool for understanding
biological function.

Protein sequence comparison is our most powerful tool for characterizing protein sequences be-
cause of the enormous amount of information that is preserved throughout the evolutionary process.
For many protein sequences, an evolutionary history can be traced back 1-2 billion years. Proteins
that share acommon ancestor are called homol ogous. Sequence comparisonismost informativewhen
it detectshomol ogousproteins. Homol ogous proteinsaways share acommon three-dimensional fold-
ing structure and they often share common active sites or binding domains. Frequently homologous
proteins share common functions, but sometimesthey do not. Our ability to characterizethe biological
properties of a protein based on sequence data alone stems almost exclusively from properties con-
served through evolutionary time. Predictions of common propertiesfor non-homologous proteins—
similarities that have arisen by convergence— are much lessreliable.

Thistutorial examines how the information conserved during the evolution of a protein molecule
can be used to infer reliably homol ogy, and thus a shared protein fold and possibly a shared active site
or function. We will start by reviewing a geological/evolutionary time scale. Many protein sequences
can be used to infer reliably events that happened more than a billion years ago. Remarkably, some
protein sequences change so slowly that they could be used to “date” eventsthat took place more than
5 billion years ago, had the proteins existed. Next we will ook at the evolution of severa protein
families. During the tutorial, these families will be used to demonstrate that homol ogous protein an-
cestry can be inferred with confidence. We will also examine different modes of protein evolution
and consider some hypotheses that have been presented to explain the very earliest eventsin protein
evolution.

The next part of the tutorial will examine the technical aspects of protein sequence comparison.
Both optimal and heuristic algorithms and their associated parameters that are used to characterize
protein sequence similarities are discussed. Perhaps more importantly, we will survey the statistics
of local similarity scores, and how these statistics can both be used to improved the selectivity of a
search and to evaluate the significance of a match.

Wewill then examine distantly related members of three protein families, the serine proteases, the
glutathione transferases, and the G-protein-coupled receptors (GCRS). The serine proteases are used



to emphasize that even when ahighly conserved motif isfound throughout afamily, similarity extends
over amuch longer region. The glutathione transferases and GCRs are very diverse families whose
members frequently do not share significant pair-wise similarity. The relative strengths of strategies
to characterize such relationships will be examined.

Finally, we will discuss how sequence similarity can be used to examineinternal repeated or mo-
saic structures in proteins. Such repeated structures can arise from either divergence—calmodulin
EF-hand repeats and EGF-domains—or convergence—tropomyosin and transcription factor coiled-
coil.

Thistutorial is directed towards examining protein evolution. Most of the algorithms and meth-
ods that are applied to protein evolution can be used with DNA sequences as well. However, in gen-
eral, DNA sequence comparisonsare far far lessinformative than protein sequence comparisons (see
Fig. 8). DNA sequences that do not encode proteins or structural RNASs (e.g. ribosomal RNAS) di-
verge very rapidly, so that it is usually difficult to detect reliably non-coding DNA sequence homolo-
gies for sequences that diverged more than 200 million years ago. In contrast, even the most rapidly
changing protein sequences can detect sequencesthat are 200 million years old; typically protein se-
guence comparisons detect sequences that diverged 1 billion years ago. Thus, the most important les-
sonfromthistutorial is, when searching sequence databasesfor homol ogous sequences, to use protein
sequences whenever possible.

1.1 Evolutionary time scales

When we search for homologous proteins, we are trying to identify proteins that shared a common
ancestor in the past. Fig. 1 showsageneral evolutionary tree that reaches back to the beginning of the
earth’s history. The goal of protein sequence comparison is to take a protein sequence, for example
from a human chromosome, and search a protein database to find homol ogous sequences, often from
very divergent organisms. Thus, if the similarity search produces significant matches with a protein
found in yeast, then an ancestral protein must have existed in an organism at least 1 billion years ago
and that the descendants of that organism preserved the sequence in modern day humans and yeast.
Likewise, if ayeast proteinis homologousto onefoundin E. coli, that sequence must have existed in
2 billion years ago in the primordial organism that gave rise to bacteriaand fungi.

When we examine protein or DNA sequences, we are almost always studying modern (present
day) sequences. Thus, it does not make any sense to say that a yeast or bacterial sequence is more
primitive than amammalian sequence; all sequences are contemporary. Aswewill seelater, however,
there are examples of sequencesthat arefound only in vertebrates, or only in animalsor plants but not
both. Such sequences are less ancient than those found both in mammals and bacteria.

For organisms that diverged within the past 600 My (million years), inferences about divergence
timesfor modern organismsaretaken from geological data; more ancient divergencetimesareinferred
from extrapolations of evolutionary “ clocks.” Evolutionary clocksare based both on slowly changing
protein sequences and on ribosomal RNA sequences; such divergence time estimates require arate of
change that is constant on average. The oldest fossils are of prokaryotes in rocks about 2.5 billion
yearsold; this geological age is consistent with that inferred from evolutionary divergence rates.

Table 1 summarizes some important milestones in evolutionary time, and, when considered with



Figure 1: Thetreeof life
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Table1: Some Important datesin history

Origin of the universe

Formation of the solar system

First self-replicating system
Prokaryotic-eukaryotic divergence -1.8
Plant-animal divergence
Invertebrate-vertebratedivergence  -0.5
Mammalian radiation beginning -0.1

-12¢
-4.6
-35

-1.0

+2

+0.4
+0.5
£0.3

*Billions of years. From Doolittle et al., 1986.

Table 2, givesabetter perspective on the evolutionary horizons provided by different protein families.
The theoretical lookback timesin Table 2 are based on the assumption that one can identify proteins
that share about 20% sequenceidentity throughout their entirelength. It will be clear from later exam-
plesthat if two protein sequences share 25% identity across their lengths, they are homologous, and
that in some cases, convincing evidence of common ancestry can be deduced from similaritiesas|ow
as 20%. These look-back times can be confirmed in practice; for example, with sensitive sequence

comparison algorithms, significant similarity between plant and animal globins can be found.

Table 2: Evolutionary Horizons

PAMs*/100 residues Theoretical
Protein 110% years L ookback time? Horizon
Pseudogenes 400 45¢ Primates, Rodents
Fibrinopeptides 20 200 Mammalian Radiation
Lactalbumins 27 670 Vertebrates
Ribonucleases 21 850 Animals
Hemoglobins 12 1.57 Plants/Animals
Acid Proteases 8 23 Prokayrotic/Eukarotic
Triosphosphate isomerase 3 6 Archaen
Glutamate dehydrogenase 1 18

“PAMSs, point accepted mutations. *Useful lookback time, 360 PAMs, 15% identity.
°Millions of years. ?Billions of years. Adapted from Doolittle et al., 1986



Figure 2: Structural similarity in related proteins — serine proteases
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Expectation values (E()), percent identity, thelength of the alignment are shown with respect to bovine
trypsin. Thelast two numbersreport the length of the alignment and the length of thelibrary sequence
whose structureis shown.

1.2 Similarity, Ancestry and Structure

Theinferenceof homol ogy — common ancestry — isthe most powerful conclusion that one can draw
from asimilarity search becausehomol ogous proteins sharesimilar three-dimensional structures. This
can be seen in Fig. 2, where the structures of three members of the serine protease superfamily are



shown. Two of these proteins, bovine chymotrypsin and S. griseus trypsin, share strong sequence
similarity while the third related sequence, S. griseus protease A, does not share significant similarity
(E()< 66) yet the protein has avery similar structure. Thus, aswill be seen throughout this chapter,
homol ogous proteins need not share statistically significant, or even detectable, sequence similarity.

Endochitinaseisan exampleof avery high-scoring, but unrel ated protein whosestructureisknown.
Thishigh scoring unrel ated sequence does not share any structural similarity with trypsin or other ser-
ine proteases. If two proteins are not homologous, one cannot draw any conclusion about their struc-
tural similarity, even though they may have high similarity scores.

1.3 Modes of Evolution

Figure 3: Orthologous sequences— The cytochrome ‘c’ family
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Cytochrome ‘c's comprise a family of orthologous proteins that are found in all organisms. The se-
guenceson thistree are orthologous— two cytochrome ' ¢'s are different because they arein different
Species.



1.3.1 Conventional divergence from a common ancestor

Homol ogous sequences can be divided into two groups: (1) orthologous sequences — sequencesthat
differ because they are found in different species; and (2) paralogous sequences — sequences that
differ because of a gene duplication event. Fig. 3 shows an evolutionary tree for orthologous cy-
tochrome ‘¢’ sequences. The branching pattern, which reflects the differences between cytochrome
‘C’ sequences, matches the evolutionary relationships of the species that express the proteins.

Figure 4: Orthology and paralogy — The globin family
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Members of the globin oxygen binding protein family have evolved through a series of gene dupli-
cations and speciation events. The human « and é genes duplicated less than 50 Mya (6 chains are
found in primates, but not in other mammals).

In general, the organismal tree and the sequence tree will not match if the sequences are paralo-
gous. Members of the globin oxygen binding protein family are both orthologous — they differ be-
cause of speciation — and paralogous p — they differ because of gene duplications. Thus, human
a-globin, mouse a-globin, and chicken a-globin are al orthologs, they differ because of the speci-
ation events that gave rise to humans, rodents, and birds. Mouse 3 globin and human « globin are
paralogous; they differ because of agene duplication that created the o and 3 subunits some 600 Mya
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(million years ago). An evolutionary tree based on human «, chicken «, and mouse 5 would imply
that humans are more closely related to chickens than to mice. While such amistakeis unlikely in a
well-studied family like the globins, it can be quitecommoninlarge, diverse, and poorly characterized
families like the G-protein-coupled receptors (Fig. 19).

1.3.2 Sequencesimilarity and homology, the HT ATPase
Our first example of the significant sequence similarity shared by homologous proteins will use one

of the chains of the H*-ATPase, or proton-pump, used to convert energy to ATP in the mitochrondria
and chloroplasts of aerobic organisms.

Figure 5: The PAM 250 matrix
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The similarity scoresin Figs. 6-8 were calculated using the Smith-Waterman algorithm (Smith &
Waterman, 1981,Sec. 2.2), amethod that guaranteesto cal cul ate the best (optimal) score between any
two protein or DNA sequences, given a scoring matrix and gap penalties. Fig. 5 shows the PAM250
matrix, which was developed almost 20 years ago by Dayhoff and her colleagues (Dayhoff et al.,
1978). The PAM250 matrix, or modern versions such as the BLOSUM50 matrix used here, incor-
porates information about the likelihood that one amino-acid will be mutated into another over evolu-
tionary time. Thus, changes that are very unlikely to occur in evolution, for example the substitution
of thevery small glycineresiduefor the very largetryptophan residue, are given large negative scores
(=7 inFig. 5), while conservative changes, such as the substitution of lysine by arginine (both have
basic side chains), are given positive scores (+3). The scores for identical matches aso vary in the
PAM 250 matrix, depending on whether the amino-acidsare common (e.g. serineand methionine), and
thuslikely to be aligned by chance, or rare (e.g. cysteine and tryptophan). There is awell-devel oped
statistical theory for substitution matrices (Altschul, 1991), which will be discussed in section 2.3.

Table3reportssimilarity scoresand their statistical significancefrom asearch of the PIR annotated
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Figure 6: Searching with human ATP-ase, similarity scores
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protein sequence database (PIR1, release 44, March, 1995) using the human HT -ATPase as a query
sequence. Thereis excellent agreement between the expected and actual distributions of similarity
scores. In this search, al of the library sequences related (homologous) to the query sequence ob-
tained scores higher than any of the unrelated sequences. However, a number of unrelated sequences
obtained very high scores; 10 of the 32 sequences with z-scores > 120 (7 standard deviations above
the mean ') are not members of the H+-ATPase family.

Fig. 6 showsthe distribution of similarity scores between human H*-ATPase (PIR entry PWHUG)
and each protein sequenceinthe PIR1 (rel. 44) database. The ‘=" symbolsin the histogram show the
distribution of normalized similarity scores calculated during the search, thus, 393 sequencesin the
PIR1 library had scores of 60 or 61. The **’ symbols report the expected number of sequenceswith
theindicated range of scoresfor asearch of adatabase of thissize, based on random chance. Thebasis
for the statistical estimates will be discussed in section 3.

While Table 3 shows that all of the members of this family have siginificant similarity with the
human enzyme, Fig. 7 gives a more realistic perspective of the family’s evolutionary history by con-
sidering every possible pairwise alignment. When the E. coli enzyme is used to search the database
for related HT -ATPases, the ranking of the different sequences changes, but sequences distant from
the E. coli sequence have more significant similarities than those distant from the human sequence.

1.3.3 Protein familiesdivergeat different rates

For many protein familieswith avariety of divergencerates, therate of change over evolutionary time
isrelatively constant. These rates can be used to date the divergence events (e.g. plantsand animals)
that occurred more than 600 Mya and thus do not have a fossil record. However, different protein
families diverge at different rates, so that, in general, the number of differences between apair of se-
guences cannot be used to estimate the time the two sequences diverged. Thisis particularly true for
paralogous sequences; once a sequence has duplicated, it may change very rapidly before selective
pressure on its new function slowsits rate of change. Thus, in Table 4 there are several members of
growth hormone superfamily—growth hormone, sommatotropin, and prolactin—with different diver-
gencerates.

! The z-scores plotted have amean of 50 and a standard deviation of 10.
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Table 3: Searching with human ATP-ase, high-scoring sequences

The best scores are: sw z-score [E(12805) % len
PWHU6 H+-trans. ATP synth.—human mito. 1400 17678 10792 100.0 226
PWBO6 H+-trans. ATP synth.—bovine mito. 1157 14609 10~7° 779 226
PWM S6 H+-trans. ATP synth.—mouse mito. 1118 14116 10~ 72 75.7 226
PWXL6 H+-trans. ATP synth.—frog mito. 745 9406 104 533 226
PWFF6Y H+-trans. ATP synth.—fruit fly mito. 473  597.1 107% 37.8 222
PWFF6 H+-trans. ATP synth.—fruit fly mito. 471 5946 1072¢ 375 224
PWBY3 H+-trans. ATP synth.—yeast mito. 438 5517 10=% 36.2 232
PWASBN  H+-trans. ATP synth.—aspergillus mito. 365 4596 10°1° 304 230
PWKQ6 H+-trans. ATP synth.—Cochliobolus mito. 353 4444 10718 313 214
PWWT6  H+-trans. ATP synth.—wheat mito. 309 3854 1071 289 235
PWNT6M  H+-trans. ATP synth.—tobacco mito. 309 3852 10715 283 233
PWZM6M  H+-trans. ATP synth.—corn mito. 283 355.0 10715 311 291
LWEC6 H+-trans. ATP synth.—E. coli 178 2230 10°° 233 236
LWRZ6 H+-trans. ATP synth.—rice chloro. 144  180.8 0.00037 242 231
PWPMAG6  H+-trans. ATP synth.—pea chloro. 143 1795 0.00044 25.0 232
PWYBAA  H+-trans. ATP synth.—Synechocystis 142  177.3 0.00058 265 170
PWSPA6 H+-trans. ATP synth.—spinach chloro. 138  173.2 0.00098 242 231
PWYCA6  H+-trans. ATP synth.—cyanobacteria 127 1589 0.0062 26.3 167
LWNT6 H+-trans. ATP synth.—tobacco chloro. 126  158.1 0.0069 221 231
LWLV6 H+-trans. ATP synth.—Marchiantia chloro. 126  158.0 0.0069 240 167
PWEGAC  H+-trans. ATP synth.—Euglena chloro. 123 1541 0.011 257 214
S17420 ubiquinol-cytochrome-c reductase 113 138.0 0.09 234 158
S17418 ubiquinol-cytochrome-c reductase 108 1317 0.20 245 208
QXBO2M  NADH dehydrogenase (ubiquinone) 107 1312 0.22 261 211
S17415 ubiquinol-cytochrome-c reductase 105 1279 0.33 27.7 137
DNHUN2  NADH dehydrogenase (ubiquinone) 103 126.1 041 201 149
QRECAA  amino acid trans. protein—E. Coli 104 1251 047 234 111
CBHU ubiquinol-cytochrome-c reductase 102 1241 053 26.8 205
S17419 ubiquinol-cytochrome-c reductase 101 1229 0.63 234 158
S17407 ubiquinol-cytochrome-c reductase 99 120.3 0.87 23.6 140
QQBENS5  integral membrane protein—saimiriine herp 98 1194 0.99 20.8 202

The horizontal lineindicates the separation been the lowest scoring related sequences and the highest
scoring unrelated sequence.

13



Figure 7: Phylogeny of H*-ATPases

Human mito. 1092/106

Bovine mito. 10°75/10°
Mouse mito. 10772/10°5
Frog mito. 1042/106

Fruit fly mito. 10-26/0.003

Yeast mito. 1024108

Cochliobolus mito.  10718/10-5

__  Aspergillus mito. 10191106

Corn mito. 10713/10°
[ Wheat mito.  10°19/10°8
Rice chloro. 0.0004/10712

Tobacco chloro.  0.007/10°13
Spinach chloro.  0.001/10°13
Pea chloro. 0.0004/10°12
March. chloro. 0.007/10°1
Cyanobacteria ~ 0.006/10°13

Synechocystis ~ 0.0006/10°12
Euglena chloro. 0.01/10712

E.coli 1061013

An evolutionary tree of H*-ATPases (subunit 6). Sequences were aigned using the GCG PILEUP
program, distances calculated using the GCG DISTANCES program, and the tree constructed using
the Neighbor-Joining algorithm (GCG GROWTREE). Expectation values from a search with the hu-
man H*-ATPase (PWHUSG, Table 3) and a search with the E. coli sequence are shown.
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Figure 8: Searching with human AT Pase, high-scoring alignments

LVWEC6 H+-transporting ATP synthase (EC 3.6.1.34) protein - E. coli (271 aa)
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PVWEGAC H+-transporting ATP synthase (EC 3.6.1.34) chain (251 aa)
z-score: 154.1 Expect: 0.01133
Smi t h- WAt er man score: 123; 25. 7% identity in 214 aa overlap

10 20 30 40 50 60 70
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PWHU6 RLTANI TAGHLLMHLI GSATLAMSTI NLPSTLI | FTI LI LLTI LEI AVALI QAYVFTLLVSLYLHDNT
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Alignments of human H*-ATPase with the E. coli homologue and a plant chloroplast homologue.
Despite the considerabl e evol utionary distance (both sequences diverged at least 2 Bya), the pairs of
sequence share more than 20% identity across almost their entire lengths. *: ' symbols denote iden-
tities; ‘. ' denote conservative substitutions. Searches were performed with the BLOSUM50 matrix
and gap penalties of -12/-2.
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Table4: Ratesof changein protein families

Protein Rate” Protein Rate
Fibrinopeptides 90 Thryrotropin beta chain 74
Growth hormone 37  Parathyrin 7.3
Ig kappa chain C region 37 Parvalbumin 7.0
Kappacasein 33 BPTI Protease inhibitors 6.2
Ig gammachain C region 31 Trypsin 59
Lutropin betachain 30 Meéeanotropin beta 5.6
Ig lambda chain C region 27 Alphacrystallin A chain 5.0
Complement C3a 27  Endorphin 4.8
Lactalbumin 27  Cytochrome by 45
Epidermal growth factor 26 Insulin 44
Somatotropin 25 Cadlcitonin 4.3
Pancreatic ribonuclease 21 Neurophysin 2 3.6
Lipotropin beta 21  Plastocyanin 35
Haptoglobin apha chain 20 Lactate dehydrogenase 34
Serum albumin 19 Adenylatecyclase 3.2
Phospholipase A, 19  Triosephosphate isomerase 28
Protease inhibitor PST1 type 18 Vasoactiveintestinal peptide 2.6
Prolactin 17  Corticotropin 25
Pancreatic hormone 17  Glyceraldehyde 3-P DH 22
Carbonic anhydrase C 16 CytochromeC 22
Lutropin aphachain 16 Plant ferredoxin 19
Hemoglobin apha chain 12 Collagen 1.7
Hemoglobin beta chain 12 Troponin C, skeletal muscle 1.5
Lipid-binding protein A-11 10 Alphacrystalin B-chain 15
Gastrin 9.8 Glucagon 12
Animal lysozyme 9.8 Glutamate DH 0.9
Myoglobin 8.9 Histone H2B 0.9
Amyloid A 8.7 Histone H2A 0.5
Nerve growth factor 8.5 HistoneH3 0.14
Acid proteases 8.4 Ubiquitin 0.1
Myelin basic protein 7.4 Histone H4 0.1

“percent/100 My

From (Nei, 1987; Dayhoff et al., 1978)
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1.3.4 Mosaic proteins

“Conventional” protein families, e.g. the globins, cytochrome ‘c’s, Ht-ATPases, in which protein
sequences have diverged from a common ancestor in a direct fashion, typicaly with only modest
changesin the length of the sequence, have been known for more than 30 years. In the past 10 years,
amore complex type of protein evolution has been observed—proteinsthat contain multiple domains
from other proteins. These proteins have been called “mosaic” proteins, the domains are frequently
inserted through a process called “exon shuffling.” Table 7 lists anumber of human proteinsthat are
comprised of mosaic domains, but such proteins are not limited to mammals. Similar mosaic struc-
tures are common in DNA binding proteins, both in bacteria and eukaryotes.

Table5: Classification of Protein Families

I. Ancient Proteins

A. First editions. Direct-line descendacy to human and contemporary prokaryotes. Mostly main-
stream metabolism enzymes. Example: triosphosphate isomerase (44.8% identical over 250 aa,
E(59000) < 10~3%).

B. Second edition. Homologous sequencesin human and prokaryotic proteins, but apparently differ-
ent functions. Example: human glutathione reductase and pseudomonas mercury reductase (31%
identical over 438 aa, E(59000) < 10~32).

I1. Middle-age proteins. Proteins found in most eukaryotes but prokaryotic counterparts are unknown. Ex-
ample: actin (human and yeast share 88% identical over 375 aa, E() < 10~'%%, other yeast actin ho-
mologs share as little aslittle as 26.4 % over 489 aa, E() < 10~

[11. Modern proteins

A. Recent vintage. Proteins found in animals or plants but not both. Not found in prokaryotes. Ex-
ample: collagen.

B. Very recent inventions. Proteins found in vertebrates but not elsewhere. Example: plasma albu-
min.

C. Recent mosaics. Modern proteins clearly the result of exon shuffling. Example: LDL receptor.

From Dooalittle et al., 1986.

1.4 IntronsEarly/Late

The occurrence of mosaic proteins and the discovery of the“exon/intron” structure of genesinthe late
1970 sled several investigatorsto suggest that the exon structure of genesreflected the construction of
proteins from modular domains (Gilbert & Glynias, 1993). While acceptance of this proposal is quite
widespread, it is based on very little data. There isno question that many modern mosaic proteinsare
constructed by a process of “ exon-shuffling” whereby exons from other genes have been combined to
build new structures. In addition, for some proteins exons are associated with well defined structural
elements. The association of exons with structural elements may reflect and ancient construction of
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Table 6: Ancient human proteins

A. First edition type

Human protein Prokaryotic homologue % identity E(59,000)
Triosephosphate isomerase E. coli 46 < 10736
Phosphoglyceraldehylde dehydrogenase  B. stearothermophilus 52 < 10778
Alkaline phosphatase E. coli 28 < 10720
Dihydrofolate reductase E. coli 28 < 10-¢
Superoxide dismutase (Cu-Zn) E. coli 32 <1077
Hypoxanthine-guanine E. cali 34 < 10717
phosphoribosyl transferase

B. Second edition type

Glutathione reductase Mercuric reductase, Pseudomonas 31 < 10732
Glutamate dehydrogenase (NAD) Glutamate dehydrogenase,E. coli 29 <1072
Ornithine transcarbamylase Aspartate transcarbamylase, E. coli 26 <1071

Adapted from Doodlittle et al., 1986

Table 7: Mosaic proteins

A. EGF-type B. C9-type
Epidermal growth factor precursor Complement C9
Tumor growth factors LDL receptor
LDL receptor Notch (Drosophila)
Factor I1X lin-12 (C. elegans)
Protein C

Tissue plasminogen activator

Urokinase
Complement C9

C. Fibronectin finger
Fibronectin

Tissue plasminogen activator

Notch protein (Drosophila)

lin-12 (C. elegans)

D. Protease “Kringle”
Plasminogen

Tissue plasminogen activator

Urokinase
Prothrombin

From Doolittle et al., 1986.

proteins from primordial exons. Alternatively, introns are also capable of invading genes; thus, the
association of exons with structures may reflect modern invasions that are less disruptive when they
occur between structural elements.

A recent test of the “introns” early hypothesis suggests thereislittle evidence to support the asso-
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ciation of introns with structural boundaries (Stoltzfus et al., 1994.

1.5 DNA vsProtein comparison

Whileall of the comparison methods described bel ow work on either protein or DNA sequences, one's
ability to identify distantly related sequencesis reduced dramatically when DNA sequences are used.
Fig. 8 compares the statistical significance of the best similarity scores abtained in a search of the
GenBank DNA sequence database using a mouse glutathione transferase cDNA clone with the sig-
nificance of the same alignment in a search of the GenPept protein sequence database (GenPept is de-
rived from GenBank by translating DNA sequencesinto the encoded protein sequences). Many DNA
sequences encoding clearly related proteins, e.g. RABGSTB have similarity scoresthat are expected
to occur several times by chancein a DNA database search. DNA sequencesare far lessinformative,
both because they lack the inherent biochemical information that is retained in the PAM 250 substi-
tution matrix, and because many changesin DNA sequences (third-base changes) do not change the
encoded protein.

Differencesin the performance of sequence comparison a gorithms are insignificant compared to
the loss of information that occurswhen one compares DNA sequences. If the biological sequence of
interest encodes a protein, protein sequence comparison is always the method of choice.
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Table 8: DNA vs Protein Sequence Comparison

score E(DNA) E(prot) E(tx)
MUSGST Mouse glutathione S-transferaseclassmu 5090 10233 10=°0  10-120
MUSGSTA Mouse, glutathione transferase GT9.3mu 3693 10~'67  10-73  10-120
HUMGSTAB Homo sapiens glutathione transferase 1930 10784 10759 10-80
MAMGLUTRA  M.auratus mu class GST 399 1071 0= 1071
RATGSTYD Rat glutathione S-transferase Y b subunit 399 10-1 10-™ 10710
HSGSTM4 H.sapiens GSTM4 gene for GST 390 10- 10759 10710
RATGSTY Rattus norvegicus GST 372 10710 10-7 10710
HSGSTM1B H.sapiens GSTM 1b gene for GST 358 1077 10753 10710
HSGSTMU3 Human GSTmu3 gene for aGST 322 1077 10-2%  10°S
BTGST Bovine GST mRNA for GST 249 0.00013 10°1'6 1022
HSGSTPI1 Human mRNA for anionic GST 237 0.00049 107'7 1072
MUSGTF Mus musculus GST mu 196 0.041 1074 10~°
CRUGSTP Chinese hamster GST 196 0.043 1016 10-21
CRUGSTPIE Cricetulus griseus GST pi 196 0.04 10-16  10-%
HAMGSTPIE ~ Mesocricetus auratus GST pi 191 0.13 10-16  10-%
BTRNAXOR B.taur us xanthine oxidoreductase 184 o011 > 10 > 5
HUMKAL?2 Human glandular kallikrein gene 170 0.59 > 10 > 5
RNGSTY C2F R.norvegicus GST Ycl 170 0.67 10-5 > 5
MMGLUT M.musculus mRNA for GST 168 1.0 1077 10-8
MUSTHYGP Mouse Thy-1.2 glycoprotein 163 1.3 > 10 > 5.0
HUMTROPIO1  Human troponin I, low-twitch isoform 161 1.7 > 10 > 5

Expectation values for searches against DNA (score, E(DNA)), protein (E(prot)), and translated DNA (E(tx)
databases. A mouse glutathione transferase cDNA sequence (MUSGST) was used to search either the primate
(GBPRI), rodent (GBROD), and mammalian (GBMAM) divisions of the GenBank DNA sequence databasefor
the DNA sequence comparisons. Protein expectations (E(prot)) were calculated from a search the translated
cDNA seguence against the GenPept sequence database, which includes all of trandated GenBank. Unrelated
sequences are italicized; E(prot) for unrelated sequences are >> 100.
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2 Alignment methods

A variety of comparison a gorithmsand scoring parameterscan be used to evaluate protein or DNA se-
guence similarity. In general, the choicethe of “best” algorithm depends on the problem to be solved.
Thus, agorithms that calculate alocal comparison score—i.e., they find the strongest similarity be-
tween the two sequences, ignoring differences outside of the most similar region—are usually most
appropriate for searching protein and DNA databases,? while global comparison algorithms are more
appropriate when homol ogy has been established, aswhen building evolutionary trees. Pattern-based,
rather than similarity-based, comparison methods may be preferred when searching for functionally
conserved non-homol ogous domains.

In searching protein sequence databases to identify distantly related homologous proteins, it is
important to remember that avoiding high similarity scoreswith unrelated sequences can be moreim-
portant as cal culating high scoresfor related sequences. There are morethan 50,000 protein sequences
in comprehensive protein databases, while thetypical family of proteinshasfewer than 100 members.
Thus, comparison al gorithms, scoring matricesand gap penaltiesthat producethe best alignmentsmay
not be the most effective for searching protein sequence databases (Pearson, 1995; ?).

2.1 Algorithms

Two general classesof comparison algorithmsare used to calculate similarity scoresto infer sequence
homology: rigorous algorithms that are guaranteed to calculate an optimal similarity score, e.g. the
NeedlemanWunsch (Needleman & Wunsch, 1970) and SmithWaterman (Smith & Waterman, 1981)
algorithms, and rapid heuristic algorithms that do not guarantee to calculate an optimal score for ev-
ery sequencein alibrary, e.g. FASTA (Pearson & Lipman, 1988) and BLAST (Altschul et al., 1990).
Table 2.1 summarizeswidely used algorithms for biological sequence comparison.

Two optimal algorithms for calculating similarity scores have been described, the Needleman-
Wunsch agorithm (Needleman & Wunsch, 1970), which calculates a “global” similarity score be-
tween two sequences, and the Smith-Waterman algorithm (Smith & Waterman, 1981), which calcu-
latesa“local” similarity score. Global scores require the alignment to begin at the beginning of each
sequence and extend to the end of each sequence. Global alignments cannot be used to detect the
relationship between DNA binding domains in homeobox proteins or the calcium binding domains
shared between calmodulin and calpain. Likewise, globa alignment algorithms often do not detect
the rel ationshi ps between mosaic proteins. Global similarity scores can be calculated with or without
penalties for gaps at the ends of the sequences.

Local alignment algorithmsidentify the most similar region shared between two sequences. Thus,
homol ogous calcium binding domains embedded in non-homologous proteins can be detected with
local alignment methods. In addition, a local alignment algorithm can be used to find the exons in
a genomic DNA sequence by aligning it with its encoded mRNA. Local aignment algorithms are
required to identify homologies in mosaic proteins, and they can be used to detect internal domain
duplications as well. Table 10 compares the scores of global, global without end-gap-penalties, and

2For genomic DNA sequences, thereis no logical alternative.
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Table 9: Algorithmsfor comparing protein and DNA sequences

algorithm value scoring gap time
calculated matrix penalty required
Needleman-  global similarity  arbitrary penalty/gap O(n?) Needleman and
Wunsch q Wunsch, 1970
Sellers (global) distance unity penalty/residue O(n?) Sellers, 1974
rk
Smith- local similarity ~ S;; < 0.0 affine O(n?) Smith and Waterman, 1981
Waterman q+rk Gotoh, 1982
FASTA approx. local S‘Z»]» < 0.0 limtedgapsize O(n?)/K Lipmanand Pearson, 1985
similarity q+rk Pearson and Lipman, 1988
BLASTP maximum Sij < 0.0 multiple O(n?)/K Altshul etal., 1990
segment score segments

local similarity scoresfor avariety of related and unrelated proteins.

Rigorous sequence comparison a gorithms, like the Smith-Waterman algorithm, require time pro-
portional to O(m AN ), where m is the length of the query sequence and N is the number of amino
acidsin the protein sequence library. Modern high-performance unix workstations can comparea300
residue protein sequence (human opsin) to the 40, 000 entry, 15,000,000 amino acid Swiss-Prot 31
database in less than 10 minutes.

Although very rapid® algorithms are available for calculating optimal global similarity scores be-
tween two sequences, particularly with unit cost scores, such algorithms are rarely appropriate for
biological sequence comparison. Unit cost algorithms must discard the substantial biochemical infor-
mation encoded in the PAM 250 matrix. Most rapid optimal algorithms calculate only global similar-
ities; such comparisonsare not useful for DNA sequence comparison because the “ends” required for
agloba sequence comparison are usually arbitrary.

20(Nd), where N isthelength of a sequence and d is the number of differences between the two sequences.
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Table 10: Global and local sequence similarity scores

Similarity Score Distance
PIR Entry Global Local
End No End
Penalty | Penalty
HBHU vs HBHU Hemoglobin beta-chain—human 725 725 725 0
HAHU Hemoglobin al pha-chain—human 314 320 322 152
MY HU Myoglobin—Human 121 164 166 212
GPYL L eghemoglobin—Yellow lupin 8 28 43 239
LZCH Lysozyme precursor—Chicken —-107 16 32 220
NRBO Pancreatic ribonuclease—Bovine —124 16 31 280
CCHU Cytochrome c—Human —160 10 26 321
MCHU vs MCHU Calmodulin—Human 671 671 671 0
TPHUCS  Troponin C, skeletal muscle 395 430 438 161
PVPK2 Parvalbumin beta—Pike —57 103 115 313
CIHUH Calpain heavy chain—Human —2085 89 100 2463
AQJIFNV  Aequorin precursor—Jelly fish —65 48 76 391
KLSWM Calcium binding protein—Scallop -89 45 52 323
QRHULD vs EGMSMG Epidermal growth factor precursor —591 475 655 2549
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Figure 10: Global and local alignment paths
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2.2 Dynamic Programming Algorithms

The algorithms used to cal cul ate the maximum similarity scores between two sequences are most eas-
ily visualized with an alignment matrix or path graph. Figs. 10-11 demonstrate the correspondence
between an alignment path graph and an actual alignment. The goal aong the path isto maximizethe
similarity score for the alignment that ends at each potential vertex. For the figures, similarity scores
areincreased by +1 for diagonal edges if the two residues along the path are identical; if they are
different, the diagonal edge costis —1. The cost along either a horizontal or vertical edge, which cor-
responds to an insertion in the top sequence (horizonal edge) or an insertion in the | eft-side sequence
(vertical edge) is —2. To produce a globa alignment from a path graph, smply begin at the bottom-
right corner of the graph and follow the “active’ paths, noted by \, _or! to the upper-left corner,
aligning the two residues along the diagonal path, or aligning aresidue with agap if a horizontal or
vertical pathistaken.

For the global alignmentin Fig. 10A, there aretwo alignmentsthat producethe optimal score. Op-
timal comparison algorithmsguarantee to produce the best score, given the match, mismatch, and gap
costs, but frequently there are several optimal alignmentsfor a single score. For thelocal alignment
in Fig. 10B, there are several sub-optimal alignments with scores of 2. Note that the local alignment
in Fig. 10B would extend from one end of each sequence to the other if the gap cost were reduced to
—1.
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Figure 11: An alignment path matrix
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Fig. 11 provides an exercise for the reader.

While there are an exponential number of potential alignments with gaps between two protein or
DNA sequences, dynamic programming algorithms are available that can calcul ate the optimal score
inO(M N ) steps. Thisefficiency isachieved by determining the optimal scorefor each prefix of each
string, and then extending each prefix by considering the three paths that can be used to extend an
alignment: (1) by extending the alignment by oneresiduein each sequence; (2) by extending thealign-
ment by oneresiduein the first sequence and aligning it with agap in the second; or (3) extending the
alignment by one residuein the second sequence and aligning it with agap in the first. Thisdecision
must be made for each of the M N prefixes of sequencesof length M and V.

The first algorithm for comparing protein sequences (Needleman & Wunsch, 1970) calculates a
“global” similarity score. A simplified global algorithmis shownin Fig. 12. Since aglobal algorithm
requires that the alignment extend from the beginning to the end of the alignment, it is sufficient to
report the score in the lower right (S( M, N)) of the scoring matrix.

Local aignment algorithms must consider alignments that begin and end at each of the M N po-
sitionsin the alignment matrix. Despite this added complexity, they only add two additional stepsto
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Figure 12: Algorithmsfor Global and Local similarity scores

5(0,0)—0
for j — 1to N do

J
for i — 1to M do
[ S(i,0) <= S(:—1,0)4 of Cf )

for j — 1to N do
§(i,j) = mazlS(i—= 1,5 = 1) +0( )" ), S=15)+0( " ).565-1)+0( , )]
J

J

]
write“Global similarity scoreis’ S(M, N)

best — 0
for j — 1to N do

500,5) = 80,5~ 1) +a( , )
J
for i — 1to M do

[ 5°6,0) = S'(i - 1,0)+a( ")

for j — 1to N do
[ 8'(i,4) = max[0, 56 = 1,5 = D)+ 0( ) )5 =1, +0( "), 85— 1) +0( , )]
J J
best — max(5'(i,7),best)
]

write“Local similarity scoreis’ best

the global alignment algorithm. Since every possible starting position must be considered, similarity
scores cannot fall below zero and a0 term is added to the maz comparison in Fig. 12. Sincethey can
end at any position in the matrix, the best score must be saved at each step. In practice, global and
local comparison algorithms require the same amount of computation.

2.3 Scoring methods

The scoring matricesused for protein sequence comparison are much more sophisticated than +1 for a
match and —1 for amismatch. The most effective matrices are based on the actual frequency of sub-
stitutions that occur between related proteins. Two different approaches have been used to produce
these matrices. The original PAM250 matrix (Fig. 5) was produced by examining several hundred
alignments between very closely related proteins, and then cal culating the frequency with which each
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amino-acid residue changed into each of the others at a very short evolutionary distance—one where
only 1% of the residues had kchanged (Dayhoff et al., 1978). This replacement frequency, when cor-
rected for the amino-acid abundance, can be used to cal culatethe PAM 1 scoring matrix (PAM is* Point
Accepted Mutation”). If thematrix ismultiplied against itself 250 times, a PAM 250 matrix, which re-
flects the frequency of change for proteinsthat have diverged 250%. If a two protein sequences have
diverged by 250%, it is expected that they will share about 20% sequenceidentity (Fig. 9). Since 20%
identity is at the edge of where significant similarity can be detected, the PAM250 matrix has been
widely used. The PAM250 matrix isbased on small number of amino acid substitutions; modern ex-
trapolated matrices based both on sequence alignments (Jones et al., 1992) and structural alignments
(Johnson & Overington, 1993) are available.

Substitution matrices have also been calculated directly by examining “blocks’ of aligned se-
quences that differ by no more than X % (Henikoff & Henikoff, 1992). Thus, the BLOSUM62 ma-
trix, which is used by the BLASTP rapid comparison program, is derived from substitution data for
blocks of aligned sequencesthat are no morethan 62% identical. BLOSUM62 performs substantially
better than extrapolated matrices with BLASTP and FASTA (Henikoff & Henikoff, 1993), but both
BLOSUM and extrapol ated matrices can performwell when used with optimal gap penalties (Pearson,
1995).

Altschul (1991) has provided a information-theory based perspective for evaluating scoring ma-
trices in general for alignments without gaps. Using a statistical theory for such alignments (Karlin
& Altschul, 1990), it is possible to convert any similarity scoreto avaluein “bits’ that can be used
to compare scores produced by different alignments. Unfortunately, the analytical formulas that are
used for this conversion cannot easily be applied to alignments that contain gaps. Collinset al., 1988
and Altschul, 1993 have also pointed out that different scoring matricesare optimal at different evolu-
tionary distances. Thus, short proteins sequences that are 50% identical can be more easily identified
with a*“shallower” PAM matrix, e.g. PAMG60.

24 Heuristic Algorithms

Tworapid heuristic algorithmsarefrequently used for searching protein and DNA sequence databases,
FASTA (Pearson & Lipman, 1988) and BLASTP (Altschul et al., 1990). These methods are 5-50
times faster than the rigorous Smith-Waterman algorithm, and can produce results of similar quality
in many cases.

Fig. 13 summarizesthedifference betweenthe FASTA, BLASTR, and Smith-Waterman algorithms.
BLASTPand FASTA arefaster than Smith-Waterman because they examine only a portion of the po-
tential alignments between two sequences. FASTA focuses on regions where there are either pairs
(ktup=2) or single aligned ktup=1 identities; BLASTP examines regions that include triples of con-
served amino acids.

241 BLAST

Advancesin the statistical theory of sequence alignmentswithout gaps (Karlin & Altschul, 1990) pro-
vided thetheoretical basisfor the BLASTP program (Altschul et al., 1990). BLASTPisnow the most
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Table 11: Sequence similarity with BLASTP

Step 1 For each three amino acidsin the query sequence, identify all of the substitutions of each word that have
asimilarity score greater than athreshold scoreT” = 11. In practice, word-matcheswith scores > T' are
seen on average 150 times per library sequence.

Step 2 Build adiscretefiniteautomaton (DFA) to recognizethelist of identical and substitutedthreeletter words.

Step 3 Usethe DFA to identify all of the matching words in sequences in the database. If amatch isfound, at-
tempt to extend the match both forwardsand backwards using the BLOSUM 62 matrix to produce ascore
that is higher than athreshold score. Save all of the high scoring regions shared by the query sequence
and each library sequence. The best of these scoresisreported asthe best single M SP (maximal segment
pair) score. These high scoring regions do not contain gaps.

Step 4 Attempt to combine multiple M SP regions. For each “consistent” combination, calculate the probability
of obtaining that may consistent matches using either “poisson” or “sum” statistics.(Karlin & Altschul,
1993) Report the lowest probability score based on statistics used.

Step 5 Report al of the significant alignments. Frequently, a query and library sequence will contain several
M SPs because of the requirement that they do not contain gaps.

widely used program for rapid sequence comparison, in large part because of its accurate estimates
for the statistical significance of similarity scores (see 3. BLASTR, like FASTA, uses a word-based
scanning procedure to identify regions of local similarity (Table 11) with out gaps. BLASTP is effec-
tive becauseit combines high sensitivity with excellent selectivity. BLASTP combines good sensitiv-
ity with exceptional selectivity. Except when the query sequence contains alow complexity region,
BLASTP rarely calculates scores for unrelated sequences.

242 FASTA

Thecurrent version of FASTA providesseveral significantimprovementsover earlier versions. FASTA
now cal culates optimized scores (step 4 in Table 12)) for most of the sequencesin the database and pro-
vides accurate estimates for statistical significance (3). Calculation of optimized scoresimproves sub-
stantially the performance of FASTA. Without the calculation, FASTA performs significantly worse
than BLASTP; however, with the calculation of optimized scores (and normalization of the scores
based on library sequence length), FASTA performs significantly better than BLASTP and amost as
well as the Smith-Waterman algorithm (Pearson, 1995). In addition, FASTA now uses the Smith-
Waterman algorithm to produce final alignments; previous versions limited the size of gaps, which
sometimes led to incompl ete alignments.

Every database search for membersof adiverseprotein family involvesatradeoff between sensitivity—
the ability to identify distantly related members of the family—and sel ectivity—the ability to avoid
high similarity scores for unrelated sequences. Table 3.3 compares how effectively the three algo-
rithmsmaintain thisbalancefor alarge protein family—the G-protein-coupledreceptors. Thus, BLASTP
calculatesavery highly significant scorefor the closely related opsin and dopamine D2 receptors, and
a significant score for the more distantly related thromboxane A4 receptor, but it does not detect the
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Table 12: Sequence similarity with FASTAv20

Step 1 Identify regions shared by the two sequences with the highest density of identities (ktup=1) or pairs of
identities (ktup=2).

Step 2 Rescan the ten regionswith the highest density of identitiesusing the BLOSUMS50 matrix. Trim the ends
of the region to include only those residues contributing to the highest score. Each region is a partial
alignment without gaps.

Step 3 If there are severad initial regionswith scores greater than the CUTOFF value, check to see whether the
trimmed initial regions can be joined to form an approximate alignment with gaps. Calculate asimilarity
score that isthe sum of the joined initial regions minus a penalty (usually 20) for each gap (initn). The
score of the single best initial region found in Step 2 is aso reported (initl).

Step 4 For sequences with scores greater than a threshold, construct an optimal local alignment of the query
seguence and the library sequence, considering only thoseresiduesthat liein aband centered on the best
initial region found in Step 2. For protein searches with ktup=2 a 16 residue band is used by default. A
32 residue band is used with ktup=1. Thisis the optimized (opt) score.

Step 5 After al (or the first 10-20,000) scores have been calculated, normalize the raw similarity scores by
regressing the similarity score against In(library-sequence length) and cal culating the average variance
in similarity scores. Z-values (normalized scores with mean 0 and variance 1) are calculated, and the
calculation isrepeated with library sequences with z-values greater than 5.0 and less than -5.0 removed.
These z-values are used to rank the library sequences.

Step 6 The Smith-Waterman algorithm (without limitation on gap size) is used to display alignments.

similarity between opsin and the very distantly related Dictyostelium cAMP (CAR1) receptor. In ad-
dition, BLASTP would never suggest a relationship between opsin and cytochrome oxidase. FASTA
(ktup=2 does a better job at recognizing the relationship between opsin and thromboxane A2, failsto
detect the cAMP-1 receptor, and is more ambiguous about a possible relationship with cytochrome
oxidase. FASTA with ktup=1 and Smith-Waterman cal cul ate statistically significant relationships be-
tween opsin and cAMP-1, but also good (but not significant) scoresfor opsin and cytochrome oxidase.

3 Thestatistics of sequence similarity scores

Thedevelopment of accurate statistical estimatesfor local sequencesimilarity scores(Karlin & Altschul,
1990; Mott, 1992) has allowed dramatic improvement in our ability to reliably recognize distantly re-
lated proteins. The statistical estimatescal culated by BLASTPare used widely in large scale sequence
comparison, e.g. to characterizeall of thegeneson ayeast chromosomeor all of thegenesin abacterial
genome. The incorporation of statistical estimatesinto FASTA and SSEARCH (a Smith-Waterman
implementation) have significantly improved the performance of these programs as well.
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3.1 Sequencealignmentswithout gaps

The statistics of local similarity scores for alignments without gaps but with an arbitrary substitution
matrix have been described by Karlin & Altschul, 1990. Local similarity scores are described by the
extreme valuedistribution. Using the parameters A and K, which can be derived from the scoring ma-
trix and the amino acid composition of the query sequence, the probability that anormalized similarity
score:

S"=AS —In Kmn (1)

(Karlin & Altschul, 1990; Altschul et al., 1994) where m isthe length of the query sequenceand n is
the length of the library sequence can be calculated as:

P(8'> ) =1 - exp(—c™) 2

Since atypical database search typically involvesthousands of pairwise comparisons, the expectation
of finding ascore 5' > X for asearch of D sequencesis. £(S’ > X ) = PD. (Thus, searches of
highly redundant databases may be less informative, because D islarger but the number of different
sequences isnot.)

3.2 Similarity scoresincrease with sequence length

The normalization in equation 1 shows that scores for alignments without gaps between random se-
guences increase as In K'mn, or since K and m are fixed for a given search, In n, the length of the
library sequence. Thisis seen empirically with scoresfor alignmentsthat contain gaps (Collinset al .,
1988; Mott, 1992) and is shown in Fig. 14. For local similarities, the variance of the score should be
independent of library sequencelength. Thus, normalization of similarity scores by fitting alineto the
relationship of similarity scoreto In » will reduce the scores of long, unrelated sequences, and make
it possible to detect more distant relationships (Pearson, 1995).

3.3 Empirical statisticsfor alignmentswith gaps

Accurate statistical estimates for alignments with gaps can can be calculated by normalizing similar-
ity scores to remove the In n dependence for similarity scores. This can be seenin Fig. 6, where the
‘“*'sshow the fit of an extreme value distribution to the observed data ('=="). FASTA and SSEARCH
estimate statistical significance by fitting alineto .S vsIn n and calculating the average variance for
the scores. The regression line and variance are used to calculate

Z — score = (85 —(a+blnn))//var (3)
Thedistribution of 7 — score’s should follow the extreme value distribution, so that:
P(Z > x) =-1— 6$p(—€_1'282z_0'5772) (4)

and, asbefore, E(Z > z) = PD.
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Figure 14: Similarity scores and library sequence length
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Thedistribution of Smith-Waterman similarity scoresisplotted asafunction of log(n ), n isthelength
of the library sequence. Filled symbolsindicate individual related sequences (only the most distant
related sequences are shown); open symbols show the average and std. error of similarity scores for
unrelated sequences.

3.4 Statistical significance by random shuffling

Statistical estimates derived from database searches measure the difference between an observed sim-
ilarity score and that expected for a sequence with the amino acid composition of the database. Such
tests may overestimate significance in cases where the query sequence’s amino acid composition dif-
fers from that of the database. Thus, membrane proteins with their hydrophobic transmembrane do-
mains may have statistically significant scores with non-homologous membrane proteins. A more
challenging test comparesthe similarity score between aquery and library sequence with the distribu-
tion of scores obtained by comparing the query sequence to random sequences with the same length
and amino acid composition asthelibrary sequence. Such sequencesareeasily generated by randomly
shuffling thelibrary sequence, either globally, by exchanging randomly each amino acid with any other
position in the sequence, or locally, by performing the exchanges within awindow of 10-20 residues.
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Table 13: Search Algorithms and Statistical Significance

algorithm closely related distantly unrelated
related related

dopamineD2* thromboxane A2® CcAMP-1° cytochrome oxidase?

Smith-Waterman 3x107° 2x 107 0.01 0.57
PRSS® 8 x 10710 10~ 0.007 0.45
PRSS(window=20)° 8 x 1078 0.001 0.23 3.0
fasta, ktup=1, opt 3x 1079 7x107° 0.02 0.39
fasta, ktup=2, opt 2x 1076 10~ 2.2 0.36
BLASTP 2 x 10722 0.07 > 1.0 > 1.0

*D2DR_HUMAN, *TA2R_MOUSE, “CAR1_DICDI, “APPC_ECOLI

Expected number of timesthat asimilarity score as high or higher than that obtained by the indicated
library sequence would be obtained by chance in a search of Swiss-Prot (= 58, 000 entries) with the
OPSD_HUMAN (human opsin) query sequence. “Expected times this score would be obtained after
1, 000 shuffles of the indicated library sequence with either global (prss) or local (window=20) amino
acid exchanges.

Because this Monte Carlo test measuresthe significance of the order of the two amino acid sequences,
rather than the difference between the highest scoring sequences and the rest of the database, it tends
to be more demanding.

As before, similarity scores for random sequences should follow the extreme value distribution,
and afit of the distribution of scores can be used to estimate the significance of an unshuffled score.
However, to extrapolate an expectation value from shuffled sequencesto that for alibrary search, the
“E()-value’” must be multiplied by the ratio of the number of sequencesin the library to the number
of shuffled sequences. Thus, in the example below, an E()-value from 500 shuffles must be multi-
plied by 80 to be comparable to an E()-value from the 40, 000 entry Swiss-Prot. As expected, the
E()-value from the actual search—2 x 10~*—is slightly more significant than that from the shuffled
distribution—3 x 1072.

Conparison of OOHU (human opsin) with TA2R MOUSE (t hromboxane A2 receptor)
BLOSUMBO matrix, gap penalties: -12,-2

unshuffl ed s-w score: 160; shuffled score range: 38 - 92

Lambda: 0.15076 K: 0.017357; P(160)= 7.4282e-08

For 500 sequences, a score >=160 is expected 3.71e-05 tines

Although accurate statistical estimatescan bevery valuablein interpreting the results of similarity
searches, they must be evaluated with caution. Distantly related homologous sequences often do not
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Figure 15: Patterns for serine proteases

ID TRYPSIN H'S; PATTERN

AC PS00134;

DE Serine proteases, trypsin famly, histidine active site.

PA  [LIVM-[ST]-A-[STAG-HC

NR  / TOTAL=158(158); /POCSI Tl VE=154(154); / UNKNOME2(2); [/ FALSE POS=2(2);
NR /FALSE _NEG=11(11);

CC /| TAXO RANGE=??EP?; [/ MAX- REPEAT=1;

CC /SITE=5,active_site;

ID TRYPSIN_SER; PATTERN.

AC  PS00135;

DE Serine proteases, trypsin fanmly, serine active site.

PA° GDS-GG

NR  /TOTAL=160(160); /POCsSI TI VE=151(151); /UNKNOMEL(1); /FALSE POS=8(8);
NR  /FALSE_NEG=16(16);

CC /| TAXO RANGE=??EP?; [/ MAX- REPEAT=1;

CC /SITE=3,active_site;

Patterns from PROSITE that identify 152/163 (TRYPSI NLHI S or 143/159 TRYPSI NL.SER members
of the serine protease protein family.

share statistically significant similarity. Thus, overreliance on statistical estimates, particularly after
a single search, can miss genuine homologies. Conversely, sequences with low-complexity regions
often share significant similarity but are not homologous. Finally, some structures, such asthe coiled-
coil structure in tropomyosin, share statistical significance because of a common repeated structure,
because of convergence (analogy), rather than homology.

4 Identifying distantly related protein sequences

In this section, wewill examine similarity searchesin three diverse families of protein sequences, ser-
ine proteases, glutathione S-transferases, and the G-protein-coupled receptors. The serine proteases
are considered becausethey provide a classic example of afamily of proteinswith ahighly conserved
active site; the glutathione transferases are a very diverse family where many members do not share
significant similarity with al other members, while the G-protein-coupled receptors are a very large
and diverse family of membrane proteins.

4.1 Serineproteases

Serine proteases cleave peptide bonds using a “catalytic triad” of histidine, serine, and aspartic acid;
theseresiduesare underlined in Fig. 17. Becausethese residues are so highly conserved, patterns that
focus on two of the regions (Fig. 15) can be used to identify every member of the serine protease
family. Fig. 16 shows the highest scoring unnormalized similarity scores. Asis often the case for di-
vergent protein families, several members of thefamily do not share statistically significant similarity
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with bovine trypsin. These sequences are italicized in Fig. 16; their membership in the serine pro-
tease family is based on common three-dimensional structures. As expected from the discussion in
section 3.2, several of the highest scoring unrelated sequences are substantially longer than genuine
serine proteases. These scores have much higher (less significant) expectation values when the In n
correction is used.

The absolute conservation of residues in the “catalytic triad” might suggest that similarities be-
tween members of this family are limited to those regions. This is not the case, as can be seen in
Fig. 17. Similarity in the serine proteases typically extends from one end of the protein to the other,
with strong conservation throughout the sequence. Indeed, the region around one of the residuesin
the catalytic triad—the apartic acid—is not well conserved. Whiletheresiduesin the catalytictriad is
an essential feature of serine proteases, the serine protease fold (two domains containing anti-parallel
[-barrels) are required to bring these residues together.

The requirement for a common folded structure in homologous proteins usually causes similar-
ities to extend from one end of the protein to the other, or for mosaic proteins, from one end of a
domain to the other. Fig. 18 displays the locally similar regions for the related and unrelated in Ta-
ble 16; the highest scoring unrelated sequences tend to have relatively short (< 100 residue) regions
of higher similarity (~ 30% identical) while related sequences have longer (140—400), though some-
times lower (25%) similarity. In general, shorter, higher similarities are less significant than longer,
lower similarities.
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Figure 16: Serine protease search - high scoring sequences

LOCUS

TRBOTR
TRRT2
KQHU
NGMSG
KQRTTN
KYBOA
PLHU
TRFF
KFHU
ELRT2
KYBOB
KFHU1
WMMS28
EXBO
DBHU
KXBO
UKHU
TBHU
TRSMG
C1HURB
HPHU1
TRPGAZ
HPRT
C2HU
BBHU
KXBOZ
TRYXB4

OKBYS8W
RRIHM2
|IJFFTM
GNNYE?
VGIHHC
QRRBVD
PRSMBG*
MMMSB2
RERTK
MMMSA
LNRZ
PRSMAG*

Description

trypsin precursor - bovine

trypsin Il precursor - rat

tissue kallikrein precursor -
7SNGF gammachain |

tonin - rat

chymotrypsin A precursor - bovine
plasmin precursor - human
trypsin-like proteinase
coagulation factor | Xa

pancreatic elastase 11
chymotrypsin B precursor - bovine
coagulation factor Xla
complement factor D homolog
coagulation factor Xa
complement factor D

protein C (activated)
u-plasminogen activator precu
thrombin precursor - human (fr
trypsin - Streptomyces griseus
complement subcomponent C1r p
haptoglobin-1 precursor - human
azurocidin - pig

haptoglobin - rat (fragments)
complement C2 - human
complement factor B - human
protein Z - bovine

alpha-lytic proteinase

probable protein kinase Y CRO08W
RNA-directed RNA polymerase
cadherin-related tumor suppressor
genome polyprot. - enterovirus 70
E2 glycoprotein - coronavirus
VLDL receptor - rabbit

proteinase B - S. griseus

laminin chain B2 precursor - mouse
renin precursor - rat

laminin chain A - mouse

lectin precursor - rice

proteinase A - S. griseus
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len

229
246
262
237
235
245
790
256
461
271
245
625
259
492
246
456
431
615
221
705
347
219
297
752
739
396
396

603
4488
5147
2194
1173

873

185
1607

402
3084

227

182

score

1559
1240
669
645
623
609
580
579
578
559
556
547
541
518
517
515
507
472
409
356
335
316
289
198
169
142
107

107
99
99
98
96
96
96
95
94
93
90
89

E(12,000)

10—97
10—76
10—37
10—36
10—34
10—34
10—31
10—31
10—31
10—30
10—30
10—29
10—29
10—27
10—27
10—27
10—26
10—24
10—20
10—16
10—15
10—14
10~ 12
106
0.00014
0.0041
0.83

13
37
42
20
14
10
1.9
23
6.0
61
6.0
55



Figure 17: Alignment of serine proteases

TRSMG trypsin (EC 3.4.21.4) precursor - Streptomyces griseus (259 aa)
Smi t h- WAt er man score: 385; 33.6% identity in 247 aa overlap

10 20 30 40
KYBOA OGVPAI Q:’VLSGLSR- -1 VNGEEAVPGSV\PV‘Q\/SLQDKTGFHFOGBSLI NE
TRSMG  MKHFLRALKRCSVAVATVAI AWGLQ:’VTASAAPNPWGGT RAAQEFPFM\/RLS- - I\/G- O(IEALYAQ
10 20 30 40 50 60

50 60 70 80 90 100 110
KYBOA NV\X/VTAAHC— --- GVT TSDWVAC—EF DQBSSSEKI Q(L Kl AKVF KNSKYNSLTI NND TL L KL STAASFS

TRSMG DI VLTAAHCVSGSGNNTSI TATGGVVDL(BSS - - VKVRSTKVLQAPGY NGT- - GKD/\ALI KL- - AQ:’I N
70 80 90 100 110 120

120 130 140 150 160 170 180
KYBOA QT VSAVCLPSASDDFAAGT TC\/T TGV‘GLTRYTNANTPDRLQ}ASLPLLSNTNCKKYV‘GTK— I KDAM CAG

TRSMG Q:’TLKI ATTTA- -- YN(IBTFTVA— GV‘GANR— EGGSQRYLLKANVPFVSDAACRSAYGNELVAI\EEI CAG

130 140 150 160 170 180 190
190 200 210 220 230 240
KYBOA --- ASGVSSCI\/GDSGGPLVCKKNG- AV\7I'LVGI VSV‘GSSTCSTSTPGVYARVT ALVNW/QQTLAAN

TRSMG YPDTGGVDTO(%BPNFRKDNADEW Q& VSV‘GYGCARPGY PGVYT EVSTFASAI ASAARTL
200 210 220 230 240 250
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TRBOTR
TRRT2
TRDFS
KQHU
NGMSG
KQRTTN
KYBOA
PLHU
TRFF
KFHU
KYRTB
ELRT2
KYBOB
KFHU1
WMMS28
EXBO
DBHU
KXBO
UKHU
TBHU
TRSMG
C1HURB
HPHU1
TRPGAZ
HPRT
C2HU
BBHU
KXBOZ
TRYXB4
OKBYS8W
RRIHM2
|IJFFTM
GNNYE?
VGIHHC
QRRBVD
PRSMBG*
MMMSB2
RERTK
MMMSA
LNRZ
PRSMAG*

1559
1240
1070
669
665
623
609
580
579
578
564
559
556
547
541
518
517
515
507
472
409
356
335
316
289
198
169
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107
99
99
98
96
96
96
95
94
93
90
89

Figure 18: Serine protease alignments
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Table 14: Glutathione S-transferases

The best scores are: sw Z-score E(58,753)
GTM1.MOUSE Glutathione Stransferase GT8.7 1490 1827.8 10-1'0!
GTM1.RAT Glutathione S-transferase YB1 1406 18189 10—
GTM1.HUMAN Glutathione S-transferase 1235 1591.1 1082
GTM2_CHICK Glutathione S-transferase 2 954 12321 10-%!
GTPLMOUSE  Glutathione S-transferase P 361 463.7 10~
GTA2.MOUSE  Glutathione S-transferase Ya 229 2919 10-°
SC2_0OCTDO S-crystallin 2 (OL2). 224 2909 10°°
GTA1.MOUSE  Glutathione S-transferase GT41A 218 2777 1078
GTC_.MOUSE Glutathione S-transferase Yc 215 2739 1078
GTA1. HUMAN  Glutathione Stransferase A1-1 206 2621 1077
GT28_SCHHA Glutathione S-transferase 28 kd 203 2587 107"
GTA3.MOUSE  Glutathione Stransferase GST 5.7 183 232.3 10°°6
GT28_SCHJA Glutathione S-transferase 28 kd 169 2148 10°°
GTS2.DROME  Glutathione S-transferase 2 164 2134 10~*
SC1.0CTVU S-crystallin 1. 159 204.1 10~*
GTA2_CHICK Glutathione Stransferase, CL-3. 144 183.0 0.00051
SC18_.OMMSL S-crystallin SL18. 131 166.9 0.010
GTT1.MUSDO  Glutathione Stransferase 1 122 153.8 0.055
GTH1_MAIZE Glutathione Stransferase | 120 1509 0.056
GTXA_TOBAC  Auxin-regulated protein 117 146.7 0.130
GT32.MAIZE Glutathione Stransferase 11 115 1441 0.9
GTT1.DROME  Glutathione S-transferase 1-1 100 1252 21
GTH1.WHEAT  Glutathione S-transferase 1 98 121.7 3.3
GT_PROMI Glutathione S-transferase GST-6.0 97 1216 34
DCMA_METSP  Dichloromethane dehal ogenase 98 1195 44
MODS5_YEAST tRNA isopentenyltransferase 100 1184 5.1
GTY2_ISSOR Glutathione S-transferase Y-2 94 1183 5.2
GTX2.TOBAC  Auxin-induced PGNT35/PCNT111. 93 1155 74
GTT1.RAT Glutathione S-transferase 5 93 1148 8.1
SPCB_.HUMAN  Spectrin betachain, erythrocyt (2137) 108 1135 96
DAPF_YERPE Diaminopimel ate epimerase 0 1129 10.0
LIGE_PSEPA (3-etherase 91 1109 13.0
EF1G_HUMAN  Elongation factor 1y 94 1105 14.0
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4.2 Glutathione S-transfer ases

The glutathione transferase family of enzymesis a very diverse family of proteins found, in various
forms, in animals, plants, and prokaryotes. Fortunately, many of the members of this family have a
common enzyme activity so that they can be recognized by name. Table 14 showsthat for this family,
there are many homologuesthat do not show significant similarity when the database is searched with
asingle query sequence.

Frequently, clear identification of a distant homology will require severa database searches, with
either different algorithmsor additional query sequences. For example, in Table 14, one might wish to
test the possibility that glutathione S-transferases share homology with elongation factors, which are
among the high scoring sequences. The result of a search using EF1G HUMAN is shown in Table 15.
Here, thereisa clear relationship between this elongation factor and the class-theta glutathione trans-
ferases. An additional search with a class-theta sequencereveal s the most distant relationshipsin this
family more clearly.

Table 15: Distant glutathione transferase homologs

Re-search with LIGE_PSEPA

The best scores are: sw Z-score E(58,762)
LIGE_PSEPA (-etherase 1993 25406 107!%
GTT1.DIACA  CGlutathione S-transferase 1 170 2109 10~*

GTX6.SOYBN  Probable glutathione S-transferase 168 2082 10*
GTX3_.TOBAC Probable glutathione S-transferase 165 2045 107°
GTXA_ARATH  Glutathione S-transferase 161 199.3 0.00016
GTX2.TOBAC Probableglutathione S-transferase 157 194.2 0.00031
GTX1.SOLTU  Probableglutathione S-transferase 149 184.2 0.0011
GTX1LTOBAC Probableglutathione S-transferase 147 181.4 0.0016

Re-search with EFIG_CHUMAN

The best scores are: sw Z-score E(58,709)
EF1G_.HUMAN Elongation factor 1y (EF-1v) 2977 34236 107183
EF1G_XENLA  Elongationfactor 1y (EF-17) 2370 27233 107'%
EF1IH_YEAST  Elongation factor 1y 2 (EF-1y) 769 8769 102
EF1IG.TRYCR  Elongationfactor 1y (EF-17) 715 8146 10738
SYV_HUMAN  valyl-tRNA synthetase 440 4834 10-20
GTH1_.MAIZE  Glutathione S-transferase | 222 252.0 1077
GTH3_.MAIZE  Glutathione S-transferase 11 193 2182 107°
GTH1.WHEAT  Glutathione Stransferase 1 186 209.8 10°°
GTH1.TOBAC Glutathione S-transferase 184 208.1 10~*
GTY2.ISSOR Glutathione S-transferase Y-2 175 198.8 0.00017
GTH2_.WHEAT  Glutathione S-transferase 2 175 192.6 0.00028

GTX6_SOYBN  Probable glutathione S-transferase ™ 171 192.6 0.00037
GTX2.TOBAC Probableglutathione S-transferase 169 190.8 0.0005
GTTLDROME  Glutathione S-transferase 1-1 162 182.9 0.0013
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Figure 19: G-protein-coupled receptors
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4.3 G-protein-coupled receptors

The G-protein-coupled receptors (GCRs) are one of the largest known gene families; members of the
family transduce signalsfrom light, peptides, cationic amines, lipid mediators, odors, and many more
small molecules. Anevolutionary treethat summarizesthe diversity of thisfamily isshownin Fig. 19.
Based on hydrophobicity plots and the structure of bacteriorhodopsin (a protein that does not share
significant similarity with members of thisfamily), the GCRs are thought to contain seven transmem-
brane domains, so that the N-terminus of the proteinsis extracellular, while the C-terminusisintra-

42



cellular.

Table 16: GCRsdistant from human opsin

The best scores are: sw Z-score E(58,649)
MC3R_RAT melanocortin-3 receptor 140 1644 0.014
OLF6_CHICK olfactory receptor-like protein 139 1634 0.016
MC3R_MOUSE melanocortin-3 receptor 139 163.2 0.016
ML1A_XENLA  melatonin receptor type 1A 133 1614 0.02
GU27_RAT gustatory receptor GUST27 137 161.0 0.021
AG2T_RAT type-1C angiotensin |1 receptor 132 159.2 0.027
OLF2 RAT olfactory receptor-like protein F12 135 1585 0.03
MAS_MOUSE MAS proto-oncogene 133 1559 0.041
PAFR.MACMU platelet activating factor receptor 130 155.6 0.043
MAS_RAT MAS proto-oncogene. 131 153.5 0.056
OLF2_CHICK olfactory receptor-like protein C 129 1514 0.074
CAR1.DICDI cyclic AMP receptor 1 130 150.9 0.079
Y S96_CAEEL hypothetical 110.4 KD protein 133 1477 0.2
5H2A _CAVPO  5-hydroxytryptamine 2A receptor ( 121 1435 0.2
PER4_RAT prostaglandin E2 receptor EP4 124 1421 0.24
CAR3.DICDI cyclic AMP receptor 3 124 1420 0.25
OLF4_CHICK olfactory receptor-like protein ¢ 121 141.7 0.25
ML1B_RAT melatonin receptor type 1B 115 1416 0.26
UL33.HSV7J G-protein coupled receptor homolog U12 121 141.0 0.28
OLF5_CHICK olfactory receptor-like protein C 120 1405 0.3
MAS HUMAN  MAS proto-oncogene. 120 140.2 0.31
NU2M_CHOCR  NADH-ubiquinone oxidoreductasechain2 122 1395 0.34
PER4 HUMAN  prostaglandin E2 receptor EP4 120 137.2 045
OLF1._CHICK olfactory receptor-like protein C 117 136.8 0.48

Because GCRs have transmembrane domains, the highest scoring unrelated sequences are fre-
guently other membrane proteins. Table 16 lists sequences from Swiss-Prot that have marginally sig-
nificant matches with a human opsin sequence (there are more than 500 related sequences with ex-
pectations ranging from 0—0.01 that are not shown). As with most divergent families, the question
becomes, “how do | know that XXX is/is not a GCR?’ Thisis more difficult with the GCRs, because
they have long variable length loops in both their extracellular and intracellular domains.

As before, two strategies can be used to evaluate the hypothesis of homology: re-searching the
library and statistical significance from shuffling. A search of the Swiss-Prot database reveals that
MAS_HUMAN shares significant similarity (#(58,500) < 0.01) with 205 GCRs; 100 additional scores
with less statistical significance also belong to the GCR family before the first non-GCR is encoun-
tered. In contrast, the highest ranking scores from the NU2M CHOCR are (more than 100 NADH oxi-
doreductase sequences are not shown):
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The best scores are: s-w Z-score E(58649)

NU2M_CHOCR NADH- UBI QUI NONE OXI DOREDUCTASE CHAIN 2 ( 497) 3181 2999.6 1.7e-160
NUON_RHOCA NADH DEHYDROGENASE | CHAIN N (EC 1.6.5. ( 478) 928 877.8 2.6e-42
NU2C_MARPO NADH- PLASTOQUI NONE OXI DOREDUCTASE CHAIN ( 501) 827 782.4 5. 3e-37
NU2M_PCDAN NADH- UBI QUI NONE OXI DOREDUCTASE CHAIN 2 ( 556) 788 745.0 6.4e-35
NU2M_ANOGA NADH- UBI QUI NONE OXI DOREDUCTASE CHAIN 2 ( 341) 460 439.2 6.9e-18
NU2M_RAT NADH- UBI QUI NONE OXI DOREDUCTASE CHAIN 2 (E ( 345) 393 376.1 2.3e-14
NU2M_CROLA NADH- UBI QUI NONE OXI DOREDUCTASE CHAIN 2 ( 348) 312 299.7 4.1le-10
NUSM_XENLA NADH- UBI QUI NONE OXI DOREDUCTASE CHAIN 5 ( 604) 230 218.9 1.3e-05
NDHF_BACSU NADH DEHYDROGENASE SUBUNIT 5 (EC 1.6.5. ( 505) 190 182.4 0.0014
COX1_LEI TA CYTCCHROMVE C OXI DASE POLYPEPTI DE | ( 549) 154 147.9 0.12
Y825_HAEI N HYPOTHETI CAL PROTEI N H 0825. ( 244) 145 144.7 0. 17
CCMF_RHI ME CYTOCCHROME C- TYPE BI OGENESI S PROTEIN CY ( 676) 152 144.7 0.18
NUSM_ANCAR NADH- UBI QUI NONE OXI DOREDUCTASE CHAIN 5 ( 266) 145 144.2 0.19
RFBX_SALTY RFBX PROTEI N. ( 430) 148 143.9 0.19
ATP6_OENBE ATP SYNTHASE A CHAIN (EC 3.6. 1. 34) ( 281) 141 140.0 0.32
YM)4_PARTE HYPOTHETI CAL 18.8 KD PROTEI N ( ORF4) . ( 156) 135 138.3 0.4
YC43_0DOSI HYPOTHETI CAL 30.1 KD PROTEIN YCF43 (ORF ( 263) 138 137.7 0.43
YJFS_ECOLI HYPOTHETI CAL 53.6 KD PROTEIN I N AIDB-RP ( 488) 142 137.4 0.45
NU4M_ANOAR NADH- UBI QUI NONE OXI DOREDUCTASE CHAIN 4 ( 221) 135 136.0 0.54
COP_CLOPE COPY NUMBER PROTEI N ( ORF4) . ( 198) 134 135.7 0.55
YJG2_YEAST HYPOTHETI CAL 94.9 KD PROTEIN IN MRPL8-N ( 830) 143 134.8 0.62
CAPE_STAAU CAPE PROTEI N. ( 440) 138 134.3 0.66
OPSD_MOUSE RHODOPSI N. ( 348) 134 132.1 0.89

The results from the MAS_ HUMAN and NU2M CHOCR, which show that MAS_ HUMAN is clearly a
member of the GCR family, contrast with the statistical significance calculated with the PRSS pro-
gram. Comparing the COHUwith RTA_RAT scorewith the distribution of scores calcul ated after shuf-
fling RTA_RAT 1000 times with alocal window of 20 suggests that the unshuffled score (109 ) is ex-
pected 6 times in 1000 shuffles. In contrast, the NU2ZM.CHOCR score is expected only 1.7 timesin
1000 shuffles. From this perspective, the NU2M CHOCR score is somewhat more significant, but, in
fact, neither similarity scoreis statistically significant. It is not until MAS_ HUMAN is compared with
other members of the family, e.g. the angiotensin, fMet-L eu-Phe, thrombin, or substance-P receptors
with E-values from 10~12—10-5, that the relationship is apparent.

Table 3.3 compares the statistical significance inferred from database searches with those deter-
mined by Monte-Carlo shuffling. Asexpected, the significance of the scores when compared with lo-
cally (window) shuffled sequencesis 10-fold lower than the comparison with globally shuffled scores.
It isunclear how to comparethe expectation from shuffleswith the expectation from asearch. Intheta-
ble, the expectation from asearch of a43, 000 entry library iscompared to the expectationfrom 1, 000
shuffles. For global shuffles, the expectations are quite comparablewhilelocal shuffles are more con-
servative, yet al but one of the similarity scores judged significant from the database search are still
significant when compared with the local -shuffle distribution.

Neverthel ess, these examples show both that current statistical modelsfor the similarity scores of
unrelated sequences are quite accurate, but also that homol ogous sequences frequently do not share
significant pair-wise similarity scores. Thus, alack of statistical significance cannot be used to infer
non-homology, but strong statistical significance isa good indicator of common ancestry.



Figure 20: Internal duplicationsin calmodulin
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Comparison of human calmodulinwithitself. Each diagonal linerepresentsapotential local alignment
of calmodulin with itself. Values below the diagona lines show the number of identities and length
of the aligned region (e.g. 33/102) and the expectation value for the similarity score of the alignment.

5 Repeated structuresin proteins

So far, we have focussed on the identification and statistics of the single most significant similarity
score shared by two sequences. Ascan be seenin Fig. 10B, however, there are frequently several non-
overlapping local aignmentswith optimal similarity scores. In addition, there can be non-overlapping
sub-optimal alignments with significant scores that can be used to infer the duplication events that
gaveriseto the protein sequence. An algorithm for the best N non-overlapping local aignmentswas
described by (Waterman & Eggert, 1987).

Figs. 20 and 21 show agraphical plot of thelocal similaritieswithin the calmodulin cal cium bind-
ing protein. Calmodulin contains four EF-hand Cat-binding domains that are well conserved. The
highest scoring alignment in Fig. 21 aligns domains A- B with C- D; the second highest alignsA- B- C
with B- C- D, the third aligns A with D.

A similar pattern of local similarity can be seen in Fig. 22, which shows the mosaic relationship
between the EGF-precursor and the LDL -receptor.
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Figure 21: Calmodulininternal alignments

Conpari son of:

(A) MCHU - Cal nodulin - Human, rabbit, bovine, rat, - 148 aa
(B) MCHU - Cal nodulin - Human, rabbit, bovine, rat, - 148 aa
using matrix file: BLOSUVbO, gap penalties: -14/-4

47. 7% identity in 65 aa overlap; score: 214 E(10,000): 3.4e-13

20 30 40 50 60 70
MCHU  EFKEAFSLFDKDGDGTI TTKELGTVMRSLGONPTEAELQDM NEVDADGNGT | DFPEFLTMVARK
MCHU  El REAFRVFDKDGNGYI SAAEL RHVMI'NL GEKL TDEEVDEM READI DGDGQVNYEEFVQVMIAK
90 100 110 120 130 140

32.4%identity in 102 aa overlap; score: 177 E(10,000): 1e-09

10 20 30 40 50 60 70
MCHU  AEFKEAFSLFDKDGDGT| TTKELGTVM RSLGONPTEAEL QDM NEVDADGNGTI DFPEFLTMVARKIVKD
MCHU  AELQDM NEVDADGNGT| DFPEFL TMVARKVKDTDSEEEI REAFRVFDKDGNGYI SAAEL RHVMI - NLGE
50 60 70 80 90 100 110
80 90 100 110
MCHU  TDSEEEI REAFRVFDKDGNGYI SAAEL RHVMI

120 130 140

34.2% identity in 38 aa overlap; score: 58 E(10, 000): 39

10 20 30
MCHU  MADQLTEEQ AEF- KEAFSLFDKDGDGT | TTKELGTVM
MCHU  LGEKLTDEEVDEM REA- - - - DI DGDGQVNYEEFVQWM
120 130 140

40. 0% identity in 20 aa overl ap; score: 53 E(10,000): 1.1e+02

70 80
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110 120
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Figure 22: Mosaic domains shared by the EGF-precursor and L DL -receptor
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Some non-homol ogous structures, particularly proteins containing the coiled-coil structure, have
a periodic structure that is easily seen in local similarity plots. Fig. 23 shows local similaritiesin
tropomyosin. All the alignments shown have local similarity scores greater than 120, and each would
be significant in a conventional database search.

6 Summary

Protein sequence comparisonisthemost powerful tool availabletoday for inferring structure and func-
tion from sequence because of the constraints of protein evolution—a protein fold into a functional
structure. Protein sequence similarity can routinely be used to infer relationships between proteins
that last shared a common ancestor 1-2.5 billion years ago. Our ability to identify distantly related
proteins has improved over the past five years with the devel opment of accurate statistical estimates,
which have provided better normalization methods, and with the use of optimized scoring parameters.
In using sequence similarity to infer homology, one should remember:

1. Alwayscompare protein sequencesif the genes encode proteins. Protein sequence comparison
will typically double the look back time over DNA sequence comparison.

2. While most sequences that share statistically significant similarity are homologous, many dis-
tantly related homologous sequences do not share significant homology. (Low complexity re-
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Figure 23: Coiled-coil structures share local similarity
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gions display significant similarity in the absence of homology). Homologous sequences are
usually similar over an entire sequence or domain. Matches that are more than 50% identical
ina20—40 amino acid region occur frequently by chance.

. Homol ogous sequences share acommon ancestor, and thus acommon protein fold. Depending
ontheevolutionary distance and divergence path, two or more homol ogous sequencesmay have
very few absolutely conserved residues. However, if homology has been inferred between A
and B, between B and C, and between C and D, A and D must be homologous, even if they
share no significant similarity.

. Similarity searching techniques can be improved either by increasing the ability of a method
to recognize distantly related sequences—increased sensitivity—or by lowering scores for un-
related sequences—increased selectivity. Since there are generally 1000-times more unrelated
than related sequencesin a sequence database, improvementsthat reduce the scores of unrelated
seguences can have dramatic effects. The most dramatic improvementsin comparison methods
recently have used this approach.
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